Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = radiation-induced tissue toxicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1041 KiB  
Article
Investigating the Influence of Conventional vs. Ultra-High Dose Rate Proton Irradiation Under Normoxic or Hypoxic Conditions on Multiple Developmental Endpoints in Zebrafish Embryos
by Alessia Faggian, Gaia Pucci, Enrico Verroi, Alberto Fasolini, Stefano Lorentini, Sara Citter, Maria Caterina Mione, Marco Calvaruso, Giorgio Russo, Emanuele Scifoni, Giusi Irma Forte, Francesco Tommasino and Alessandra Bisio
Cancers 2025, 17(15), 2564; https://doi.org/10.3390/cancers17152564 - 3 Aug 2025
Viewed by 174
Abstract
Objectives: To investigate how the FLASH effect modulates radiation response on multiple developmental endpoints of zebrafish embryos under normoxic and hypoxic conditions, after irradiation with proton beams at a conventional and an ultra-high dose rate (UHDR). Methods: Embryos were obtained from adult zebrafish [...] Read more.
Objectives: To investigate how the FLASH effect modulates radiation response on multiple developmental endpoints of zebrafish embryos under normoxic and hypoxic conditions, after irradiation with proton beams at a conventional and an ultra-high dose rate (UHDR). Methods: Embryos were obtained from adult zebrafish and irradiated with a 228 MeV proton beam 24 h post-fertilization (hpf) at a dose rate of 0.6 and 317 Gy/s. For the hypoxic group, samples were kept inside a hypoxic chamber prior to irradiation, while standard incubation was adopted for the normoxic group. After irradiation, images of single embryos were acquired, and radiation effects on larval length, yolk absorption, pericardial edema, head size, eye size, and spinal curvature were assessed at specific time points. Results: Data indicate a general trend of significantly reduced toxicity after exposure to a UHDR compared to conventional regimes, which is maintained under both normoxic and hypoxic conditions. Differences are significant for the levels of pericardial edema induced by a UHDR versus conventional irradiation in normoxic conditions, and for eye and head size in hypoxic conditions. The toxicity scoring analysis shows a tendency toward a protective effect of the UHDR, which appears to be associated with a lower percentage of embryos in the high score categories. Conclusions: A radioprotective effect at a UHDR is observed both for normoxic (pericardial edema) and hypoxic (head and eye size) conditions. These results suggest that while the UHDR may preserve a potential to reduce radiation-induced damage, its protective effects are endpoint-dependent; the role of oxygenation might also be dependent on the tissue involved. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

32 pages, 1319 KiB  
Review
Effects of Targeted Radionuclide Therapy on Cancer Cells Beyond the Ablative Radiation Dose
by Guillermina Ferro-Flores, Erika Azorín-Vega, Blanca Ocampo-García, Myrna Luna-Gutiérrez, Pedro Cruz-Nova and Laura Meléndez-Alafort
Int. J. Mol. Sci. 2025, 26(14), 6968; https://doi.org/10.3390/ijms26146968 - 20 Jul 2025
Viewed by 640
Abstract
Targeted radionuclide therapy (TRT) utilizes radiopharmaceuticals to deliver radiation directly to cancer cells while sparing healthy tissues. Beyond the absorbed dose of ablative radiation, TRT induces non-targeted effects (NTEs) that significantly enhance its therapeutic efficacy. These effects include radiation-induced bystander effects (RIBEs), abscopal [...] Read more.
Targeted radionuclide therapy (TRT) utilizes radiopharmaceuticals to deliver radiation directly to cancer cells while sparing healthy tissues. Beyond the absorbed dose of ablative radiation, TRT induces non-targeted effects (NTEs) that significantly enhance its therapeutic efficacy. These effects include radiation-induced bystander effects (RIBEs), abscopal effects (AEs), radiation-induced genomic instability (RIGI), and adaptive responses, which collectively influence the behavior of cancer cells and the tumor microenvironment (TME). TRT also modulates immune responses, promoting immune-mediated cell death and enhancing the efficacy of combination therapies, such as the use of immune checkpoint inhibitors. The molecular mechanisms underlying TRT involve DNA damage, oxidative stress, and apoptosis, with repair pathways like homologous recombination (HR) and non-homologous end joining (NHEJ) playing critical roles. However, challenges such as tumor heterogeneity, hypoxia, and radioresistance limit the effectiveness of this approach. Advances in theranostics, which integrate diagnostic imaging with TRT, have enabled personalized treatment approaches, while artificial intelligence and improved dosimetry offer potential for treatment optimization. Despite the significant survival benefits of TRT in prostate cancer and neuroendocrine tumors, 30–40% of patients remain unresponsive, which highlights the need for further research into molecular pathways, long-term effects, and combined therapies. This review outlines the dual mechanisms of TRT, direct toxicity and NTEs, and discusses strategies to enhance its efficacy and expand its use in oncology. Full article
(This article belongs to the Special Issue Targeted Therapy of Cancer: Innovative Drugs and Molecular Tools)
Show Figures

Figure 1

21 pages, 1475 KiB  
Review
The Role of Predictive Biomarkers in Modern Prostate Cancer Radiotherapy: A Literature Review on Personalised Treatment Strategies and the Prediction of Adverse Effects
by Jelena Stanić, Ivana Šović, Luka Jovanovic, Ivana Z. Matić, Predrag Nikić and Marina Nikitović
Life 2025, 15(7), 1062; https://doi.org/10.3390/life15071062 - 2 Jul 2025
Viewed by 508
Abstract
Prostate cancer is one of the most prevalent malignancies in men, posing a significant public health challenge due to its high incidence and long-term treatment-related toxicities. Long-lived patients often experience prolonged side effects that can severely diminish their quality of life. Despite advancements [...] Read more.
Prostate cancer is one of the most prevalent malignancies in men, posing a significant public health challenge due to its high incidence and long-term treatment-related toxicities. Long-lived patients often experience prolonged side effects that can severely diminish their quality of life. Despite advancements in radiotherapy techniques like IMRT and VMAT, some patients still experience acute and late side effects. Current treatment protocols do not account for individual variability in normal-tissue radiosensitivity, highlighting the need for predictive tools and a personalised treatment approach. Genetic factors and molecular regulators like microRNAs (miRNAs) contribute to these variations by influencing DNA repair, inflammation, and apoptosis. This review explores potential biomarkers of radiotoxicity, focusing on immune-related factors such as IL-6 and TGF-β1, SNPs influencing radiosensitivity, miRNAs involved in radiation responses, and functional assays including the radiation-induced lymphocyte apoptosis (RILA) test. These approaches offer promising tools for identifying radiosensitive patients and enabling risk-adapted radiotherapy. Full article
(This article belongs to the Section Radiobiology and Nuclear Medicine)
Show Figures

Figure 1

25 pages, 6051 KiB  
Article
Radiation Promotes Acute and Chronic Damage to Adipose Tissue
by Kia T. Liermann-Wooldrik, Elizabeth A. Kosmacek, Joshua A. McDowell, Simran Takkar, Divya Murthy, Pankaj K. Singh, Micah B. Schott, Moorthy P. Ponnusamy and Rebecca E. Oberley-Deegan
Int. J. Mol. Sci. 2025, 26(12), 5626; https://doi.org/10.3390/ijms26125626 - 12 Jun 2025
Viewed by 650
Abstract
Radiotherapy is commonly used for treating various types of cancer. In addition, adipose tissue is not routinely spared during typical radiation treatment. Although radiation is known to induce metabolic effects in patients, the effects of radiation therapy on adipose tissue have not been [...] Read more.
Radiotherapy is commonly used for treating various types of cancer. In addition, adipose tissue is not routinely spared during typical radiation treatment. Although radiation is known to induce metabolic effects in patients, the effects of radiation therapy on adipose tissue have not been elucidated. Currently, few studies have investigated the impact of radiation exposure on adipose tissue, and these have primarily involved whole-body irradiation. This study aimed to understand the acutely persistent damage caused by clinically relevant radiation doses in adipocytes. Specifically, in vitro and in vivo, irradiated adipocytes increased reactive oxygen species (ROS) and lipid peroxidation levels and elevated lipolytic activity compared to unirradiated adipocytes. RNA sequencing also revealed the upregulation of senescence and inflammation pathways. We observed an increase in macrophage and T-cell accumulation at both 1 and 6 months after radiation exposure using in vivo models. Many of the changes observed in irradiated adipose tissue, including oxidative stress, metabolic dysfunction, inflammation, and senescence, are consistent with those observed in adipose tissue from obese patients, in which obesity is a known driver of many cancers. As adipose tissue damage is maintained chronically, protecting adipose tissue from the harmful effects of radiation exposure may improve radiation-induced toxicity and reduce cancer recurrence and progression. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

57 pages, 11752 KiB  
Review
Cellulose-Based Hybrid Hydrogels for Tissue Engineering Applications: A Sustainable Approach
by Elizabeth Vázquez-Rivas, Luis Alberto Desales-Guzmán, Juan Horacio Pacheco-Sánchez and Sofia Guillermina Burillo-Amezcua
Gels 2025, 11(6), 438; https://doi.org/10.3390/gels11060438 - 6 Jun 2025
Viewed by 3221
Abstract
Cellulose is a sustainable biopolymer, being renewable and abundant, non-toxic, biodegradable, and easily functionalizable. However, the development of hydrogels for tissue engineering applications presents significant challenges that require interdisciplinary expertise, given the intricate and dynamic nature of the human body. This paper delves [...] Read more.
Cellulose is a sustainable biopolymer, being renewable and abundant, non-toxic, biodegradable, and easily functionalizable. However, the development of hydrogels for tissue engineering applications presents significant challenges that require interdisciplinary expertise, given the intricate and dynamic nature of the human body. This paper delves into current research focused on creating advanced cellulose-based hydrogels with tailored mechanical, biological, chemical, and surface properties. These hydrogels show promise in healing, regenerating, and even replacing human tissues and organs. The synthesis of these hydrogels employs a range of innovative techniques, including supramolecular chemistry, click chemistry, enzyme-induced crosslinking, ultrasound, photo radiation, high-energy ionizing radiation, 3D printing, and other emerging methods. In the realm of tissue engineering, various types of hydrogels are explored, such as stimuli-responsive, hybrid, injectable, bio-printed, electrospun, self-assembling, self-healing, drug-releasing, biodegradable, and interpenetrating network hydrogels. Moreover, these materials can be further enhanced by incorporating cell growth factors, biological molecules, or by loading them with cells or drugs. Looking ahead, future research aims to engineer and tailor hydrogels to meet specific needs. This includes exploring safer and more sustainable materials and synthesis techniques, identifying less invasive application methods, and translating these studies into practical applications. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels (2nd Edition))
Show Figures

Graphical abstract

21 pages, 747 KiB  
Review
Cancer Pain: Radiotherapy as a Double-Edged Sword
by Monika Konopka-Filippow, Barbara Politynska, Anna M. Wojtukiewicz and Marek Z. Wojtukiewicz
Int. J. Mol. Sci. 2025, 26(11), 5223; https://doi.org/10.3390/ijms26115223 - 29 May 2025
Viewed by 800
Abstract
Cancer pain is a common issue for patients, especially in the advanced stages of cancer, and significantly affects the quality of life (QoL), treatment tolerance, and overall treatment outcomes. Pain may be caused by primary tumors, metastases, or as a consequence of the [...] Read more.
Cancer pain is a common issue for patients, especially in the advanced stages of cancer, and significantly affects the quality of life (QoL), treatment tolerance, and overall treatment outcomes. Pain may be caused by primary tumors, metastases, or as a consequence of the inflammatory reaction of tissues surrounding the tumor following radiotherapy (RT). Effective pain management is crucial, especially with RT being a key method for alleviating cancer pain, particularly in cases of bone and soft tissue metastases. RT provides relief for 60–80% of patients by reducing tumor size and mitigating associated pain. Radiotherapy itself can also induce pain, especially radiation-induced neuropathic pain, which may require further treatment. Despite these potential side effects, RT remains an essential tool in managing cancer pain, though careful management of its toxicities is necessary to improve patient QoL and survival. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 1472 KiB  
Review
Radiation-Induced Fibrosis in Head and Neck Cancer: Challenges and Future Therapeutic Strategies for Vocal Fold Treatments
by Maria Jimenez-Socha, Gregory R. Dion, Camilo Mora-Navarro, Ziyu Wang, Michael W. Nolan and Donald O. Freytes
Cancers 2025, 17(7), 1108; https://doi.org/10.3390/cancers17071108 - 26 Mar 2025
Cited by 1 | Viewed by 2001
Abstract
Head and neck cancer encompasses a diverse group of malignant neoplasms originating in regions such as the oral cavity, oropharynx, hypopharynx, larynx, sinonasal cavities, and salivary glands. HNC represents a significant public health challenge, and recent reports indicate an increment in the incidence [...] Read more.
Head and neck cancer encompasses a diverse group of malignant neoplasms originating in regions such as the oral cavity, oropharynx, hypopharynx, larynx, sinonasal cavities, and salivary glands. HNC represents a significant public health challenge, and recent reports indicate an increment in the incidence of HNC in young adults. In 2020, approximately 377,700 new HNC cases and 177,800 HNC-related deaths were reported globally. Major risk factors include tobacco smoking, alcohol consumption, and human papillomavirus (HPV) infections. HNC impacts vital functions such as breathing, swallowing, and speech. Treatments for this type of cancer within this complex anatomy include surgery, radiotherapy, and chemotherapy combinations. Radiotherapy is often an essential component of both curative and palliative HNC treatment, balancing tumor control with the preservation of function and appearance. However, its use can damage adjacent normal tissues, causing acute or chronic toxicity. One complication of HNC irradiation is VF fibrosis, which leads to severe voice impairments, significantly affecting patients’ quality of life. Fibrosis involves excessive and aberrant deposition of extracellular matrix, driven by factors such as TGF-β1 and inflammatory cytokines, which ultimately impair the flexibility and function of VF. Current radiation-induced fibrosis treatments primarily focus on symptom management and include systemic therapies like corticosteroids, anti-inflammatory drugs, and antioxidants. However, these treatments have limited efficacy. Experimental approaches targeting molecular pathways involved in fibrosis are being explored. Given the limitations of these treatments, advancing research is crucial to develop more effective therapeutic strategies that can significantly improve the quality of life for HNC patients, especially those vulnerable to VF fibrosis. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Graphical abstract

44 pages, 2707 KiB  
Review
Unveiling the Multifaceted Pharmacological Actions of Indole-3-Carbinol and Diindolylmethane: A Comprehensive Review
by Yadava Srikanth, Dontiboina Harikrishna Reddy, Vinjavarapu Lakshmi Anusha, Naresh Dumala, Matte Kasi Viswanadh, Guntupalli Chakravarthi, Buchi N. Nalluri, Ganesh Yadagiri and Kakarla Ramakrishna
Plants 2025, 14(5), 827; https://doi.org/10.3390/plants14050827 - 6 Mar 2025
Viewed by 2583
Abstract
Cruciferae family vegetables are remarkably high in phytochemicals such as Indole-3-carbinol (I3C) and Diindolylmethane (DIM), which are widely known as nutritional supplements. I3C and DIM have been studied extensively in different types of cancers like breast, prostate, endometrial, colorectal, gallbladder, hepatic, and cervical, [...] Read more.
Cruciferae family vegetables are remarkably high in phytochemicals such as Indole-3-carbinol (I3C) and Diindolylmethane (DIM), which are widely known as nutritional supplements. I3C and DIM have been studied extensively in different types of cancers like breast, prostate, endometrial, colorectal, gallbladder, hepatic, and cervical, as well as cancers in other tissues. In this review, we summarized the protective effects of I3C and DIM against cardiovascular, neurological, reproductive, metabolic, bone, respiratory, liver, and immune diseases, infections, and drug- and radiation-induced toxicities. Experimental evidence suggests that I3C and DIM offer protection due to their antioxidant, anti-inflammatory, antiapoptotic, immunomodulatory, and xenobiotic properties. Apart from the beneficial effects, the present review also discusses the possible toxicities of I3C and DIM that are reported in various preclinical investigations. So far, most of the reports about I3C and DIM protective effects against various diseases are only from preclinical studies; this emphasizes the dire need for large-scale clinical trials on these phytochemicals against human diseases. Further, in-depth research is required to improve the bioavailability of these two phytochemicals to achieve the desirable protective effects. Overall, our review emphasizes that I3C and DIM may become potential drug candidates for combating dreadful human diseases. Full article
Show Figures

Figure 1

18 pages, 2189 KiB  
Review
Noble Metal Complexes in Cancer Therapy: Unlocking Redox Potential for Next-Gen Treatments
by Alina Stefanache, Alina Monica Miftode, Marcu Constantin, Roxana Elena Bogdan Goroftei, Iulia Olaru, Cristian Gutu, Alexandra Vornicu and Ionut Iulian Lungu
Inorganics 2025, 13(2), 64; https://doi.org/10.3390/inorganics13020064 - 19 Feb 2025
Cited by 1 | Viewed by 1134
Abstract
(1) Context: Cancer is still a major problem worldwide, and traditional therapies like radiation and chemotherapy often fail to alleviate symptoms because of side effects, systemic toxicity, and mechanisms of resistance. Beneficial anticancer effects that spare healthy tissues are made possible by [...] Read more.
(1) Context: Cancer is still a major problem worldwide, and traditional therapies like radiation and chemotherapy often fail to alleviate symptoms because of side effects, systemic toxicity, and mechanisms of resistance. Beneficial anticancer effects that spare healthy tissues are made possible by the distinctive redox characteristics of noble metal complexes, especially those containing palladium, gold, silver, and platinum. (2) Methods: The redox processes, molecular targets, and therapeutic uses of noble metal complexes in cancer have been the subject of much study over the last 20 years; novel approaches to ligand design, functionalization of nanoparticles, and tumor-specific drug delivery systems are highlighted. (3) Results: Recent developments include Pt(IV) prodrugs and terpyridine-modified Pt complexes for enhanced selectivity and decreased toxicity; platinum complexes, like cisplatin, trigger reactive oxygen species (ROS) production and DNA damage. Functionalized gold nanoparticles (AuNPs) improve targeted delivery and theranostic capabilities, while gold complexes, particularly Au(I) and Au(III), inhibit redox-sensitive processes such as thioredoxin reductase (TrxR). (4) Conclusions: Ag(I)-based compounds and nanoparticles (AgNPs) induce DNA damage and mitochondrial dysfunction by taking advantage of oxidative stress. As redox-based anticancer medicines, noble metal complexes have the ability to transform by taking advantage of certain biochemical features to treat cancer more effectively and selectively. Full article
(This article belongs to the Special Issue Biological Activity of Metal Complexes)
Show Figures

Graphical abstract

15 pages, 1170 KiB  
Review
CyberKnife in Pediatric Oncology: A Narrative Review of Treatment Approaches and Outcomes
by Costanza M. Donati, Federica Medici, Arina A. Zamfir, Erika Galietta, Silvia Cammelli, Milly Buwenge, Riccardo Masetti, Arcangelo Prete, Lidia Strigari, Ludovica Forlani, Elisa D’Angelo and Alessio G. Morganti
Curr. Oncol. 2025, 32(2), 76; https://doi.org/10.3390/curroncol32020076 - 29 Jan 2025
Cited by 1 | Viewed by 1836
Abstract
Pediatric cancers, while rare, pose unique challenges due to the heightened sensitivity of developing tissues and the increased risk of long-term radiation-induced effects. Radiotherapy (RT) is a cornerstone in pediatric oncology, but its application is limited by concerns about toxicity, particularly secondary malignancies, [...] Read more.
Pediatric cancers, while rare, pose unique challenges due to the heightened sensitivity of developing tissues and the increased risk of long-term radiation-induced effects. Radiotherapy (RT) is a cornerstone in pediatric oncology, but its application is limited by concerns about toxicity, particularly secondary malignancies, growth abnormalities, and cognitive deficits. CyberKnife (CK), an advanced robotic radiosurgery system, has emerged as a promising alternative due to its precision, non-invasiveness, and ability to deliver hypofractionated, high-dose RT while sparing healthy tissues. This narrative review explores the existing evidence on CK application in pediatric patients, synthesizing data from case reports, small series, and larger cohort studies. All the studies analyzed reported cases of tumors located in the skull or in the head and neck region. Findings suggest CK’s potential for effective tumor control with favorable toxicity profiles, especially for complex or inoperable tumors. However, the evidence remains limited, with the majority of studies involving small sample sizes and short follow-up periods. Moreover, concerns about the “dose-bath” effect and limited long-term data on stochastic risks warrant cautious adoption. Compared to Linac-based RT and proton therapy, CK offers unique advantages in reducing session numbers and enhancing patient comfort, while its real-time tracking provides superior accuracy. Despite these advantages, CK is associated with significant limitations, including a higher potential for low-dose scatter (often referred to as the “dose-bath” effect), extended treatment times in some protocols, and high costs requiring specialized expertise for operation. Emerging modalities like π radiotherapy further underscore the need for comparative studies to identify the optimal technique for specific pediatric cases. Notably, proton therapy remains the benchmark for minimizing long-term toxicity, but its cost and availability limit its accessibility. This review emphasizes the need for balanced evaluations of CK and highlights the importance of planning prospective studies and long-term follow-ups to refine its role in pediatric oncology. A recent German initiative to establish a CK registry for pediatric CNS lesions holds significant promise for advancing evidence-based applications and optimizing treatment strategies in this vulnerable population. Full article
(This article belongs to the Special Issue Updates on Diagnosis and Treatment for Pediatric Solid Tumors)
Show Figures

Figure 1

32 pages, 3337 KiB  
Review
Exploring the Metabolic Impact of FLASH Radiotherapy
by Febe Geirnaert, Lisa Kerkhove, Pierre Montay-Gruel, Thierry Gevaert, Inès Dufait and Mark De Ridder
Cancers 2025, 17(1), 133; https://doi.org/10.3390/cancers17010133 - 3 Jan 2025
Cited by 4 | Viewed by 2294
Abstract
FLASH radiotherapy (FLASH RT) is an innovative modality in cancer treatment that delivers ultrahigh dose rates (UHDRs), distinguishing it from conventional radiotherapy (CRT). FLASH RT has demonstrated the potential to enhance the therapeutic window by reducing radiation-induced damage to normal tissues while maintaining [...] Read more.
FLASH radiotherapy (FLASH RT) is an innovative modality in cancer treatment that delivers ultrahigh dose rates (UHDRs), distinguishing it from conventional radiotherapy (CRT). FLASH RT has demonstrated the potential to enhance the therapeutic window by reducing radiation-induced damage to normal tissues while maintaining tumor control, a phenomenon termed the FLASH effect. Despite promising outcomes, the precise mechanisms underlying the FLASH effect remain elusive and are a focal point of current research. This review explores the metabolic and cellular responses to FLASH RT compared to CRT, with particular focus on the differential impacts on normal and tumor tissues. Key findings suggest that FLASH RT may mitigate damage in healthy tissues via altered reactive oxygen species (ROS) dynamics, which attenuate downstream oxidative damage. Studies indicate the FLASH RT influences iron metabolism and lipid peroxidation pathways differently than CRT. Additionally, various studies indicate that FLASH RT promotes the preservation of mitochondrial integrity and function, which helps maintain apoptotic pathways in normal tissues, attenuating damage. Current knowledge of the metabolic influences following FLASH RT highlights its potential to minimize toxicity in normal tissues, while also emphasizing the need for further studies in biologically relevant, complex systems to better understand its clinical potential. By targeting distinct metabolic pathways, FLASH RT could represent a transformative advance in RT, ultimately improving the therapeutic window for cancer treatment. Full article
(This article belongs to the Special Issue Feature Paper in Section “Cancer Therapy” in 2024)
Show Figures

Figure 1

18 pages, 13037 KiB  
Article
Bufadienolides from Chansu Injection Synergistically Enhances the Antitumor Effect of Erlotinib by Inhibiting the KRAS Pathway in Pancreatic Cancer
by Yanli Guo, Yu Jin, Jie Gao, Ding Wang, Yanming Wang, Liya Shan, Mengyu Yang, Xinzhi Li and Ketao Ma
Pharmaceuticals 2024, 17(12), 1696; https://doi.org/10.3390/ph17121696 - 16 Dec 2024
Cited by 2 | Viewed by 1293
Abstract
Background and Objectives: The Chansu injection (CSI), a sterile aqueous solution derived from Chansu, is applied in clinical settings to support antitumor and anti-radiation treatments. CSI’s principal active components, bufadienolides (≥90%), demonstrate potential effects on pancreatic cancer (PDAC), but their underlying mechanisms remain [...] Read more.
Background and Objectives: The Chansu injection (CSI), a sterile aqueous solution derived from Chansu, is applied in clinical settings to support antitumor and anti-radiation treatments. CSI’s principal active components, bufadienolides (≥90%), demonstrate potential effects on pancreatic cancer (PDAC), but their underlying mechanisms remain unclear. This study aimed to elucidate the antitumor effects and pathways associated with CSI in PDAC. Methods: Network pharmacology and bioinformatics analyses explored CSI’s mechanisms against PDAC. MTT, colony-formation, and migration assays evaluated CSI’s impact on proliferation and migration in PANC-1 and MIA PACA-2 cells, both as a single agent and in combination with erlotinib (EGFR inhibitor). Cell cycle analysis employed flow cytometry. Animal experiments were performed on tumor-bearing mice, with targets and pathways assessed via molecular docking and western blotting. Results: CSI treatment suppressed PDAC cell proliferation and migration by inducing G2/M phase arrest. Network pharmacology, bioinformatics, and molecular docking indicated that CSI’s anti-PDAC effects may involve EGFR pathway modulation, with CSI lowering p-EGFR/KRAS/p-ERK1/2 pathway expressions in PDAC cells. Additionally, sustained KRAS activation in mediating erlotinib resistance in PDAC and CSI potentiated erlotinib’s antitumor effects through enhanced KRAS and p-ERK1/2 inhibition. CSI also enhanced erlotinib’s efficacy in tumor-bearing mice without causing detectable toxicity in renal, cardiac, or hepatic tissues at therapeutic doses. Conclusions: CSI as an adjuvant used in antitumor and anti-radiation therapies enhanced erlotinib’s antitumor effects through modulation of the KRAS pathway. CSI and erlotinib’s synergistic interaction represents a promising approach for addressing erlotinib resistance in PDAC treatment. Full article
Show Figures

Figure 1

12 pages, 1824 KiB  
Article
Long-Term Breast Cancer Risk in Hodgkin Lymphoma Survivors: Evaluating Background Parenchymal Enhancement and Radiotherapy-Induced Toxicity
by Filomena Emanuela Laddaga, Michele Telegrafo, Carmela Garzillo, Alba Fiorentino, Angela Sardaro, Stefano Martinotti, Marco Moschetta and Francesco Gaudio
Cancers 2024, 16(23), 4091; https://doi.org/10.3390/cancers16234091 - 6 Dec 2024
Cited by 1 | Viewed by 1876
Abstract
Hodgkin lymphoma (HL) treatment has dramatically improved, with high survival rates in early stages. However, long-term survivors face an increased risk of secondary cancers, particularly breast cancer (BC), which emerge as a leading cause of mortality decades after therapy. Background/Objectives: This study [...] Read more.
Hodgkin lymphoma (HL) treatment has dramatically improved, with high survival rates in early stages. However, long-term survivors face an increased risk of secondary cancers, particularly breast cancer (BC), which emerge as a leading cause of mortality decades after therapy. Background/Objectives: This study explores the risk of BC and the toxic effects of radiation therapy (RT) in long-term HL survivors compared to age-matched high-risk women, including BRCA1 and BRCA2 mutation carriers. A prospective study was conducted on 62 women who had undergone chemotherapy and involved-field RT for HL, with MRI used to assess breast tissue changes. This study’s primary endpoint was to analyze BC incidence in HL survivors, while secondary objectives focused on the analysis of background parenchymal enhancement (BPE) in irradiated areas. Results: The findings revealed a 5% incidence of BC in HL survivors, with 50% showing moderate or marked BPE, similar to that observed in high-risk BC controls. No significant differences in BPE distribution were found between the two groups. Conclusions: The study highlights the long-term risk of BC in HL survivors and suggests that advanced RT techniques and targeted therapies may help reduce the incidence of secondary tumors. Future research should focus on understanding the genetic and biological mechanisms behind treatment-induced cancers Full article
(This article belongs to the Special Issue Radiation Therapy in Lymphoma)
Show Figures

Figure 1

15 pages, 3829 KiB  
Article
The Role of lncRNAs in the Protective Action of Tamoxifen on the Ovaries of Tumor-Bearing Rats Receiving Cyclophosphamide
by Sylwia Swigonska, Anna Nynca, Tomasz Molcan, Brian K. Petroff and Renata E. Ciereszko
Int. J. Mol. Sci. 2024, 25(23), 12538; https://doi.org/10.3390/ijms252312538 - 22 Nov 2024
Viewed by 975
Abstract
Infertility due to ovarian toxicity is a common side effect of cancer treatment in premenopausal women. Tamoxifen (TAM) is a selective estrogen receptor modulator that prevented radiation- and chemotherapy-induced ovarian failure in preclinical studies. In the current study, we examined the potential regulatory [...] Read more.
Infertility due to ovarian toxicity is a common side effect of cancer treatment in premenopausal women. Tamoxifen (TAM) is a selective estrogen receptor modulator that prevented radiation- and chemotherapy-induced ovarian failure in preclinical studies. In the current study, we examined the potential regulatory role of long noncoding RNAs (lncRNAs) in the mechanism of action of TAM in the ovaries of tumor-bearing rats receiving cyclophosphamide (CPA) as cancer therapy. We identified 166 lncRNAs, among which 49 were demonstrated to be differentially expressed (DELs) in the ovaries of rats receiving TAM and CPA compared to those receiving only CPA. A total of 24 DELs were upregulated and 25 downregulated by tamoxifen. The identified DELs shared the characteristics of noncoding RNAs described in other reproductive tissues. Eleven of the identified DELs displayed divergent modes of action, regulating target transcripts via both cis- and trans-acting pathways. Functional enrichment analysis revealed that, among target genes ascribed to the identified DELs, the majority were involved in apoptosis, cell adhesion, immune response, and ovarian aging. The presented data suggest that the molecular mechanisms behind tamoxifen’s protective effects in the ovaries may involve lncRNA-dependent regulation of critical signaling pathways related to inhibition of follicular transition and ovarian aging, along with the suppression of apoptosis and regulation of cell adhesion. Employing a tumor-bearing animal model undergoing chemotherapy, which accurately reflects the conditions of mammary cancer, reinforces the obtained results. Given that tamoxifen remains a key player in the management and prevention of breast cancer, understanding its ovarian-specific actions in cancer patients is crucial and requires detailed functional studies to clarify the underlying molecular mechanisms. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

42 pages, 5792 KiB  
Review
FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application
by Lina Alhaddad, Andreyan N. Osipov and Sergey Leonov
Int. J. Mol. Sci. 2024, 25(23), 12506; https://doi.org/10.3390/ijms252312506 - 21 Nov 2024
Cited by 2 | Viewed by 2895
Abstract
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the [...] Read more.
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT). The FLASH-RT clinical trials have been designed to examine the UHDR deliverability, the effectiveness of tumor control, the dose tolerance of normal tissue, and the reproducibility of treatment effects across several institutions. Although it is still in its infancy, FLASH-RT has been shown to have potential to rival current RT in terms of safety. Several studies have suggested that the adoption of FLASH-RT is very limited, and the incorporation of this new technique into routine clinical RT will require the use of accurate dosimetry methods and reproducible equipment that enable the reliable and robust measurements of doses and dose rates. The purpose of this review is to highlight the advantages of this technology, the potential mechanisms underpinning the FLASH-RT effect, and the major challenges that need to be tackled in the clinical transfer of FLASH-RT. Full article
(This article belongs to the Special Issue Advances in Radiation Toxicity 2.0)
Show Figures

Figure 1

Back to TopTop