Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = radiolabeled neurotensin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2006 KiB  
Article
99mTc-Labeled Diarylpyrazoles for Single-Emission Computer Tomography Imaging of Neurotensin Receptor-Positive Tumors: A Comparative Preclinical Study
by Roman Potemkin, Simone Maschauer, Harald Hübner, Torsten Kuwert, Tobias Bäuerle, Peter Gmeiner and Olaf Prante
Pharmaceutics 2025, 17(6), 700; https://doi.org/10.3390/pharmaceutics17060700 - 27 May 2025
Viewed by 622
Abstract
Background/Objectives: Neurotensin receptors (NTSRs), members of the G protein-coupled receptor (GPCR) family, have been found to be overexpressed in several types of human cancers, including breast, colon, lung, liver, prostate, and pancreatic cancer. In particular, NTSR1 is overexpressed in at least 75% of [...] Read more.
Background/Objectives: Neurotensin receptors (NTSRs), members of the G protein-coupled receptor (GPCR) family, have been found to be overexpressed in several types of human cancers, including breast, colon, lung, liver, prostate, and pancreatic cancer. In particular, NTSR1 is overexpressed in at least 75% of pancreatic ductal adenocarcinomas. The aim of the present study was the development and evaluation of new 99mTc-labeled nonpeptide NTSR1-antagonists for SPECT imaging of NTSR-positive tumors. Methods: Multistep syntheses of NTSR1 antagonist derivatives were performed following our previously described procedure. Two different chelating strategies were applied for 99mTc radiolabeling to provide the [99mTc]Tc-HYNIC complex [99mTc]1 and the [99mTc]Tc-tricarbonyl complex [99mTc]2. Receptor binding assays were performed using hNTSR1-expressing CHO cells. Radiochemical yields (RCYs) were determined by radio-HPLC. For [99mTc]1 and [99mTc]2, log D7.4, plasma protein binding, stability in human plasma and serum, and cellular uptake in HT-29 cells were determined. Biodistribution studies and small animal SPECT studies were performed in HT-29 tumor-bearing nude mice. Results: The radiosynthesis of [99mTc]1 (log D7.4 = −0.27) and [99mTc]2 (log D7.4 = 1.00) was successfully performed with RCYs of 94–96% (decay-corrected). Both radioligands were stable in human serum and plasma, showed plasma protein binding of 72% ([99mTc]1) and 82% ([99mTc]2), and exhibited high and specific uptake in HT-29 cells. Biodistribution studies in HT-29 tumor-bearing mice showed a higher tumor accumulation of [99mTc]1 compared to [99mTc]2 (8.8 ± 3.4 %ID/g vs. 2.7 ± 0.2 %ID/g at 2 h p.i.). [99mTc]2 showed exceptionally high intestinal accumulation (49 ± 22 %ID/g at 1 h p.i.) and was therefore considered unfavorable. In the SPECT/CT imaging of HT-29 tumor xenografts, [99mTc]1 showed a higher NTSR1-specific tumor uptake than [99mTc]2 at all time points after tracer injection, with 12 ± 2.8 %ID/g for [99mTc]1 vs. 3.1 ± 1.1 %ID/g for [99mTc]2 at 4 h p.i. and adequate tumor-to-background ratios. Conclusions: In particular, the [99mTc]Tc-HYNIC ligand ([99mTc]1) showed promising preclinical results, being a potential candidate for SPECT imaging and, therefore, appropriate for translation into the clinic. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Metal Complexes and Derived Materials)
Show Figures

Figure 1

15 pages, 3374 KiB  
Article
Neurotensin (8-13) and Neuromedin N Neuropeptides Radiolabelling with Copper-64 Produced on Solid or Liquid Targets
by Diana Cocioabă, Alexandra I. Fonseca, Radu Leonte, Ivanna Hrynchak, Roxana Tudoroiu-Cornoiu, Sergio J. C. do Carmo, Bogdan Burghelea, Simona Băruță, Ana Rita Almeida, Radu Șerban, Anca Dinischiotu, Antero J. Abrunhosa and Dana Niculae
Molecules 2024, 29(6), 1390; https://doi.org/10.3390/molecules29061390 - 20 Mar 2024
Cited by 2 | Viewed by 2066
Abstract
On the verge of a theranostic approach to personalised medicine, copper-64 is one of the emerging radioisotopes in nuclear medicine due to its exploitable nuclear and biochemical characteristics. The increased demand for copper-64 for preclinical and clinical studies has prompted the development of [...] Read more.
On the verge of a theranostic approach to personalised medicine, copper-64 is one of the emerging radioisotopes in nuclear medicine due to its exploitable nuclear and biochemical characteristics. The increased demand for copper-64 for preclinical and clinical studies has prompted the development of production routes. This research aims to compare the (p,n) reaction on nickel-64 solid versus liquid targets and evaluate the effectiveness of [64Cu]CuCl2 solutions prepared by the two routes. As new treatments for neurotensin receptor-overexpressing tumours have developed, copper-64 was used to radiolabel Neurotensin (8-13) and Neuromedin N. High-quality [64Cu]CuCl2 solutions were prepared using ACSI TR-19 and IBA Cyclone Kiube cyclotrons. The radiochemical purity after post-irradiation processing reached 99% (LT) and 99.99% (ST), respectively. The irradiation of a solid target with 11.8 MeV protons and 150 μAh led to 704 ± 84 MBq/μA (17.6 ± 2.1 GBq/batch at EOB). At the end of the purification process (1 h, 90.90% activity yield), the solution for peptide radiolabelling had a radioactive concentration of 1340.4 ± 70.1 MBq/mL (n.d.c.). The irradiation of a liquid target with 16.9 MeV protons and 230 μAh resulted in 3.7 ± 0.2 GBq/batch at EOB, which corresponds to an experimental production yield of 6.89 GBq.cm3/(g.µA)sat. Benefiting from a shorter purification process (40 min), the activity yielded 90.87%, while the radioactive concentration of the radiolabelling solution was lower (492 MBq/mL, n.d.c.). The [64Cu]CuCl2 solutions were successfully used for the radiolabelling of DOTA-NT(8-13) and DOTA-NN neuropeptides, resulting in a high RCP (>99%) and high molar activity (27.2 and 26.4 GBq/μmol for LT route compared to 45 and 52 GBq/μmol for ST route, respectively). The strong interaction between the [64Cu]Cu-DOTA-NT(8-13) and the colon cancerous cell lines HT29 and HCT116 proved that the specificity for NTR had not been altered, as shown by the uptake and retention data. Full article
(This article belongs to the Special Issue Advance in Radiochemistry)
Show Figures

Figure 1

18 pages, 2805 KiB  
Article
Side-Chain Modified [99mTc]Tc-DT1 Mimics: A Comparative Study in NTS1R-Positive Models
by Panagiotis Kanellopoulos, Berthold A. Nock, Maritina Rouchota, George Loudos, Eric P. Krenning and Theodosia Maina
Int. J. Mol. Sci. 2023, 24(21), 15541; https://doi.org/10.3390/ijms242115541 - 24 Oct 2023
Cited by 2 | Viewed by 1592
Abstract
Radiolabeled neurotensin analogs have been developed as candidates for theranostic use against neurotensin subtype 1 receptor (NTS1R)-expressing cancer. However, their fast degradation by two major peptidases, neprilysin (NEP) and angiotensin-converting enzyme (ACE), has hitherto limited clinical success. We have recently shown [...] Read more.
Radiolabeled neurotensin analogs have been developed as candidates for theranostic use against neurotensin subtype 1 receptor (NTS1R)-expressing cancer. However, their fast degradation by two major peptidases, neprilysin (NEP) and angiotensin-converting enzyme (ACE), has hitherto limited clinical success. We have recently shown that palmitoylation at the ε-amine of Lys7 in [99mTc]Tc-[Lys7]DT1 (DT1, N4-Gly-Arg-Arg-Pro-Tyr-Ile-Leu-OH, N4 = 6-(carboxy)-1,4,8,11-tetraazaundecane) led to the fully stabilized [99mTc]Tc-DT9 analog, displaying high uptake in human pancreatic cancer AsPC-1 xenografts but unfavorable pharmacokinetics in mice. Aiming to improve the in vivo stability of [99mTc]Tc-DT1 without compromising pharmacokinetics, we now introduce three new [99mTc]Tc-DT1 mimics, carrying different pendant groups at the ε-amine of Lys7: MPBA (4-(4-methylphenyl)butyric acid)—[99mTc]Tc-DT10; MPBA via a PEG4-linker—[99mTc]Tc-DT11; or a hydrophilic PEG6 chain—[99mTc]Tc-DT12. The impact of these modifications on receptor affinity and internalization was studied in NTS1R-positive cells. The effects on stability and AsPC-1 tumor uptake were assessed in mice without or during NEP/ACE inhibition. Unlike [99mTc]Tc-DT10, the longer-chain modified [99mTc]Tc-DT11 and [99mTc]Tc-DT12 were significantly stabilized in vivo, resulting in markedly improved tumor uptake compared to [99mTc]Tc-DT1. [99mTc]Tc-DT11 was found to achieve the highest AsPC-1 tumor values and good pharmacokinetics, either without or during NEP inhibition, qualifying for further validation in patients with NTS1R-positive tumors using SPECT/CT. Full article
(This article belongs to the Special Issue Targeted Therapies and Molecular Methods in Cancer, 2nd Edition)
Show Figures

Figure 1

16 pages, 3154 KiB  
Article
Toward Stability Enhancement of NTS1R-Targeted Radioligands: Structural Interventions on [99mTc]Tc-DT1
by Panagiotis Kanellopoulos, Berthold A. Nock, Eric P. Krenning and Theodosia Maina
Pharmaceutics 2023, 15(8), 2092; https://doi.org/10.3390/pharmaceutics15082092 - 7 Aug 2023
Cited by 5 | Viewed by 1690
Abstract
The neurotensin subtype 1 receptor (NTS1R) is overexpressed in a number of human tumors, thereby representing a valid target for cancer theranostics with radiolabeled neurotensin (NT) analogs like [99mTc]Tc-DT1 (DT1, N4-Gly7-NT(8-13)). Thus far, the fast [...] Read more.
The neurotensin subtype 1 receptor (NTS1R) is overexpressed in a number of human tumors, thereby representing a valid target for cancer theranostics with radiolabeled neurotensin (NT) analogs like [99mTc]Tc-DT1 (DT1, N4-Gly7-NT(8-13)). Thus far, the fast degradation of intravenously injected NT–radioligands by neprilysin (NEP) and angiotensin-converting enzyme (ACE) has compromised their clinical applicability. Aiming at metabolic stability enhancements, we herein introduce (i) DT7 ([DAsn14]DT1) and (ii) DT8 ([β-Homoleucine13]DT1), modified at the C-terminus, along with (iii) DT9 ([(palmitoyl)Lys7]DT1), carrying an albumin-binding domain (ABD) at Lys7. The biological profiles of the new [99mTc]Tc–radioligands were compared with [99mTc]Tc-DT1, using NTS1R-expressing AsPC-1 cells and mice models without or during NEP/ACE inhibition. The radioligands showed enhanced in vivo stability vs. [99mTc]Tc-DT1, with [99mTc]Tc-DT9 displaying full resistance to both peptidases. Furthermore, [99mTc]Tc-DT9 achieved the highest cell internalization and tumor uptake even without NEP/ACE-inhibition but with unfavorably high background radioactivity levels. Hence, unlike C-terminal modification, the introduction of a pendant ABD group in the linker turned out to be the most promising strategy toward metabolic stability, cell uptake, and tumor accumulation of [99mTc]Tc-DT1 mimics. To improve the observed suboptimal pharmacokinetics of [99mTc]Tc-DT9, the replacement of palmitoyl on Lys7 by other ABD groups is currently being pursued. Full article
Show Figures

Figure 1

12 pages, 3414 KiB  
Article
PET Imaging of the Neurotensin Targeting Peptide NOTA-NT-20.3 Using Cobalt-55, Copper-64 and Gallium-68
by Hailey A. Houson, Volkan Tekin, Wilson Lin, Eduardo Aluicio-Sarduy, Jonathan W. Engle and Suzanne E. Lapi
Pharmaceutics 2022, 14(12), 2724; https://doi.org/10.3390/pharmaceutics14122724 - 6 Dec 2022
Cited by 8 | Viewed by 3049
Abstract
Introduction: Neurotensin receptor 1 (NTSR1) is an emerging target for imaging and therapy of many types of cancer. Nuclear imaging of NTSR1 allows for noninvasive assessment of the receptor levels of NTSR1 on the primary tumor, as well as potential metastases. This work [...] Read more.
Introduction: Neurotensin receptor 1 (NTSR1) is an emerging target for imaging and therapy of many types of cancer. Nuclear imaging of NTSR1 allows for noninvasive assessment of the receptor levels of NTSR1 on the primary tumor, as well as potential metastases. This work focuses on a the neurotensin peptide analogue NT-20.3 conjugated to the chelator NOTA for radiolabeling for use in noninvasive positron emission tomography (PET). NOTA-NT-20.3 was radiolabeled with gallium-68, copper-64, and cobalt-55 to determine the effect that modification of the radiometal has on imaging and potential therapeutic properties of NOTA-NT-20.3. Methods: In vitro assays investigating cell uptake and subcellular localization of the radiolabeled peptides were performed using human colorectal adenocarcinoma HT29 cells. In vivo PET/CT imaging was used to determine the distribution and clearance of the peptide in mice bearing NTSR1 expressing HT29 tumors. Results: Cell uptake studies showed that the highest uptake was obtained with [55Co] Co-NOTA-NT-20.3 (18.70 ± 1.30%ID/mg), followed by [64Cu] Cu-NOTA-NT-20.3 (15.46 ± 0.91%ID/mg), and lastly [68Ga] Ga-NOTA-NT-20.3 (10.94 ± 0.46%ID/mg) (p < 0.001). Subcellular distribution was similar across the three constructs, with the membranous fraction containing the highest amount of radioactivity. In vivo PET/CT imaging of the three constructs revealed similar distribution and tumor uptake at the 1 h imaging timepoint. Tumor uptake was receptor-specific and blockable by co-injection of non-radiolabeled NOTA-NT-20.3. SUV ratios of tumor to heart at the 24 h imaging timepoint show that [55Co] Co-NOTA-NT-20.3 (20.28 ± 3.04) outperformed [64Cu] Cu-NOTA-NT-20.3 (6.52 ± 1.97). In conclusion, our studies show that enhanced cell uptake and increasing tumor to blood ratios over time displayed the superiority of [55Co] Co-NOTA-NT-20.3 over [68Ga] Ga-NOTA-NT-20.3 and [64Cu] Cu-NOTA-NT-20.3 for the targeting of NTSR1. Full article
(This article belongs to the Special Issue Radiopharmaceuticals for Cancer Imaging and Therapy)
Show Figures

Graphical abstract

19 pages, 4682 KiB  
Article
Preparation and Preliminary Evaluation of Neurotensin Radiolabelled with 68Ga and 177Lu as Potential Theranostic Agent for Colon Cancer
by Radu Anton Leonte, Livia Elena Chilug, Radu Șerban, Cosmin Mustăciosu, Alina Raicu, Gina Manda and Dana Niculae
Pharmaceutics 2021, 13(4), 506; https://doi.org/10.3390/pharmaceutics13040506 - 7 Apr 2021
Cited by 10 | Viewed by 2894
Abstract
The neurotensin is a tridecapeptide involved in the proliferation of colon cancer, the overexpression of neurotensin receptors occurring at an early stage development of many tumours. Targeting neurotensin receptors by using the same biological active molecule is an effective approach for both imaging [...] Read more.
The neurotensin is a tridecapeptide involved in the proliferation of colon cancer, the overexpression of neurotensin receptors occurring at an early stage development of many tumours. Targeting neurotensin receptors by using the same biological active molecule is an effective approach for both imaging quantification and treatment. The present work aimed to demonstrate the ability of radiolabelled neurotensin to specifically target colon cancer cells, and substantiate its usefulness in targeted imaging and radiotherapy, depending on the emission of the coupled radioisotope. Syntheses of 68Ga–DOTA–NT and 177Lu–DOTA–NT were developed to obtain a level of quality suitable for preclinical use with consistent high synthesis yields. Radiochemical purity meets the pharmaceutical requirements, and it is maintained 4 h for 68Ga–DOTA–NT and 48 h for 177Lu–DOTA–NT. Extensive in vitro studies were conducted to assess the uptake and retention of 68Ga–DOTA–NT, the amount of non-specific binding of neurotensin and the effect of 177Lu–DOTA–NT on HT–29 cells. In vivo biodistribution of 68Ga–DOTA–NT revealed significant uptake at the tumour site, along with fast clearance evidenced by decreasing activity in kidneys and blood after 60 min p.i. 177Lu–DOTA–NT exhibited similar uptake in the tumour, but also a significant uptake at 14 days p.i. in the bone marrow was reported. These results successfully demonstrated the potential of neurotensin to deliver imaging/therapeutic 68Ga/177Lu radioisotopes pair, but also the need for further evaluation of the possible radiotoxicity effects on the liver, kidneys or bone marrow. Full article
(This article belongs to the Special Issue Colon-Targeted Drug Delivery)
Show Figures

Figure 1

16 pages, 1756 KiB  
Article
Key-Protease Inhibition Regimens Promote Tumor Targeting of Neurotensin Radioligands
by Panagiotis Kanellopoulos, Aikaterini Kaloudi, Marion de Jong, Eric P. Krenning, Berthold A. Nock and Theodosia Maina
Pharmaceutics 2020, 12(6), 528; https://doi.org/10.3390/pharmaceutics12060528 - 9 Jun 2020
Cited by 11 | Viewed by 2369
Abstract
Neurotensin subtype 1 receptors (NTS1R) represent attractive molecular targets for directing radiolabeled neurotensin (NT) analogs to tumor lesions for diagnostic and therapeutic purposes. This approach has been largely undermined by the rapid in vivo degradation of linear NT-based radioligands. Herein, we aim to [...] Read more.
Neurotensin subtype 1 receptors (NTS1R) represent attractive molecular targets for directing radiolabeled neurotensin (NT) analogs to tumor lesions for diagnostic and therapeutic purposes. This approach has been largely undermined by the rapid in vivo degradation of linear NT-based radioligands. Herein, we aim to increase the tumor targeting of three 99mTc-labeled NT analogs by the in-situ inhibition of two key proteases involved in their catabolism. DT1 ([N4-Gly7]NT(7-13)), DT5 ([N4-βAla7,Dab9]NT(7-13)), and DT6 ([N4-βAla7,Dab9,Tle12]]NT(7-13)) were labeled with 99mTc. Their profiles were investigated in NTS1R-positive colon adenocarcinoma WiDr cells and mice treated or not with the neprilysin (NEP)-inhibitor phosphoramidon (PA) and/or the angiotensin converting enzyme (ACE)-inhibitor lisinopril (Lis). Structural modifications led to the partial stabilization of 99mTc-DT6 in peripheral mice blood (55.1 ± 3.9% intact), whereas 99mTc-DT1 and 99mTc-DT5 were totally degraded within 5 min. Coinjection of PA and/or Lis significantly stabilized all three analogs, leading to a remarkable enhancement of tumor uptake for 99mTc-DT1 and 99mTc-DT5, but was less effective in the case of poorly internalizing 99mTc-DT6. In conclusion, NEP and/or ACE inhibition represents a powerful tool to improve tumor targeting and the overall pharmacokinetics of NT-based radioligands, and warrants further validation in the field of NTS1R-targeted tumor imaging and therapy. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

21 pages, 1073 KiB  
Review
New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology
by Anna Lucia Tornesello, Luigi Buonaguro, Maria Lina Tornesello and Franco Maria Buonaguro
Molecules 2017, 22(8), 1282; https://doi.org/10.3390/molecules22081282 - 2 Aug 2017
Cited by 70 | Viewed by 9485
Abstract
Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, [...] Read more.
Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues) have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc.), produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy. Full article
(This article belongs to the Special Issue Peptide-Based Drugs and Drug Delivery Systems)
Show Figures

Graphical abstract

Back to TopTop