Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = quinone-containing drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3843 KiB  
Article
Metal Oxide Nanocatalysts for the Electrochemical Detection of Propofol
by David C. Ferrier, Janice Kiely and Richard Luxton
Micromachines 2025, 16(2), 120; https://doi.org/10.3390/mi16020120 - 22 Jan 2025
Viewed by 1204
Abstract
Propofol is one of the most widely used intravenous drugs for anaesthesia and sedation and is one of the most commonly used drugs in intensive care units for the sedation of mechanically ventilated patients. The correct dosage of propofol is of high importance, [...] Read more.
Propofol is one of the most widely used intravenous drugs for anaesthesia and sedation and is one of the most commonly used drugs in intensive care units for the sedation of mechanically ventilated patients. The correct dosage of propofol is of high importance, but there is currently a lack of suitable point-of-care techniques for determining blood propofol concentrations. Here, we present a cytochrome P450 2B6/carbon nanotube/graphene oxide/metal oxide nanocomposite sensor for discrete measurement of propofol concentration. Propofol is converted into a quinol/quinone redox couple by the enzyme and the nanocomposite enables sensitive and rapid detection. The metal oxide nanoparticles are synthesised via green synthesis and a variety of metal oxides and mixed metal oxides are investigated to determine the optimal nanocatalyst. Converting propofol into the redox couple allows for the measurement to take place over different potential ranges, enabling interference from common sources such as paracetamol and uric acid to be avoided. It was found that nanocomposites containing copper titanium oxide nanoparticles offered the best overall performance and electrodes functionalised with such nanocomposites demonstrated a limit of detection in bovine serum of 0.5 µg/mL and demonstrated a linear response over the therapeutic range of propofol with a sensitivity of 4.58 nA/μg/mL/mm2. Full article
(This article belongs to the Special Issue Metal Nanoparticles: Preparing and Advanced Applications)
Show Figures

Figure 1

37 pages, 7538 KiB  
Review
Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review
by Innokenty M. Mokhosoev, Dmitry V. Astakhov, Alexander A. Terentiev and Nurbubu T. Moldogazieva
Cells 2024, 13(23), 1958; https://doi.org/10.3390/cells13231958 - 26 Nov 2024
Cited by 10 | Viewed by 4914
Abstract
Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. Findings: In our review article, we discuss recent data evidencing that [...] Read more.
Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. Findings: In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug–drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. Conclusions: The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Tumor Pathogenesis)
Show Figures

Figure 1

25 pages, 4146 KiB  
Article
Hybrids of Sterically Hindered Phenols and Diaryl Ureas: Synthesis, Switch from Antioxidant Activity to ROS Generation and Induction of Apoptosis
by Elmira Gibadullina, Margarita Neganova, Yulia Aleksandrova, Hoang Bao Tran Nguyen, Alexandra Voloshina, Mikhail Khrizanforov, Thi Thu Nguyen, Ekaterina Vinyukova, Konstantin Volcho, Dmitry Tsypyshev, Anna Lyubina, Syumbelya Amerhanova, Anna Strelnik, Julia Voronina, Daut Islamov, Rakhmetulla Zhapparbergenov, Nurbol Appazov, Beauty Chabuka, Kimberley Christopher, Alexander Burilov, Nariman Salakhutdinov, Oleg Sinyashin and Igor Alabuginadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2023, 24(16), 12637; https://doi.org/10.3390/ijms241612637 - 10 Aug 2023
Cited by 7 | Viewed by 3503
Abstract
The utility of sterically hindered phenols (SHPs) in drug design is based on their chameleonic ability to switch from an antioxidant that can protect healthy tissues to highly cytotoxic species that can target tumor cells. This work explores the biological activity of a [...] Read more.
The utility of sterically hindered phenols (SHPs) in drug design is based on their chameleonic ability to switch from an antioxidant that can protect healthy tissues to highly cytotoxic species that can target tumor cells. This work explores the biological activity of a family of 45 new hybrid molecules that combine SHPs equipped with an activating phosphonate moiety at the benzylic position with additional urea/thiourea fragments. The target compounds were synthesized by reaction of iso(thio)cyanates with C-arylphosphorylated phenols containing pendant 2,6-diaminopyridine and 1,3-diaminobenzene moieties. The SHP/urea hybrids display cytotoxic activity against a number of tumor lines. Mechanistic studies confirm the paradoxical nature of these substances which combine pronounced antioxidant properties in radical trapping assays with increased reactive oxygen species generation in tumor cells. Moreover, the most cytotoxic compounds inhibited the process of glycolysis in SH-SY5Y cells and caused pronounced dissipation of the mitochondrial membrane of isolated rat liver mitochondria. Molecular docking of the most active compounds identified the activator allosteric center of pyruvate kinase M2 as one of the possible targets. For the most promising compounds, 11b and 17b, this combination of properties results in the ability to induce apoptosis in HuTu 80 cells along the intrinsic mitochondrial pathway. Cyclic voltammetry studies reveal complex redox behavior which can be simplified by addition of a large excess of acid that can protect some of the oxidizable groups by protonations. Interestingly, the re-reduction behavior of the oxidized species shows considerable variations, indicating different degrees of reversibility. Such reversibility (or quasi-reversibility) suggests that the shift of the phenol-quinone equilibrium toward the original phenol at the lower pH may be associated with lower cytotoxicity. Full article
Show Figures

Figure 1

19 pages, 7801 KiB  
Article
Natural Product-Based Screening for Lead Compounds Targeting SARS CoV-2 Mpro
by Jie Chen, Xiang Zhou, Lifeng Fu and Haiyu Xu
Pharmaceuticals 2023, 16(5), 767; https://doi.org/10.3390/ph16050767 - 19 May 2023
Cited by 9 | Viewed by 3131
Abstract
Drugs that cure COVID-19 have been marketed; however, this disease continues to ravage the world without becoming extinct, and thus, drug discoveries are still relevant. Since Mpro has known advantages as a drug target, such as the conserved nature of the active [...] Read more.
Drugs that cure COVID-19 have been marketed; however, this disease continues to ravage the world without becoming extinct, and thus, drug discoveries are still relevant. Since Mpro has known advantages as a drug target, such as the conserved nature of the active site and the absence of homologous proteins in the body, it receives the attention of many researchers. Meanwhile, the role of traditional Chinese medicine (TCM) in the control of epidemics in China has also led to a focus on natural products, with the hope of finding some promising lead molecules through screening. In this study, we selected a commercial library of 2526 natural products from plants, animals and microorganisms with known biological activity for drug discovery, which had previously been reported for compound screening of the SARS CoV-2 S protein, but had not been tested on Mpro. This library contains compounds from a variety of Chinese herbs, including Lonicerae Japonicae Flos, Forsythiae Fructus and Scutellariae Radix, which are derived from traditional Chinese medicine prescriptions that have been shown to be effective against COVID-19. We used the conventional FRET method for the initial screening. After two rounds of selection, the remaining 86 compounds were divided into flavonoids, lipids, phenylpropanoids, phenols, quinones, alkaloids, terpenoids and steroids according to the skeleton structures, with inhibition rates greater than 70%. The top compounds in each group were selected to test the effective concentration ranges; the IC50 values were as follows: (−)–gallocatechin gallate (1.522 ± 0.126 μM), ginkgolic acid C15:1 (9.352 ± 0.531 μM), hematoxylin (1.025 ± 0.042 μM), fraxetin (2.486 ± 0.178 μM), wedelolactone (1.003 ± 0.238 μM), hydroxytyrosol acetate (3.850 ± 0.576 μM), vanitiolide (2.837 ± 0.225 μM), β,β–dimethylacrylalkannin (2.731 ± 0.308 μM), melanin (7.373 ± 0.368 μM) and cholesteryl sodium sulfate (2.741 ± 0.234μM). In the next step, we employed two biophysical techniques, SPR and nanoDSF, to obtain KD/Kobs values: hematoxylin (0.7 μM), (−)–gallocatechin gallate (126 μM), ginkgolic acid C15:1 (227 μM), wedelolactone (0.9770 μM), β,β–dimethylacrylalkannin (1.9004 μM,), cholesteryl sodium sulfate (7.5950 μM) and melanin (11.5667 μM), which allowed better assessments of the binding levels. Here, seven compounds were the winners. Then, molecular docking experiments were specially performed by AutoDock Vina to analyze the mode of interactions within Mpro and ligands. We finally formulated the present in silico study to predict pharmacokinetic parameters as well as drug-like properties, which is presumably the step that tells humans whether the compounds are drug-like or not. Moreover, hematoxylin, melanin, wedelolactone, β,β–dimethylacrylalkannin and cholesteryl sodium sulfate are in full compliance with the “Lipinski” principle and possess reasonable ADME/T properties, they have a greater potential of being lead compounds. The proposed five compounds are also the first to be found to have potential inhibitory effects on SARS CoV-2 Mpro. We hope that the results in this manuscript may serve as benchmarks for the above potentials. Full article
(This article belongs to the Special Issue Protease-Based Drug Discovery)
Show Figures

Figure 1

16 pages, 3529 KiB  
Article
Lipophilicity and ADMET Analysis of Quinoline-1,4-quinone Hybrids
by Monika Kadela-Tomanek, Maria Jastrzębska, Elwira Chrobak and Ewa Bębenek
Pharmaceutics 2023, 15(1), 34; https://doi.org/10.3390/pharmaceutics15010034 - 22 Dec 2022
Cited by 10 | Viewed by 2608
Abstract
Lipophilicity is one of the basic properties of a potential drug determining its solubility in non-polar solvents and, consequently, its ability to passively penetrate the cell membrane, as well as the occurrence of various pharmacokinetic processes, including adsorption, distribution, metabolism, excretion, and toxicity [...] Read more.
Lipophilicity is one of the basic properties of a potential drug determining its solubility in non-polar solvents and, consequently, its ability to passively penetrate the cell membrane, as well as the occurrence of various pharmacokinetic processes, including adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Heterocyclic compounds containing a nitrogen atom play a significant role in the search for new drugs. In this study, lipophilicity as well as other physicochemical, pharmacokinetic and toxicity properties affecting the bioavailability of the quinolone-1,4-quinone hybrids are presented. Lipophilicity was determined experimentally as well as theoretically using various computer programs. The tested compounds showed low values of experimental lipophilicity and its relationship with the type of 1,4-quinone moiety. Introduction of the nitrogen atom reduced the lipophilicity depending on the position at the 5,8-quinolinedione moiety. The bioavailability of the tested compounds was determined in silico using the ADMET parameters. The obtained parameters showed that most of the hybrids can be used orally and do not exhibit neurotoxic effects. Similarity analysis was used to examine the relationship between the ADMET parameters and experimental lipophilicity. The ability of hybrids to interact with biological targets was characterized by global reactivity descriptors. The molecular docking study showed that the hybrids can inhibit the BCL-2 protein. Full article
(This article belongs to the Special Issue Featured Papers in Biopharmaceutics)
Show Figures

Graphical abstract

25 pages, 4882 KiB  
Review
Roles of Ferredoxin-NADP+ Oxidoreductase and Flavodoxin in NAD(P)H-Dependent Electron Transfer Systems
by Takashi Iyanagi
Antioxidants 2022, 11(11), 2143; https://doi.org/10.3390/antiox11112143 - 29 Oct 2022
Cited by 20 | Viewed by 5978
Abstract
Distinct isoforms of FAD-containing ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin (Fd) are involved in photosynthetic and non-photosynthetic electron transfer systems. The FNR (FAD)-Fd [2Fe-2S] redox pair complex switches between one- and two-electron transfer reactions in steps involving FAD semiquinone intermediates. In cyanobacteria and [...] Read more.
Distinct isoforms of FAD-containing ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin (Fd) are involved in photosynthetic and non-photosynthetic electron transfer systems. The FNR (FAD)-Fd [2Fe-2S] redox pair complex switches between one- and two-electron transfer reactions in steps involving FAD semiquinone intermediates. In cyanobacteria and some algae, one-electron carrier Fd serves as a substitute for low-potential FMN-containing flavodoxin (Fld) during growth under low-iron conditions. This complex evolves into the covalent FNR (FAD)-Fld (FMN) pair, which participates in a wide variety of NAD(P)H-dependent metabolic pathways as an electron donor, including bacterial sulfite reductase, cytochrome P450 BM3, plant or mammalian cytochrome P450 reductase and nitric oxide synthase isoforms. These electron transfer systems share the conserved Ser-Glu/Asp pair in the active site of the FAD module. In addition to physiological electron acceptors, the NAD(P)H-dependent diflavin reductase family catalyzes a one-electron reduction of artificial electron acceptors such as quinone-containing anticancer drugs. Conversely, NAD(P)H: quinone oxidoreductase (NQO1), which shares a Fld-like active site, functions as a typical two-electron transfer antioxidant enzyme, and the NQO1 and UDP-glucuronosyltransfease/sulfotransferase pairs function as an antioxidant detoxification system. In this review, the roles of the plant FNR-Fd and FNR-Fld complex pairs were compared to those of the diflavin reductase (FAD-FMN) family. In the final section, evolutionary aspects of NAD(P)H-dependent multi-domain electron transfer systems are discussed. Full article
Show Figures

Figure 1

13 pages, 2479 KiB  
Article
Mn(II) Quinoline Complex (4QMn) Restores Proteostasis and Reduces Toxicity in Experimental Models of Huntington’s Disease
by Marián Merino, María Dolores Sequedo, Ana Virginia Sánchez-Sánchez, Mª Paz Clares, Enrique García-España, Rafael P. Vázquez-Manrique and José L. Mullor
Int. J. Mol. Sci. 2022, 23(16), 8936; https://doi.org/10.3390/ijms23168936 - 11 Aug 2022
Cited by 5 | Viewed by 2302
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder, of the so-called minority diseases, due to its low prevalence. It is caused by an abnormally long track of glutamines (polyQs) in mutant huntingtin (mHtt), which makes the protein toxic and prone to aggregation. [...] Read more.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder, of the so-called minority diseases, due to its low prevalence. It is caused by an abnormally long track of glutamines (polyQs) in mutant huntingtin (mHtt), which makes the protein toxic and prone to aggregation. Many pathways of clearance of badly-folded proteins are disrupted in neurons of patients with HD. In this work, we show that one Mn(II) quinone complex (4QMn), designed to work as an artificial superoxide dismutase, is able to activate both the ubiquitin-proteasome system and the autophagy pathway in vitro and in vivo models of HD. Activation of these pathways degrades mHtt and other protein-containing polyQs, which restores proteostasis in these models. Hence, we propose 4QMn as a potential drug to develop a therapy to treat HD. Full article
Show Figures

Figure 1

19 pages, 3154 KiB  
Article
Bioactivation of Isoxazole-Containing Bromodomain and Extra-Terminal Domain (BET) Inhibitors
by Noah R. Flynn, Michael D. Ward, Mary A. Schleiff, Corentine M. C. Laurin, Rohit Farmer, Stuart J. Conway, Gunnar Boysen, S. Joshua Swamidass and Grover P. Miller
Metabolites 2021, 11(6), 390; https://doi.org/10.3390/metabo11060390 - 15 Jun 2021
Cited by 3 | Viewed by 3609
Abstract
The 3,5-dimethylisoxazole motif has become a useful and popular acetyl-lysine mimic employed in isoxazole-containing bromodomain and extra-terminal (BET) inhibitors but may introduce the potential for bioactivations into toxic reactive metabolites. As a test, we coupled deep neural models for quinone formation, metabolite structures, [...] Read more.
The 3,5-dimethylisoxazole motif has become a useful and popular acetyl-lysine mimic employed in isoxazole-containing bromodomain and extra-terminal (BET) inhibitors but may introduce the potential for bioactivations into toxic reactive metabolites. As a test, we coupled deep neural models for quinone formation, metabolite structures, and biomolecule reactivity to predict bioactivation pathways for 32 BET inhibitors and validate the bioactivation of select inhibitors experimentally. Based on model predictions, inhibitors were more likely to undergo bioactivation than reported non-bioactivated molecules containing isoxazoles. The model outputs varied with substituents indicating the ability to scale their impact on bioactivation. We selected OXFBD02, OXFBD04, and I-BET151 for more in-depth analysis. OXFBD’s bioactivations were evenly split between traditional quinones and novel extended quinone-methides involving the isoxazole yet strongly favored the latter quinones. Subsequent experimental studies confirmed the formation of both types of quinones for OXFBD molecules, yet traditional quinones were the dominant reactive metabolites. Modeled I-BET151 bioactivations led to extended quinone-methides, which were not verified experimentally. The differences in observed and predicted bioactivations reflected the need to improve overall bioactivation scaling. Nevertheless, our coupled modeling approach predicted BET inhibitor bioactivations including novel extended quinone methides, and we experimentally verified those pathways highlighting potential concerns for toxicity in the development of these new drug leads. Full article
(This article belongs to the Special Issue Computational Strategies in Metabolite Research)
Show Figures

Graphical abstract

43 pages, 2605 KiB  
Review
Multiple Myeloma Inhibitory Activity of Plant Natural Products
by Karin Jöhrer and Serhat Sezai Ҫiҫek
Cancers 2021, 13(11), 2678; https://doi.org/10.3390/cancers13112678 - 29 May 2021
Cited by 17 | Viewed by 9026
Abstract
A literature search on plant natural products with antimyeloma activity until the end of 2020 resulted in 92 compounds with effects on at least one human myeloma cell line. Compounds were divided in different compound classes and both their structure–activity-relationships as well as [...] Read more.
A literature search on plant natural products with antimyeloma activity until the end of 2020 resulted in 92 compounds with effects on at least one human myeloma cell line. Compounds were divided in different compound classes and both their structure–activity-relationships as well as eventual correlations with the pathways described for Multiple Myeloma were discussed. Each of the major compound classes in this review (alkaloids, phenolics, terpenes) revealed interesting candidates, such as dioncophyllines, a group of naphtylisoquinoline alkaloids, which showed pronounced and selective induction of apoptosis when substituted in position 7 of the isoquinoline moiety. Interestingly, out of the phenolic compound class, two of the most noteworthy constituents belong to the relatively small subclass of xanthones, rendering this group a good starting point for possible further drug development. The class of terpenoids also provides noteworthy constituents, such as the highly oxygenated diterpenoid oridonin, which exhibited antiproliferative effects equal to those of bortezomib on RPMI8226 cells. Moreover, triterpenoids containing a lactone ring and/or quinone-like substructures, e.g., bruceantin, whitaferin A, withanolide F, celastrol, and pristimerin, displayed remarkable activity, with the latter two compounds acting as inhibitors of both NF-κB and proteasome chymotrypsin-like activity. Full article
(This article belongs to the Special Issue Medicinal Plants and Their Active Ingredients in Cancer)
Show Figures

Figure 1

48 pages, 2429 KiB  
Review
NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis
by Holly Robertson, Albena T. Dinkova-Kostova and John D. Hayes
Cancers 2020, 12(12), 3609; https://doi.org/10.3390/cancers12123609 - 2 Dec 2020
Cited by 62 | Viewed by 9286
Abstract
NF-E2 p45-related factor 2 (NRF2, encoded in the human by NFE2L2) mediates short-term adaptation to thiol-reactive stressors. In normal cells, activation of NRF2 by a thiol-reactive stressor helps prevent, for a limited period of time, the initiation of cancer by chemical carcinogens [...] Read more.
NF-E2 p45-related factor 2 (NRF2, encoded in the human by NFE2L2) mediates short-term adaptation to thiol-reactive stressors. In normal cells, activation of NRF2 by a thiol-reactive stressor helps prevent, for a limited period of time, the initiation of cancer by chemical carcinogens through induction of genes encoding drug-metabolising enzymes. However, in many tumour types, NRF2 is permanently upregulated. In such cases, its overexpressed target genes support the promotion and progression of cancer by suppressing oxidative stress, because they constitutively increase the capacity to scavenge reactive oxygen species (ROS), and they support cell proliferation by increasing ribonucleotide synthesis, serine biosynthesis and autophagy. Herein, we describe cancer chemoprevention and the discovery of the essential role played by NRF2 in orchestrating protection against chemical carcinogenesis. We similarly describe the discoveries of somatic mutations in NFE2L2 and the gene encoding the principal NRF2 repressor, Kelch-like ECH-associated protein 1 (KEAP1) along with that encoding a component of the E3 ubiquitin-ligase complex Cullin 3 (CUL3), which result in permanent activation of NRF2, and the recognition that such mutations occur frequently in many types of cancer. Notably, mutations in NFE2L2, KEAP1 and CUL3 that cause persistent upregulation of NRF2 often co-exist with mutations that activate KRAS and the PI3K-PKB/Akt pathway, suggesting NRF2 supports growth of tumours in which KRAS or PKB/Akt are hyperactive. Besides somatic mutations, NRF2 activation in human tumours can occur by other means, such as alternative splicing that results in a NRF2 protein which lacks the KEAP1-binding domain or overexpression of other KEAP1-binding partners that compete with NRF2. Lastly, as NRF2 upregulation is associated with resistance to cancer chemotherapy and radiotherapy, we describe strategies that might be employed to suppress growth and overcome drug resistance in tumours with overactive NRF2. Full article
(This article belongs to the Special Issue The KEAP1-NRF2 Pathway in Cancer)
Show Figures

Figure 1

11 pages, 3965 KiB  
Article
Cancer-Specific hNQO1-Responsive Biocompatible Naphthalimides Providing a Rapid Fluorescent Turn-On with an Enhanced Enzyme Affinity
by Sun Young Park, Eugeine Jung, Jong Seung Kim, Sung-Gil Chi and Min Hee Lee
Sensors 2020, 20(1), 53; https://doi.org/10.3390/s20010053 - 20 Dec 2019
Cited by 17 | Viewed by 4816
Abstract
Human NAD(P)H:quinone oxidoreductase 1 (hNQO1) is overexpressed in cancer cells and associated with the drug resistance factor of cancer. The objective of this work is the development of fluorescent probes for the efficient detection of hNQO1 activity in cancer cells, which can be [...] Read more.
Human NAD(P)H:quinone oxidoreductase 1 (hNQO1) is overexpressed in cancer cells and associated with the drug resistance factor of cancer. The objective of this work is the development of fluorescent probes for the efficient detection of hNQO1 activity in cancer cells, which can be employed for the cancer diagnosis and therapeutic agent development. Herein, we report naphthalimide-based fluorescent probes 1 and 2 that can detect hNQO1. For hNQO1 activity, the probes showed a significant fluorescence increase at 540 nm. In addition, probe 1, the naphthalimide containing a triphenylphosphonium salt, showed an enhanced enzyme efficiency and rapid detection under a physiological condition. The detection ability of probe 1 was superior to that of other previously reported probes. Moreover, probe 1 was less cytotoxic during the cancer cell imaging and readily provided a strong fluorescence in hNQO1-overexpressed cancer cells (A549). We proposed that probe 1 can be used to detect hNQO1 expression in live cells and it will be applied to develop the diagnosis and customized treatment of hNQO1-related disease. Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Sensors)
Show Figures

Graphical abstract

11 pages, 1830 KiB  
Article
An Economical, Sustainable Pathway to Indole-Containing Oxindoles: Iron-Catalyzed 1,6-Conjugate Addition in Glycerol
by Lan Tan and Abdul Rahman
Sustainability 2018, 10(8), 2922; https://doi.org/10.3390/su10082922 - 17 Aug 2018
Cited by 3 | Viewed by 2934
Abstract
The search for economical, sustainable and practical pathways in synthetic science would contribute to improving resource efficiency, developing a recycling economy and driving new-type urbanization. Green synthesis has established firm ground providing the right green yardstick for development of a sustainable approach to [...] Read more.
The search for economical, sustainable and practical pathways in synthetic science would contribute to improving resource efficiency, developing a recycling economy and driving new-type urbanization. Green synthesis has established firm ground providing the right green yardstick for development of a sustainable approach to bioactive high-added value molecules and drug discovery, and further development of sustainable manufacturing processes in the pharmaceutical industry toward a green resource efficient economy. In this study, the combination of FeCl3 and glycerol exhibits a versatile and high catalytic activity in the atom economical 1,6-conjugated addition of para-quinone methides derived from isatins with indoles using the right green yardstick. The sustainable pathway provides the preparation of bioactive indole-containing oxindoles in excellent yields with superior advantages, such as the ready availability, low price and environmentally benign character of iron catalysis, easy product separation, cheap and safe bio-renewable glycerol as a green solvent, and catalytic system recycling under mild conditions. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

16 pages, 2644 KiB  
Article
Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1
by Jan Milichovský, František Bárta, Heinz H. Schmeiser, Volker M. Arlt, Eva Frei, Marie Stiborová and Václav Martínek
Int. J. Mol. Sci. 2016, 17(2), 213; https://doi.org/10.3390/ijms17020213 - 5 Feb 2016
Cited by 16 | Viewed by 6500
Abstract
Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for [...] Read more.
Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are NAD(P)H:quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2. Using site-directed mutagenesis we investigated the possible mechanisms of CYP1A1/1A2/1B1-catalyzed AAI nitroreduction. Molecular modelling predicted that the hydroxyl groups of serine122/threonine124 (Ser122/Thr124) amino acids in the CYP1A1/1A2-AAI binary complexes located near to the nitro group of AAI, are mechanistically important as they provide the proton required for the stepwise reduction reaction. In contrast, the closely related CYP1B1 with no hydroxyl group containing residues in its active site is ineffective in catalyzing AAI nitroreduction. In order to construct an experimental model, mutant forms of CYP1A1 and 1A2 were prepared, where Ser122 and Thr124 were replaced by Ala (CYP1A1-S122A) and Val (CYP1A2-T124V), respectively. Similarly, a CYP1B1 mutant was prepared in which Ala133 was replaced by Ser (CYP1B1-A133S). Site-directed mutagenesis was performed using a quickchange approach. Wild and mutated forms of these enzymes were heterologously expressed in Escherichia coli and isolated enzymes characterized using UV-vis spectroscopy to verify correct protein folding. Their catalytic activity was confirmed with CYP1A1, 1A2 and 1B1 marker substrates. Using 32P-postlabelling we determined the efficiency of wild-type and mutant forms of CYP1A1, 1A2, and 1B1 reconstituted with NADPH:CYP oxidoreductase to bioactivate AAI to reactive intermediates forming covalent DNA adducts. The S122A and T124V mutations in CYP1A1 and 1A2, respectively, abolished the efficiency of CYP1A1 and 1A2 enzymes to generate AAI-DNA adducts. In contrast, the formation of AAI-DNA adducts was catalyzed by CYP1B1 with the A133S mutation. Our experimental model confirms the importance of the hydroxyl group possessing amino acids in the active center of CYP1A1 and 1A2 for AAI nitroreduction. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

21 pages, 16806 KiB  
Review
Cyanobacterial Metabolite Calothrixins: Recent Advances in Synthesis and Biological Evaluation
by Su Xu, Bhavitavya Nijampatnam, Shilpa Dutta and Sadanandan E. Velu
Mar. Drugs 2016, 14(1), 17; https://doi.org/10.3390/md14010017 - 12 Jan 2016
Cited by 48 | Viewed by 10511
Abstract
The marine environment is host to unparalleled biological and chemical diversity, making it an attractive resource for the discovery of new therapeutics for a plethora of diseases. Compounds that are extracted from cyanobacteria are of special interest due to their unique structural scaffolds [...] Read more.
The marine environment is host to unparalleled biological and chemical diversity, making it an attractive resource for the discovery of new therapeutics for a plethora of diseases. Compounds that are extracted from cyanobacteria are of special interest due to their unique structural scaffolds and capacity to produce potent pharmaceutical and biotechnological traits. Calothrixins A and B are two cyanobacterial metabolites with a structural assembly of quinoline, quinone, and indole pharmacophores. This review surveys recent advances in the synthesis and evaluation of the biological activities of calothrixins. Due to the low isolation yields from the marine source and the promise this scaffold holds for anticancer and antimicrobial drugs, organic and medicinal chemists around the world have embarked on developing efficient synthetic routes to produce calothrixins. Since the first review appeared in 2009, 11 novel syntheses of calothrixins have been published in the efforts to develop methods that contain fewer steps and higher-yielding reactions. Calothrixins have shown their potential as topoisomerase I poisons for their cytotoxicity in cancer. They have also been observed to target various aspects of RNA synthesis in bacteria. Further investigation into the exact mechanism for their bioactivity is still required for many of its analogs. Full article
(This article belongs to the Special Issue Compounds from Cyanobacteria)
Show Figures

Graphical abstract

8 pages, 204 KiB  
Article
Strong Inhibition of Celastrol Towards UDP-Glucuronosyl Transferase (UGT) 1A6 and 2B7 Indicating Potential Risk of UGT-Based Herb-Drug Interaction
by Yong-Sheng Zhang, Yan-Yang Tu, Xing-Chun Gao, Jun Yuan, Gang Li, Liang Wang, Jian-Ping Deng, Qi Wang and Ru-Meng Ma
Molecules 2012, 17(6), 6832-6839; https://doi.org/10.3390/molecules17066832 - 5 Jun 2012
Cited by 35 | Viewed by 6324
Abstract
Celastrol, a quinone methide triterpene isolated from Tripterygium wilfordii Hook F., has various biochemical and pharmacological activities, and is now being developed as a promising anti-tumor agent. Inhibitory activity of compounds towards UDP-glucuronosyltransferase (UGT) is an important cause of clinical drug-drug interactions and [...] Read more.
Celastrol, a quinone methide triterpene isolated from Tripterygium wilfordii Hook F., has various biochemical and pharmacological activities, and is now being developed as a promising anti-tumor agent. Inhibitory activity of compounds towards UDP-glucuronosyltransferase (UGT) is an important cause of clinical drug-drug interactions and herb-drug interactions. The aim of the present study is to investigate the inhibition of celastrol towards two important UDP-glucuronosyltransferase (UGT) isoforms UGT1A6 and UGT2B7. Recombinant UGT isoforms and non-specific substrate 4-methylumbelliferone (4-MU) were used. The results showed that celastrol strongly inhibited the UGT1A6 and 2B7-mediated 4-MU glucuronidation reaction, with 0.9 ± 0.1% and 1.8 ± 0.2% residual 4-MU glucuronidation activity at 100 μM of celastrol, respectively. Furthermore, inhibition kinetic study (Dixon plot and Lineweaver-Burk plot) demonstrated that celastrol noncompetitively inhibited the UGT1A1-mediated 4-MU glucuronidation, and competitively inhibited UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameters (Ki) were calculated to be 0.49 μM and 0.045 μM for UGT1A6 and UGT2B7, respectively. At the therapeutic concentration of celastrol for anti-tumor utilization, the possibility of celastrol-drug interaction and celastrol-containing herbs-drug interaction were strongly indicated. However, given the complicated nature of herbs, these results should be viewed with more caution. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop