Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = radioisotope recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2596 KB  
Review
Trends and Perspectives on Nuclear Waste Management: Recovering, Recycling, and Reusing
by Maria Letizia Terranova and Odilon A. P. Tavares
J. Nucl. Eng. 2024, 5(3), 299-317; https://doi.org/10.3390/jne5030020 - 13 Aug 2024
Cited by 6 | Viewed by 9372
Abstract
This paper focuses on the highly radioactive, long-lasting nuclear waste produced by the currently operating fission reactors and on the sensitive issue of spent fuel reprocessing. Also included is a short description of the fission process and a detailed analysis of the more [...] Read more.
This paper focuses on the highly radioactive, long-lasting nuclear waste produced by the currently operating fission reactors and on the sensitive issue of spent fuel reprocessing. Also included is a short description of the fission process and a detailed analysis of the more hazardous radioisotopes produced either by secondary reactions occurring in the nuclear installations or by decay of the fission fragments. The review provides an overview of the strategies presently adopted to minimize the harmfulness of the nuclear waste to be disposed, with a focus on the development and implementation of methodologies for the spent fuel treatments. The partitioning-conditioning and partitioning-transmutation options are analyzed as possible solutions to decrease the presence of long-lived highly radioactive isotopes. Also discussed are the chemical/physical approaches proposed for the recycling of the spent fuel and for the reusing of some technologically relevant isotopes in industrial and pharmaceutical areas. A brief indication is given of the opportunities offered by innovative types of reactors and/or of new fuel cycles to solve the issues presently associated with radioactive waste. Full article
Show Figures

Figure 1

10 pages, 1506 KB  
Communication
Warm-Season Pasture Species Respond to Subsurface Placement of Phosphorus Fertiliser
by Jonathan W. McLachlan, Benjamin J. Staker, Richard J. Flavel and Chris N. Guppy
Agronomy 2023, 13(10), 2524; https://doi.org/10.3390/agronomy13102524 - 29 Sep 2023
Cited by 1 | Viewed by 1399
Abstract
The root traits of many warm-season pasture species have not been characterised thoroughly. Depending on the nature of legume root architecture, alternative phosphorus (P) application strategies may improve the success of legume establishment and persistence, particularly if legumes exhibit a spatially responsive root [...] Read more.
The root traits of many warm-season pasture species have not been characterised thoroughly. Depending on the nature of legume root architecture, alternative phosphorus (P) application strategies may improve the success of legume establishment and persistence, particularly if legumes exhibit a spatially responsive root system. The purpose of the present experiment was to investigate the root morphology of several warm-season pasture species and to determine the response of these species to a subsurface application of P fertiliser. Monocultures of two grasses (Panicum coloratum and Digitaria eriantha) and two legumes (Medicago sativa and Desmanthus spp.) were established in pots to investigate root morphology and P acquisition in response to three soil-P distribution treatments. The P fertiliser that was applied to the subsurface ‘band’ layer was labelled with 32P-radioisotope to determine P recovery. There were significant differences in shoot yield and root morphology among the species. The largest shoot yields were usually produced by plants grown in the uniform high-P treatment, while the grasses generally produced longer roots more efficiently than the legumes across the three soil-P distribution treatments. Nevertheless, each species responded to the banded high-P treatment by acquiring more P from the zone of P enrichment (banded high-P = 31% cf., uniform low-P = 3%, and uniform high-P = 9%). This result suggests that a subsurface application of P fertiliser at the planting stage will benefit warm-season pasture species, particularly grasses that are highly responsive to fertiliser placement. Nevertheless, preferential placement of fertiliser below legumes may improve the productivity of this component if their root systems have more time to respond spatially. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

10 pages, 1293 KB  
Article
Photonuclear Alchemy: Obtaining Medical Isotopes of Gold from Mercury Irradiated on Electron Accelerators
by Andrey G. Kazakov, Julia S. Babenya, Taisya Y. Ekatova, Sergey S. Belyshev, Vadim V. Khankin, Omar Albaghdadi, Alexander A. Kuznetsov, Illarion I. Dovhyi, Nikolay A. Bezhin and Ivan G. Tananaev
Molecules 2022, 27(17), 5532; https://doi.org/10.3390/molecules27175532 - 28 Aug 2022
Cited by 5 | Viewed by 3243
Abstract
In our work, the photonuclear production of 198,199Au isotopes for nuclear medicine purposes was studied, and a method for their recovery from irradiated mercury was developed. The yields of the corresponding nuclear reactions were determined, and a comparison of various methods of [...] Read more.
In our work, the photonuclear production of 198,199Au isotopes for nuclear medicine purposes was studied, and a method for their recovery from irradiated mercury was developed. The yields of the corresponding nuclear reactions were determined, and a comparison of various methods of obtaining gold radioisotopes was provided. New sorbents based on benzo-15-crown-5, which selectively binds gold, were studied, and the optimal conditions for Au recovery with a high degree of purification from mercury were found. It was established that, for the fast and quantitative recovery of Au isotopes, it was necessary to add at least 0.1 mg of the carrier. As a result, the developed method can be regularly used to obtain 198,199Au for the research of radiopharmaceuticals based on them. Full article
(This article belongs to the Special Issue Novel Targeted Radiopharmaceuticals for Diagnosis and Therapy)
Show Figures

Figure 1

9 pages, 2435 KB  
Article
Investigation of a Possible Material-Saving Approach of Sputtering Techniques for Radiopharmaceutical Target Production
by Alisa Kotliarenko, Oscar Azzolini, Giorgio Keppel, Cristian Pira and Juan Esposito
Appl. Sci. 2021, 11(19), 9219; https://doi.org/10.3390/app11199219 - 3 Oct 2021
Cited by 9 | Viewed by 2207
Abstract
Magnetron sputtering (MS) is a relatively new deposition technique, which is being considered among the cyclotron solid target (CST) manufacturing options now available, aiming at the medical radioisotopes yield for radiopharmaceutical production. However, the intrinsic high material losses during the deposition process do [...] Read more.
Magnetron sputtering (MS) is a relatively new deposition technique, which is being considered among the cyclotron solid target (CST) manufacturing options now available, aiming at the medical radioisotopes yield for radiopharmaceutical production. However, the intrinsic high material losses during the deposition process do not permit its use with extremely expensive target materials, such as isotopically enriched metals/oxides. In this study, R&D technology for a new recovering shield is instead proposed to assess the dissipation of target material during the sputtering processes and, thus, an estimate of the material recovery that may be feasible and the related amount. The weight-loss analysis method is used to assess the material losses level inside the chamber during processing. In all tests carried out, a high-purity copper (99.99%) was used as a target material. As a result of this study, the material distribution for both magnetron and diode sputtering depositions can be calculated. The feasibility of the ultra-thick coatings growing, devoted to CST production, is demonstrated. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

32 pages, 5918 KB  
Review
A Review on Thermoelectric Generators: Progress and Applications
by Mohamed Amine Zoui, Saïd Bentouba, John G. Stocholm and Mahmoud Bourouis
Energies 2020, 13(14), 3606; https://doi.org/10.3390/en13143606 - 13 Jul 2020
Cited by 311 | Viewed by 32115
Abstract
A thermoelectric effect is a physical phenomenon consisting of the direct conversion of heat into electrical energy (Seebeck effect) or inversely from electrical current into heat (Peltier effect) without moving mechanical parts. The low efficiency of thermoelectric devices has limited their applications to [...] Read more.
A thermoelectric effect is a physical phenomenon consisting of the direct conversion of heat into electrical energy (Seebeck effect) or inversely from electrical current into heat (Peltier effect) without moving mechanical parts. The low efficiency of thermoelectric devices has limited their applications to certain areas, such as refrigeration, heat recovery, power generation and renewable energy. However, for specific applications like space probes, laboratory equipment and medical applications, where cost and efficiency are not as important as availability, reliability and predictability, thermoelectricity offers noteworthy potential. The challenge of making thermoelectricity a future leader in waste heat recovery and renewable energy is intensified by the integration of nanotechnology. In this review, state-of-the-art thermoelectric generators, applications and recent progress are reported. Fundamental knowledge of the thermoelectric effect, basic laws, and parameters affecting the efficiency of conventional and new thermoelectric materials are discussed. The applications of thermoelectricity are grouped into three main domains. The first group deals with the use of heat emitted from a radioisotope to supply electricity to various devices. In this group, space exploration was the only application for which thermoelectricity was successful. In the second group, a natural heat source could prove useful for producing electricity, but as thermoelectricity is still at an initial phase because of low conversion efficiency, applications are still at laboratory level. The third group is progressing at a high speed, mainly because the investigations are funded by governments and/or car manufacturers, with the final aim of reducing vehicle fuel consumption and ultimately mitigating the effect of greenhouse gas emissions. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 3201 KB  
Article
The Potential Application of Microorganisms for Sustainable Petroleum Recovery from Heavy Oil Reservoirs
by Tamara Nazina, Diyana Sokolova, Denis Grouzdev, Ekaterina Semenova, Tamara Babich, Salimat Bidzhieva, Dmitriy Serdukov, Dmitriy Volkov, Konstantin Bugaev, Alexey Ershov, Marat Khisametdinov and Igor Borzenkov
Sustainability 2020, 12(1), 15; https://doi.org/10.3390/su12010015 - 18 Dec 2019
Cited by 32 | Viewed by 4909
Abstract
A microbial enhanced oil recovery (MEOR) technique was tested at low-temperature heavy oil reservoirs (Russia). The bioaugmentation approach used is based on the introduction of hydrocarbon-oxidizing bacteria into the oilfield in combination with an injection of oxygen as a H2O2 [...] Read more.
A microbial enhanced oil recovery (MEOR) technique was tested at low-temperature heavy oil reservoirs (Russia). The bioaugmentation approach used is based on the introduction of hydrocarbon-oxidizing bacteria into the oilfield in combination with an injection of oxygen as a H2O2 solution in order to initiate the first stage of hydrocarbon oxidation and of (NH4)2HPO4 as a source of biogenic elements. Before the pilot trials, the microorganisms of petroleum reservoirs were investigated by high-throughput sequencing, as well as by culture-base and radioisotope techniques. Molecular studies revealed the differences in microbial composition of the carbonate and terrigenous oil reservoirs and the communities of injection and formation water. Aerobic bacteria Rhodococcus erythropolis HO-KS22 and Gordonia amicalis 6-1 isolated from oilfields oxidized oil and produced biosurfactants. Fermentative enrichment and pure cultures produced considerable amounts of low fatty acids and alcohols from sacchariferous substrates. In core-flooding tests, 43.0–53.5% of additional heavy oil was displaced by aerobic bacteria, producing biosurfactants, and 13.4–45.5% of oil was displaced by fermentative bacteria, producing low fatty acids, alcohols, and gas. A total of 1250 t additional oil was recovered as a result of the application of an MEOR technique at the Cheremukhovskoe heavy oil reservoir and Vostochno-Anzirskoe reservoir with light conventional oil. Full article
Show Figures

Graphical abstract

14 pages, 6368 KB  
Article
Recovery of Molybdenum Precursor Material in the Cyclotron-Based Technetium-99m Production Cycle
by Hanna Skliarova, Paolo Buso, Sara Carturan, Carlos Rossi Alvarez, Sara Cisternino, Petra Martini, Alessandra Boschi and Juan Esposito
Instruments 2019, 3(1), 17; https://doi.org/10.3390/instruments3010017 - 13 Feb 2019
Cited by 8 | Viewed by 6258
Abstract
A closed-loop technology aiming at recycling the highly 100Mo-enriched molybdenum target material has been developed in the framework of the international research efforts on the alternative, cyclotron-based 99mTc radionuclide production. The main procedure steps include (i) 100Mo-based target manufacturing; (ii) [...] Read more.
A closed-loop technology aiming at recycling the highly 100Mo-enriched molybdenum target material has been developed in the framework of the international research efforts on the alternative, cyclotron-based 99mTc radionuclide production. The main procedure steps include (i) 100Mo-based target manufacturing; (ii) irradiation under proton beam; (iii) dissolution of 100Mo layer containing Tc radionuclides (produced by opened nuclear reaction routes) in concentrated H2O2 solution; and (iv) Mo/Tc separation by the developed radiochemical module, from which the original 100Mo comes as the “waste” alkaline aqueous fraction. Conversion of the residual 100Mo molybdates in this fraction into molybdic acids and MoO3 has been pursued by refluxing in excess of HNO3. After evaporation of the solvent to dryness, the molybdic acids and MoO3 may be isolated from NaNO3 by exploiting their different solubility in water. When dried in vacuum at 40 °C, the combined aqueous fractions provided MoO3 as a white powder. In the last recovery step MoO3 has been reduced using a temperature-controlled reactor under hydrogen overpressure. An overall recovery yield of ~90% has been established. Full article
(This article belongs to the Special Issue Instruments and Methods for Cyclotron Produced Radioisotopes)
Show Figures

Graphical abstract

Back to TopTop