Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = radiant ceilings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1062 KiB  
Article
Effects of Thermostat Control on Energy Use and Thermal Comfort in Office Rooms Under Different Glazing Ratio
by Haiying Wang, Rongfu Hou, Bjarne W. Olesen, Ongun B. Kazanci and Huxiang Lin
Buildings 2025, 15(14), 2422; https://doi.org/10.3390/buildings15142422 - 10 Jul 2025
Viewed by 264
Abstract
Thermal comfort of occupants is characterized by operative temperature (Top), while thermal environment is usually controlled by air temperature (Ta). For perimeter areas in buildings, the use of Ta in the control may lead to uncomfortable conditions. In this paper, thermostat controls based [...] Read more.
Thermal comfort of occupants is characterized by operative temperature (Top), while thermal environment is usually controlled by air temperature (Ta). For perimeter areas in buildings, the use of Ta in the control may lead to uncomfortable conditions. In this paper, thermostat controls based on air (TC-Ta) and Top (TC-Top) were compared in an office module based on different glazing ratio (GR) and indoor units. The results showed that, for a fan–coil system, with TC-Top, thermal comfort can be better, while for a ceiling panel system thermal comfort was similar with both controls. For fan coils, with TC-Top, Ta in offices became higher in the winter and lower in the summer, which improved thermal comfort along with increased energy use. For both GR conditions, the radiant panel could compensate for the presence of cold/warm surfaces, and it decreased the differences between the two controls, especially during cooling, which made the radiant system more suitable in large GR condition. With TC-Top, for the ceiling panel system, the increment of energy use was quite small. According to the results, under large GR, TC-Top was better for the fan–coil system to assure thermal comfort, and both control methods could be used in ceiling panel system. This study presents a comprehensive comparison of the two control strategies for both convective and radiant systems, highlighting their performance under varying GR conditions. The results also provide guidance for the optimal control of different indoor units under different GR conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

29 pages, 2457 KiB  
Article
Energy and Exergy Analysis of a Photovoltaic-Thermal Geothermal Heat Pump Coupled with Radiant Ceiling and Fresh Air System
by Yaolin Lin, Zhenyan Bu, Wei Yang, Melissa Chan, Lin Tian and Mingqi Dai
Energies 2025, 18(11), 2715; https://doi.org/10.3390/en18112715 - 23 May 2025
Viewed by 385
Abstract
This paper presents energy and exergy studies on a photovoltaic-thermal solar-assisted geothermal heat pump coupled with a radiant ceiling system. The system utilizes renewable solar and geothermal energy. It has an independent fresh air unit that provides clean air to the space. The [...] Read more.
This paper presents energy and exergy studies on a photovoltaic-thermal solar-assisted geothermal heat pump coupled with a radiant ceiling system. The system utilizes renewable solar and geothermal energy. It has an independent fresh air unit that provides clean air to the space. The computer model of the system was developed under the TRNSYST environment and validated with experimental results from open literature. Distribution of the energy consumption and exergy loss of the system were analyzed. It was found that the heat pump unit consumes the largest amount of energy while the transmission and distribution system has the highest exergy loss. Under optimized operating conditions, i.e., both demand side circulation flow and source side circulation flow are maintained at 65% of the design flow rate (design loop water temperature difference of 7.0 °C), the average exergy efficiency of the whole system was found to be 37.56%, which achieves an accumulative exergy loss reduction of 16.5% compared with 100% design flow rate condition during cooling season. The optimal bearing load ratio of the ground source heat pump vs. photovoltaic-thermal system in the heating season was found to be 67%. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

15 pages, 5183 KiB  
Article
Integrating Radiant Cooling Ceilings with Ternary PCM Thermal Storage: A Synergistic Approach for Enhanced Energy Efficiency in Photovoltaic-Powered Buildings
by Zhuoyi Ling, Tianhong Zheng, Qinghua Lv, Yuehong Su, Hui Lv and Saffa Riffat
Energies 2025, 18(9), 2237; https://doi.org/10.3390/en18092237 - 28 Apr 2025
Viewed by 513
Abstract
Traditional photovoltaic-powered forced air-cooling systems face significant challenges in balancing energy efficiency and thermal comfort due to temperature sensitivity, mechanical ventilation energy consumption, and spatial constraints. This study aims to enhance building energy efficiency by integrating a radiant cooling ceiling (RCC) with a [...] Read more.
Traditional photovoltaic-powered forced air-cooling systems face significant challenges in balancing energy efficiency and thermal comfort due to temperature sensitivity, mechanical ventilation energy consumption, and spatial constraints. This study aims to enhance building energy efficiency by integrating a radiant cooling ceiling (RCC) with a phase change material (PCM) thermal storage system, addressing the limitations of traditional photovoltaic-powered cooling systems through optimized material design and dynamic energy management. A ternary PCM mixture (glycerol–alcohol–water) was optimized using differential scanning calorimetry (DSC), demonstrating superior latent heat storage (361.66 J/g) and phase transition temperature (1.91 °C) in the selected “Slushy Ice” formulation. A 3D transient thermal model and experimental validation revealed that the RCC system achieved 57% energy savings under quasi-steady operation, with radiative heat transfer contributing 55% of total cooling capacity. The system dynamically stores cold energy during peak photovoltaic generation and releases it via RCC during low-power periods, resolving the “cooling energy consumption paradox”. Key challenges, including PCM cycling stability and thermal response time mismatches, were identified, with future research directions emphasizing multi-scale simulations and intelligent encapsulation. This work provides a viable pathway for improving building energy efficiency while maintaining thermal comfort and for improving building energy efficiency in temperate zones, with future extensions to arid and tropical climates requiring targeted material and system optimizations. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

14 pages, 748 KiB  
Article
Integrating Personalized Thermal Comfort Devices for Energy-Efficient and Occupant-Centric Buildings
by Cihan Turhan and Cristina Carpino
Buildings 2025, 15(9), 1470; https://doi.org/10.3390/buildings15091470 - 26 Apr 2025
Viewed by 716
Abstract
Personalized thermal comfort (PTC) systems aim to satisfy the individual thermal preferences of occupants rather than relying on average comfort indices. With the growing emphasis on sustainability and reducing energy consumption in buildings, energy efficiency has become a critical factor in the design [...] Read more.
Personalized thermal comfort (PTC) systems aim to satisfy the individual thermal preferences of occupants rather than relying on average comfort indices. With the growing emphasis on sustainability and reducing energy consumption in buildings, energy efficiency has become a critical factor in the design and selection of PTC systems. While the development of PTC tools has accelerated in the last decade, selecting the most appropriate system remains a challenge due to the dynamic, uncertain, and multi-dimensional nature of the decision-making process. This study introduces a novel application of the KEMIRA-M multi-criteria decision-making (MCDM) method to identify the optimal PTC system for university office buildings—an area with limited prior investigation. A case study is conducted in a naturally ventilated office space located in a temperate climate zone. Eight distinct PTC alternatives are evaluated, including data-driven HVAC systems, wearable devices, and localized conditioning units. Six key criteria are considered: estimated energy consumption, capital cost, indoor and outdoor space requirements, system complexity, mobility, and energy efficiency. The results indicate that wearable wristbands, which condition the occupant’s carpus area, offer the most balanced performance across criteria, while radiant ceiling/floor systems perform the poorest. Energy efficiency plays a crucial role in this evaluation, as it directly impacts both the operational cost and the environmental footprint of the system. The study’s findings provide a structured and adaptable framework for HVAC engineers and designers to integrate PTC systems into occupant-centric and energy-efficient building designs. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 6828 KiB  
Article
Experimental Study on Heat Transfer Coefficients in an Office Room with a Radiant Ceiling During Low Heating Loads
by Piotr Michalak
Energies 2025, 18(7), 1591; https://doi.org/10.3390/en18071591 - 22 Mar 2025
Viewed by 725
Abstract
Estimation of the heating or cooling capacity of radiant systems requires selecting appropriate internal heat transfer coefficients by convection (CHTCs) and radiation (RHTCs). Due to practical reasons, their measurement during the normal use of buildings is very troublesome. This study attempts to present [...] Read more.
Estimation of the heating or cooling capacity of radiant systems requires selecting appropriate internal heat transfer coefficients by convection (CHTCs) and radiation (RHTCs). Due to practical reasons, their measurement during the normal use of buildings is very troublesome. This study attempts to present the results of measurements of CHTCs and RHTCs taken in an office room located in a passive building with a heated concrete ceiling. Special attention was paid to the proper choice of reference temperatures. For better accuracy, view factors for radiant heat exchange were calculated using Matlab. Average values of CHTCs and RHTCs calculated from measurements amounted to 0.80 W/m2K and 5.66 W/m2K. RHTCs showed a significant correlation against the ceiling temperature, with the coefficient of determination being R2 = 0.96. Finally, the total heat transfer coefficient of 6.47 W/m2K was obtained. These values are comparable with other studies and standards and confirm that measurements were performed correctly. Full article
Show Figures

Figure 1

24 pages, 6928 KiB  
Article
Adjustable PV Slats for Energy Efficiency and Comfort Improvement of a Radiantly Cooled Office Room in Tropical Climate
by Pipat Chaiwiwatworakul
Buildings 2024, 14(10), 3282; https://doi.org/10.3390/buildings14103282 - 17 Oct 2024
Cited by 1 | Viewed by 952
Abstract
This paper investigated an application of adjustable photovoltaic (PV) slats to improve the thermal performance of an exposed glazing window and sequentially enhance the energy efficiency and thermal comfort of an office room. Solar radiation and longwave heat gains from a window fitted [...] Read more.
This paper investigated an application of adjustable photovoltaic (PV) slats to improve the thermal performance of an exposed glazing window and sequentially enhance the energy efficiency and thermal comfort of an office room. Solar radiation and longwave heat gains from a window fitted with PV slats were measured through experiments conducted in an outdoor chamber cooled by a radiant ceiling system. The daylight level at the workplane was also measured inside the chamber. A transient thermal model was developed and validated against experimental data. Using the experimental chamber as a demonstration case, the model revealed that adjusting the slats monthly to fully block direct sunlight could reduce the electrical energy use by 67% compared to a typical office with heat reflective glass windows. However, the electricity generated by the PV slats contributed a minor portion of the overall energy savings. To assess the thermal comfort impact of the PV slats in the room with the radiant cooling, this study utilized radiation asymmetry criteria from ASHRAE Standard 55. Simulations showed that the PV slat-shaded glazing window resulted in a lower asymmetric plane radiant temperature than the unshaded window of heat reflective glass. The adjustable slat system reduced the risk of local discomfort for occupants working near the window in the radiantly cooled office room. Full article
Show Figures

Figure 1

15 pages, 9611 KiB  
Article
Experimental and Theoretical Study of Heat Transfer in a Chilled Ceiling System
by Cüneyt Deniz Küheylan and Derya Burcu Özkan
Appl. Sci. 2024, 14(13), 5908; https://doi.org/10.3390/app14135908 - 6 Jul 2024
Cited by 1 | Viewed by 1773
Abstract
Radiant cooling has been growing in recent years due to energy savings and improved comfort and health. The aim of this study was to reduce energy consumption and provide comfort using a chilled ceiling panel in the zone. In the experimental part of [...] Read more.
Radiant cooling has been growing in recent years due to energy savings and improved comfort and health. The aim of this study was to reduce energy consumption and provide comfort using a chilled ceiling panel in the zone. In the experimental part of this study, a test room was created to investigate the change in the heat transfer performance of a chilled ceiling panel according to different water temperatures, different water flow rates and different heat source values. As a result of the experimental study, it was found that optimum conditions were achieved with a heat rate of 280 Watts and the lowest supply water temperature of 14 °C, with indoor comfort conditions being achieved with water flow rates of 0.93 m3/h. In the theoretical part of this study, a thermal balance was established for ceiling panel cooling applications. An analytical model of the heat transfer between the cold ceiling panel and the room air was also developed. The convection coefficient, convective heat transfer and total heat transfer coefficient were compared using the values obtained from the experiments and those reported in the literature. It was found that the convection coefficient was within the range reported in the literature, and the radiation heat coefficient was within 99.8% of the literature values. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

20 pages, 9839 KiB  
Article
Solar-Powered Smart Buildings: Integrated Energy Management Solution for IoT-Enabled Sustainability
by Rubén Muñiz, Raúl del Coso, Fernando Nuño, Pedro J. Villegas, Daniel Álvarez and Juan A. Martínez
Electronics 2024, 13(2), 317; https://doi.org/10.3390/electronics13020317 - 11 Jan 2024
Cited by 14 | Viewed by 6034
Abstract
The increasing demand for energy-efficient and sustainable solutions in the building sector has driven the need for innovative approaches that integrate renewable energy sources and advanced control systems. This paper presents an integrated energy management solution for solar-powered smart buildings, combining a multifaceted [...] Read more.
The increasing demand for energy-efficient and sustainable solutions in the building sector has driven the need for innovative approaches that integrate renewable energy sources and advanced control systems. This paper presents an integrated energy management solution for solar-powered smart buildings, combining a multifaceted physical system with advanced IoT- and cloud-based control systems. The physical system includes a heat pump, photovoltaics, solar thermal panels, and an innovative low-enthalpy radiant wall and ceiling, providing self-sufficient heating and cooling. The control system makes use of advanced IoT and communication engineering technologies, using Modbus, HTTP, and MQTT protocols for seamless interconnectivity, monitoring, and remote management. The successful implementation of this solution in an average-sized model house in Paris and a deep energy retrofit of a semidetached single-family house in Oviedo, northern Spain, demonstrates increased energy efficiency, improved thermal comfort, and reduced environmental impact compared with conventional alternatives. This study illustrates the potential of integrating solar energy, IoT, and communication technologies into smart buildings, contributing to the global effort to reduce the environmental impact of the building sector. Full article
Show Figures

Figure 1

20 pages, 4055 KiB  
Article
Thermoelectric-Based Radiant Cooling Systems: An Experimental and Numerical Investigation of Thermal Comfort
by Benjamin Kubwimana, Mohadeseh Seyednezhad and Hamidreza Najafi
Energies 2023, 16(19), 6981; https://doi.org/10.3390/en16196981 - 7 Oct 2023
Cited by 4 | Viewed by 2503
Abstract
Researching novel cooling and heating technologies as alternatives to conventional vapor-compression refrigeration cycles has received growing attention in recent years. Thermoelectric (TE) systems rank among promising emerging technologies within this category. This paper presents a comprehensive investigation, utilizing numerical modeling and analysis via [...] Read more.
Researching novel cooling and heating technologies as alternatives to conventional vapor-compression refrigeration cycles has received growing attention in recent years. Thermoelectric (TE) systems rank among promising emerging technologies within this category. This paper presents a comprehensive investigation, utilizing numerical modeling and analysis via COMSOL Multiphysics along with experimental validation, to evaluate the performance of a radiant cooling ceiling panel working on thermoelectric principles. Performance metrics are based on thermal comfort levels within the designed test chamber. The system comprises a rectangular test chamber (~1.2 m × 1.2 m × 1.5 m) with a centrally positioned ceiling panel (dimensions: 0.6 m × 0.6 m × 0.002 m). Four TE modules are attached on top of the ceiling panel, facilitating effective cooling to regulate the ceiling temperature to the desired setpoint. The resultant lower ceiling temperature enables heat exchange within the chamber environment via radiation and convection mechanisms. This study examines the time-dependent variations in mean radiant temperature and operative temperature under natural convection conditions, with comfort level assessment carried out using the PMV method according to ASHRAE Standard 55. An experimental chamber is built to validate the numerical model by performing experiments at various ceiling temperatures. Design challenges are discussed in detail. The results of this investigation offer valuable insights into the anticipated thermal comfort achievable through TE-based radiant cooling systems across various operating conditions. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

26 pages, 7811 KiB  
Article
Experimental Investigation of Mean Radiant Temperature Trends for a Ground Source Heat Pump-Integrated Radiant Wall and Ceiling Heating System
by Ahmet Dogan, Nurullah Kayaci, Baris Burak Kanbur and Hakan Demir
Buildings 2023, 13(10), 2420; https://doi.org/10.3390/buildings13102420 - 22 Sep 2023
Cited by 7 | Viewed by 2830
Abstract
Mean radiant temperature (MRT) is one of the six primary factors that determine thermal comfort in a given thermal environment. In this study, the average radiant temperature was determined using a calculation method based on the surrounding surface temperatures and view factors. The [...] Read more.
Mean radiant temperature (MRT) is one of the six primary factors that determine thermal comfort in a given thermal environment. In this study, the average radiant temperature was determined using a calculation method based on the surrounding surface temperatures and view factors. The present study specifically investigated the use of calculated radiant temperature, compared to measured radiant temperature, for predicting the mean vote (PMV) and percentage of dissatisfied (PPD) comfort parameters. The method was validated by the experimental measurements via the black sphere thermometer at five different reference points in a test room, including radiant panels on the ceiling and walls. By using global thermometer measurements, the proposed approach achieved a high degree of compatibility and an accuracy of 0.17 °C, which was the difference between calculated and measured values. The results demonstrated the reliability of the procedure using view factors and surrounding surface temperatures to calculate the radiant temperature in the designated test room; here, a straightforward method for evaluating the thermal conditions of an office room and determining the optimal location of an air temperature sensor in PMV-controlled radiant systems was also proposed. This study contributes to the increasing field of research on thermal comfort and offers knowledge that is beneficial for the design and optimization of indoor environments. Full article
(This article belongs to the Special Issue Radiant Cooling and Heating Systems in Buildings)
Show Figures

Figure 1

35 pages, 13439 KiB  
Article
The Application of UAVs in the Evaluation of Thermal Comfort Levels in Buildings Equipped with Internal Greenhouses
by Maria Inês Conceição, Eusébio Conceição, António Grilo, Meysam Basiri and Hazim Awbi
Clean Technol. 2023, 5(3), 1080-1114; https://doi.org/10.3390/cleantechnol5030055 - 20 Sep 2023
Cited by 4 | Viewed by 2197
Abstract
A greenhouse is used to improve thermal comfort (TC) levels for its occupants in winter conditions using solar radiation, which involves low energy consumption. The aim of this research is the application of unmanned aerial vehicles (UAVs) in the evaluation of thermal comfort [...] Read more.
A greenhouse is used to improve thermal comfort (TC) levels for its occupants in winter conditions using solar radiation, which involves low energy consumption. The aim of this research is the application of unmanned aerial vehicles (UAVs) in the evaluation of thermal comfort levels in buildings equipped with internal greenhouses. The new building design is developed numerically, and a building thermal simulator (BTS) numerical model calculates the indoor environmental variables. A new alternative and expeditious method to measure occupants’ comfort levels using UAV technology is applied using a UAV dynamic simulator (UAV DS). The evolution of the measured variables used for evaluating the predicted mean vote (PMV) is compared using the two numerical methodologies: BTS and UAV DS. In the second one, the mean radiant temperature (MRT) measuring methodology, the floor temperature, the lateral walls’ temperatures, the ceiling temperatures, and the air temperature are applied. In the method presented in this paper, a new building design is developed numerically, which includes a central greenhouse equipped with a semispherical dome, four auditoriums distributed around the central greenhouse, occupant distribution, and a ventilation methodology. The building geometry, the solar radiation on transparent surfaces, the TC, and the UAV mission methods are presented. The results show that, in general, the central greenhouse and the ventilation methodologies provide acceptable TC levels. The UAV monitoring mission, which includes two vehicles, provides good environmental variable replication, particularly when the environmental variables present greater variations. In the auditorium and greenhouse, the ceiling and lateral surface temperatures, respectively, can be used as an MRT approximation. The BTS numerical model is also important for developing buildings using renewable energy sources to improve the TC levels. Full article
Show Figures

Figure 1

26 pages, 5664 KiB  
Article
Experimental Study of Indoor Air Distribution and Thermal Environment in a Ceiling Cooling Room with Mixing Ventilation, Underfloor Air Distribution and Stratum Ventilation
by Xiaozhou Wu, Hao Gao, Mingming Zhao, Jie Gao, Zhen Tian and Xiangli Li
Buildings 2023, 13(9), 2354; https://doi.org/10.3390/buildings13092354 - 15 Sep 2023
Cited by 2 | Viewed by 1847
Abstract
A ceiling cooling system integrated with a mechanical ventilation system has been widely used in modern buildings with large sensible cooling loads due to the high thermal comfort level and large energy efficiency. However, there is a lack of systematic research on the [...] Read more.
A ceiling cooling system integrated with a mechanical ventilation system has been widely used in modern buildings with large sensible cooling loads due to the high thermal comfort level and large energy efficiency. However, there is a lack of systematic research on the influence factors such as ceiling surface temperature and cooling load on the indoor air distribution and thermal environment, and the impact of ventilation system type in the ceiling cooling room is still unclear. Therefore, this paper presented an experimental study of indoor air distribution and thermal environment in a ceiling cooling (CC) room with mixing ventilation (MV), underfloor air distribution (UFAD) and stratum ventilation (SV); the ceiling surface temperature was 17 °C–26 °C and the internal or external cooling load was 41.5 W/m2–69.5 W/m2. The results showed that the vertical air temperature difference and contaminant removal effectiveness were 0.2 °C–0.4 °C and 0.53–0.85 with CC + MV, 0 °C–1.2 °C and 0.68–1.25 with CC + UFAD and 0.3 °C–0.9 °C and 0.50–0.83 with CC + SV, and the corresponding heat removal effectiveness and air diffusion performance index were 0.96–1.11 and 96–100%, 0.9–1.5 and 57–100% and 1.11–1.34 and 71–100%, respectively. Moreover, the difference between mean radiant temperature and air temperature and the predicted mean vote of thermal sensation were from 0 °C to 0.9 °C and between 0 and 0.26 with CC + MV, from −0.1 °C to 2.2 °C and between −0.1 and 0.42 with CC + UFAD and from −0.1 °C to 0.9 °C and between −0.2 and 0.13 with CC + SV. Hence, the ventilation system type clearly affected the indoor air distribution and thermal environment in the ceiling cooling room, and the experimental results would be beneficial for the design and control of a ceiling cooling system combined with a mechanical ventilation system in practice. Full article
(This article belongs to the Special Issue Radiant Cooling and Heating Systems in Buildings)
Show Figures

Figure 1

22 pages, 7838 KiB  
Article
Indoor Temperature Control of Radiant Ceiling Cooling System Based on Deep Reinforcement Learning Method
by Mingwu Tang, Xiaozhou Wu, Jianyi Xu, Jiying Liu, Zhengwei Li, Jie Gao and Zhen Tian
Buildings 2023, 13(9), 2281; https://doi.org/10.3390/buildings13092281 - 8 Sep 2023
Cited by 3 | Viewed by 2302
Abstract
The radiant ceiling cooling system is widely adopted in modern office buildings as it improves cooling source efficiency and reduces fossil fuel usage and carbon dioxide emissions by utilizing low-grade natural energy. However, the nonlinear behavior and significant inertia of the radiant ceiling [...] Read more.
The radiant ceiling cooling system is widely adopted in modern office buildings as it improves cooling source efficiency and reduces fossil fuel usage and carbon dioxide emissions by utilizing low-grade natural energy. However, the nonlinear behavior and significant inertia of the radiant ceiling cooling system pose challenges for control systems. With advancements in computer technology and artificial intelligence, the deep reinforcement learning (DRL) method shows promise in the operation and control of radiant cooling systems with large inertia. This paper compares the DRL control method with traditional control methods for radiant ceiling cooling systems in two typical office rooms across three different regions. Simulation results demonstrate that with an indoor target temperature of 26 °C and an allowable fluctuation range of ±1 °C, the DRL on–off or varied water temperature control satisfies the indoor temperature fluctuation requirements for 80% or 93–99% of the operating time, respectively. In contrast, the traditional on–off or PID variable water temperature control only meets these requirements for approximately 70% or 90–93% of the operating time. Furthermore, compared to traditional on–off control, the DRL control can save energy consumption in the radiant ceiling cooling system by 3.19% to 6.30%, and up to 10.48% compared to PID variable water temperature control. Consequently, the DRL control method exhibits superior performance in terms of minimizing indoor temperature fluctuations and reducing energy consumption in radiant ceiling cooling systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 6143 KiB  
Article
A Study on Establishing Thermal Output Conditions of Radiant Ceiling Heating Panels for Improving Thermal Comfort of Perimeter Zone in Buildings
by Goosang Joe and Sanghoon Park
Appl. Sci. 2023, 13(11), 6744; https://doi.org/10.3390/app13116744 - 1 Jun 2023
Cited by 3 | Viewed by 1709
Abstract
Amid concerns over airflow-induced transmission of the COVID-19 virus in buildings frequented by large numbers of people, such as offices, the necessity for radiant ceiling heating panels has increased. This is due to the concern that the airflows emitted from the convection heating [...] Read more.
Amid concerns over airflow-induced transmission of the COVID-19 virus in buildings frequented by large numbers of people, such as offices, the necessity for radiant ceiling heating panels has increased. This is due to the concern that the airflows emitted from the convection heating systems installed near the ceiling or windows for winter heating may be a major cause of COVID-19 transmission. In this study, we aim to evaluate thermal comfort under various indoor and outdoor environmental conditions of a building and present the thermal output conditions of the radiant ceiling heating panel that can replace the convection heating system while ensuring comfort in the perimeter zone and handling the heating load. As a result, we were able to present, in a chart format, the thermal output conditions that can secure thermal comfort by analyzing the indoor airflow distribution depending on the surface temperature of the radiant ceiling heating panel, the interior surface temperature of the window, and the influence of internal heat generation. Moreover, through derived empirical formulas, we were able to determine the heating conditions of the panel that can secure the necessary heat dissipation while minimizing discomfort, such as downdrafts, even for indoor and outdoor conditions that were not evaluated in this study. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Efficiency in Sustainable Buildings)
Show Figures

Figure 1

20 pages, 8875 KiB  
Article
Numerical and Parametric Study on Open-Type Ceiling Radiant Cooling Panel with Curved and Segmented Structure
by Minzhi Ye, Ahmed A. Serageldin and Katsunori Nagano
Energies 2023, 16(6), 2705; https://doi.org/10.3390/en16062705 - 14 Mar 2023
Cited by 5 | Viewed by 1945
Abstract
A suspended open-type ceiling radiant cooling panel (CRCP) has been proposed recently. The main challenge is improving its cooling performance to overcome limitations for extensive use. Therefore, this study aims to optimize the design of CRCPs with curved and segmented structure to enhance [...] Read more.
A suspended open-type ceiling radiant cooling panel (CRCP) has been proposed recently. The main challenge is improving its cooling performance to overcome limitations for extensive use. Therefore, this study aims to optimize the design of CRCPs with curved and segmented structure to enhance heat transfer. A three-dimensional CFD model was developed to investigate the cooling capacity and heat transfer coefficient of the CRCPs installed inside a single enclosed room. Panel structure was determined based on four dependent parameters: the panel curvature width (L, m), the panel curvature radius (r, m), the void distance (d, m) between each panel or panel segment, and the panel coverage area (Ac, m2). The panel surface area (As, m2) and the ratio of panel curvature width to radius (L/r) were also examined. A total of 35 designs were compared under 7 different cooling load conditions, and 245 cases were carried out. The results show that the nominal cooling capacity and heat transfer coefficient rise with increasing curvature radius and decreasing curvature width. The void distance plays the most crucial role in influencing cooling performance. It is possible to simultaneously improve cooling performance, achieve uniform temperature distribution, and reduce the number of panels through structure optimization. Full article
(This article belongs to the Special Issue Smart Materials and Devices for Energy Saving and Harvesting)
Show Figures

Figure 1

Back to TopTop