Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = quaternary sulfide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2175 KiB  
Article
Engineering Ultra-Low Thermal Conductivity in (Pb0.8Ge0.2Te)0.95-x(PbSe)0.05(PbS)x Quaternary Lead Chalcogenides Through PbS-Induced Phase Segregation
by Dianta Ginting, Hadi Pronoto, Nurato, Kontan Tarigan, Sagir Alva, Muhamad Fitri, Dwi Nanto, Ai Nurlaela, Mashadi, Yunasfi, Toto Sudiro, Jumril Yunas and Jong-Soo Rhyee
Materials 2025, 18(14), 3232; https://doi.org/10.3390/ma18143232 - 9 Jul 2025
Viewed by 390
Abstract
The shortage of tellurium and toxicity of lead are major obstacles to scaling mid-temperature thermoelectric generators. We engineer quaternary lead chalcogenides with composition (Pb0.8Ge0.2Te)0.95-x(PbSe)0.05(PbS)x (0 ≤ x ≤ 0.25), where Pb is lead, [...] Read more.
The shortage of tellurium and toxicity of lead are major obstacles to scaling mid-temperature thermoelectric generators. We engineer quaternary lead chalcogenides with composition (Pb0.8Ge0.2Te)0.95-x(PbSe)0.05(PbS)x (0 ≤ x ≤ 0.25), where Pb is lead, Ge is germanium, Te is tellurium, Se is selenium, S is sulfur, and x denotes the molar fraction of lead sulfide (PbS). The primary novelty lies in achieving ultra-low thermal conductivity through controlled phase segregation induced by systematic PbS incorporation. X-ray diffraction analysis reveals single-phase solid solutions up to x ≈ 0.10, with secondary PbS precipitates forming beyond this threshold. These PbS-rich phases create hierarchical microstructures that scatter phonons across multiple length scales, suppressing total thermal conductivity to 0.6 Wm−1K−1 at x = 0.15—approximately 84% lower than pristine lead telluride (PbTe) and approaching glass-like thermal conductivity values. Electrical transport measurements demonstrate sulfur’s role as an electron donor, enabling carrier-type control from p-type to n-type conduction. Despite moderate electrical power factors, the optimized composition (x = 0.20) achieves a peak dimensionless figure of merit ZT ≈ 0.34 at 650 K. This work demonstrates an effective strategy for tellurium-lean, lead-reduced thermoelectric materials through sulfur-induced phase segregation, providing practical design guidelines for sustainable waste heat recovery applications. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

13 pages, 3968 KiB  
Article
One-Step Synthesis CuCoNiSxO4−x Thio/Oxy Spinel on Ni Foam for High-Performance Asymmetric Supercapacitors
by Anastassiya A. Migunova, Renata R. Nemkayeva, Yeldar A. Zhakanbayev and Yuriy Zh. Tuleushev
Energies 2025, 18(3), 561; https://doi.org/10.3390/en18030561 - 24 Jan 2025
Cited by 3 | Viewed by 1024
Abstract
Mixed transition metal sulfides are promising materials for positive electrodes of asymmetric supercapacitors because they have a large potential for increasing the electrical characteristics of these devices. The paper presents the results of a study of a material based on spinel CuCoNiSx [...] Read more.
Mixed transition metal sulfides are promising materials for positive electrodes of asymmetric supercapacitors because they have a large potential for increasing the electrical characteristics of these devices. The paper presents the results of a study of a material based on spinel CuCoNiSxO4−x with both sulfide and oxide sublattices, prepared by a one-step hydrothermal method directly on nickel foam, forming an array of whiskers. Electrochemical studies showed that a positive electrode, CuCoNiS2O2, exhibited a high specific capacitance of 3612 F g−1 at a current density of 1 A g−1. The assembled asymmetric supercapacitor with activated carbon as a negative electrode achieved a specific capacitance of 133.5 F g−1 at 1 A g−1 and a potential window of 1.7 V. Its energy density was 53.6 Wh kg−1 at a power density of 805 W kg−1 and the power density reached 17,000 W kg−1 at an energy density of 18.9 W h kg−1. The assembled device exhibits 52% of capacitance retention after the 20,000 cycles at a current density of 10 A g−1 with 97% coulombic efficiency. These results demonstrate that the CuCoNiSxO4−x system is competitive with other quaternary transition metal sulfides, and this type of spinel is a perspective electrode material for high-performance supercapacitors. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

18 pages, 3018 KiB  
Article
Application of a Strong Base Anion Exchange Resin for the Removal of Thiophenol from Aqueous Solution
by Katarzyna Chruszcz-Lipska, Bogumiła Winid and Urszula Solecka
Molecules 2025, 30(3), 525; https://doi.org/10.3390/molecules30030525 - 24 Jan 2025
Cited by 1 | Viewed by 1418
Abstract
Thiophenol (synonyms: phenyl mercaptan, benzenethiol) may appear in the aquatic environment as a result of human activity. It is used as a raw material in organic synthesis in various industries for the production of dyes, pesticides, pharmaceuticals and polymers, such as polyphenylene sulfide [...] Read more.
Thiophenol (synonyms: phenyl mercaptan, benzenethiol) may appear in the aquatic environment as a result of human activity. It is used as a raw material in organic synthesis in various industries for the production of dyes, pesticides, pharmaceuticals and polymers, such as polyphenylene sulfide (PPS). It may also enter water through contamination with petroleum substances (thiophenol may be present in crude oil). Due to the fact that thiophenol is toxic to living organisms, its removal from water can be a very important task. For the first time, this paper presents experimental studies of the sorption and desorption process of thiophenol on an ion exchange resin. Thiophenol sorption experiments on AmbeLite®IRA402 (Cl form) were tested at different pH levels (4, 7, and 9) and different ionic strengths of the aqueous solution. Its detection in water was carried out using UV spectroscopy. At pH 4, the thiophenol sorption process is basically independent of the ionic strength of the solution, but also the least effective. The sorption capacity of a thiophenol solution in distilled water is about 0.37–0.46 mg/g, for a solution with an ionic strength of 0.1 M 0.42 mg/g. At pH 7 and 9, the sorption of thiophenol from an aqueous solution is similar and definitely more effective. The sorption capacity of the thiophenol solution in distilled water is about 13.83–14.67 mg/g, and for a solution with an ionic strength of 0.1 M, it is 2.83–2.10 mg/g. The desorption efficiency of thiophenol from AmbeLite®IRA402 resin (washing with 4% HCl) at pH 7 is 90%, which is promising for the resin reuse process. Kinetic studies were performed and a pseudo-first-order and second-order kinetic model was fitted to the obtained experimental sorption data. In most cases, the simulation showed that the pseudo-second-order model gives a better fit, especially for the sorption of thiophenol from the solution with an ionic strength of 0.1 M. The fit of the Freundlich and Langmuir isotherm models to the experimental results indicates that the latter model provides better agreement. Analysis of the infrared spectra supported by quantum chemical calculations (DFT/PCM/B3LYP/6-31g**) confirms the experimental results observed during the sorption process. At pH 7 and 9, the thiophenol is sorbed in anionic form and—together with the ion exchange processes that occur between the dissociated thiol group and the quaternary ammonium group—an interaction between the aromatic structures of thiophenolate anions and IRA402 also takes place. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

19 pages, 10995 KiB  
Article
Iron–Titanium Oxide–Apatite–Sulfide–Sulfate Microinclusions in Gabbro and Adakite from the Russian Far East Indicate Possible Magmatic Links to Iron Oxide–Apatite and Iron Oxide–Copper–Gold Deposits
by Pavel Kepezhinskas, Nikolai Berdnikov, Valeria Krutikova and Nadezhda Kozhemyako
Minerals 2024, 14(2), 188; https://doi.org/10.3390/min14020188 - 11 Feb 2024
Cited by 2 | Viewed by 1966
Abstract
Mesozoic gabbro from the Stanovoy convergent margin and adakitic dacite lava from the Pliocene–Quaternary Bakening volcano in Kamchatka contain iron–titanium oxide–apatite–sulfide–sulfate (ITOASS) microinclusions along with abundant isolated iron–titanium minerals, sulfides and halides of base and precious metals. Iron–titanium minerals include magnetite, ilmenite and [...] Read more.
Mesozoic gabbro from the Stanovoy convergent margin and adakitic dacite lava from the Pliocene–Quaternary Bakening volcano in Kamchatka contain iron–titanium oxide–apatite–sulfide–sulfate (ITOASS) microinclusions along with abundant isolated iron–titanium minerals, sulfides and halides of base and precious metals. Iron–titanium minerals include magnetite, ilmenite and rutile; sulfides include chalcopyrite, pyrite and pyrrhotite; sulfates are represented by barite; and halides are predominantly composed of copper and silver chlorides. Apatite in both gabbro and adakitic dacite frequently contains elevated chlorine concentrations (up to 1.7 wt.%). Mineral thermobarometry suggests that the ITOASS microinclusions and associated Fe-Ti minerals and sulfides crystallized from subduction-related metal-rich melts in mid-crustal magmatic conduits at depths of 10 to 20 km below the surface under almost neutral redox conditions (from the unit below to the unit above the QFM buffer). The ITOASS microinclusions in gabbro and adakite from the Russian Far East provide possible magmatic links to iron oxide–apatite (IOA) and iron oxide–copper–gold (IOCG) deposits and offer valuable insights into the early magmatic (pre-metasomatic) evolution of the IOA and ICOG mineralized systems in paleo-subduction- and collision-related geodynamic environments. Full article
Show Figures

Figure 1

13 pages, 4608 KiB  
Article
Synthesis of Quaternary (Ni, Co, Cu)Se2 Nanosheet Arrays on Carbon Cloth for Non-Enzymatic Glucose Determination
by Yuanyuan Chen, Huan Wang, Huinan Chen, Jingyao Song, Dongmei Deng and Liqiang Luo
Chemosensors 2023, 11(10), 530; https://doi.org/10.3390/chemosensors11100530 - 9 Oct 2023
Cited by 3 | Viewed by 2198
Abstract
Unlike transition metal oxides and sulfides, transition metal-based selenides display higher electrical conductivity, more electroactive unsaturated edge sites, and better chemical stability, which have found extensive usage in electrocatalysis. In this work, simple hydrothermal and solvothermal procedures were employed to synthesize quaternary (Ni, [...] Read more.
Unlike transition metal oxides and sulfides, transition metal-based selenides display higher electrical conductivity, more electroactive unsaturated edge sites, and better chemical stability, which have found extensive usage in electrocatalysis. In this work, simple hydrothermal and solvothermal procedures were employed to synthesize quaternary (Ni, Co, Cu)Se2 nanosheet arrays on carbon cloth (CC) to measure glucose. The conductivity of the material can be effectively elevated by adding Se element to form selenides, and the synergistic effect between the three selenides can improve the electrocatalytic performance. Consequently, in the ranges of 0.01–600 μM and 600–9000 μM, respectively, the current response of the synthesized material to glucose concentration exhibited linear relationships. The sensor demonstrated excellent sensitivity and a low detection limit of 5.82 nM. Furthermore, the practical applicability of the constructed biosensor was proved by using it to quantify the amount of glucose in human serum. Full article
(This article belongs to the Special Issue Current Development on Electrochemical Glucose Biosensors)
Show Figures

Graphical abstract

18 pages, 6965 KiB  
Article
Multiscale Structural Analysis of Ediacaran–Cambrian Rocks on the Northeastern Edge of the Saghro Inlier (Eastern Anti-Atlas): Relevance of Post-Cambrian Deformation
by Zakarya Yajioui, Helena Sant’Ovaia, Brahim Karaoui, Cláudia Cruz, Amar Karaoui, Abdelkader Mahmoudi, Hmidou El Ouardi and Lakhlifi Badra
Geosciences 2023, 13(9), 258; https://doi.org/10.3390/geosciences13090258 - 24 Aug 2023
Cited by 1 | Viewed by 1841
Abstract
The Ediacaran–Cambrian rocks on the northeastern edge of the Saghro inlier experienced polycyclic tectono-thermal events, which are reported here based on a multiscale structural analysis, from field measurements to fluid inclusion planes. Three striking populations were identified, cutting across both the Ediacaran and [...] Read more.
The Ediacaran–Cambrian rocks on the northeastern edge of the Saghro inlier experienced polycyclic tectono-thermal events, which are reported here based on a multiscale structural analysis, from field measurements to fluid inclusion planes. Three striking populations were identified, cutting across both the Ediacaran and Cambrian formations. These tectonic structures were generated during four tectonic events. (i) E-W-striking structures that host ore mineralized bodies (sulfide, oxide, quartz, and barite). They display a polyphase tectonic history, caused by a dextral movement in response to a NW–SE-oriented shortening, leading to the formation of quartz gashes and veins. This tectonic event took place during the Neovariscan. These E–W-striking structures were subsequently reactivated during the Mesozoic time under a sinistral strike-slip regime as a result of NE–SW shortening syn-kinematic with barite mineralization. (ii) NE–SW-striking strike-slip structures (dextral or sinistral) crosscut the E–W-striking veins. These faults are related to the NW–SE-oriented shortening that occurred during the Neogene. (iii) The last tectonic episode, related to the N–S shortening, took place during the late Neogene to the Quaternary period. It resulted in NW–SE to N–S-striking structures that were related to dextral and sinistral strike-slip movements, which crosscut the preexisting E–W structures. Full article
(This article belongs to the Section Structural Geology and Tectonics)
Show Figures

Figure 1

17 pages, 17806 KiB  
Article
Corrosion Behaviors of Outdoor Bronze Sculptures in an Urban–Industrial Environment: Corrosion Experiment on Artificial Sulfide Patina
by Heehong Kwon and Namchul Cho
Metals 2023, 13(6), 1101; https://doi.org/10.3390/met13061101 - 11 Jun 2023
Cited by 11 | Viewed by 3935
Abstract
Copper alloys interact with air pollutants to form corrosion products and, consequently, a patina on outdoor bronze sculptures. In this study, corrosion experiments were conducted to clarify the corrosion behaviors of artificial sulfide patina in an urban–industrial environment on a quaternary bronze alloy [...] Read more.
Copper alloys interact with air pollutants to form corrosion products and, consequently, a patina on outdoor bronze sculptures. In this study, corrosion experiments were conducted to clarify the corrosion behaviors of artificial sulfide patina in an urban–industrial environment on a quaternary bronze alloy (Cu–Zn–Sn–Pb) with a composition and metallurgical properties similar to those of outdoor bronze sculptures. The correlation between the chromaticity and reflectance of the patina revealed increasing brochantite with the corrosion of the patina and an association between the chromaticity a* and patina growth. Cuprite and brochantite were distinguished, and the point at which brochantite covered the patina surface was determined. The quantitative changes in brochantite were mainly influenced by physical causes such as the crystal size and patina layer thickness as well as by Cu2+ ions working as color formation ions moving to the outermost layer. Atmospheric corrosion of the alloy resulted in reduced Cu and Zn contents and increased Sn and Pb contents. The patina consisted of brochantite in the outermost layer and cuprite and cassiterite in the inner layers. These findings should clarify corrosion characteristics such as the surface color, composition, and changes in corrosion products of outdoor bronze sculptures and contribute toward their preservation. Full article
(This article belongs to the Special Issue Metals for Art and Cultural Heritage)
Show Figures

Figure 1

19 pages, 40601 KiB  
Article
The Use of Typomorphic Features of Placer Gold of the Anabar Region for Determining Its Sources
by Boris Gerasimov
Minerals 2023, 13(4), 480; https://doi.org/10.3390/min13040480 - 29 Mar 2023
Cited by 6 | Viewed by 1613
Abstract
Typomorphic features of placer gold of the Anabar region were studied as predictive-exploration criteria. The target of the study was to determine the typomorphic features of placer gold related to the intermediate sources (paleo-placers) and the supposed nearby primary ore occurrences. Two varieties [...] Read more.
Typomorphic features of placer gold of the Anabar region were studied as predictive-exploration criteria. The target of the study was to determine the typomorphic features of placer gold related to the intermediate sources (paleo-placers) and the supposed nearby primary ore occurrences. Two varieties of placer gold were identified. The first variety is well-rounded high-fineness lamellar gold with a highly modified internal structure. This native gold is associated with intermediate sources, Neogene–Quaternary watershed pebble beds. The second type includes slightly rounded gold with a wide variation in fineness (494‰–999‰). Its indicator is a block heterophase internal structure. The set of typomorphic features of this variety of placer gold indicates the vicinity of the primary source, what was the prerequisite for constructing prospecting traverses in order to find ore occurrences. As a result of these studies, hydrothermal-metasomatic formations with gold-sulfide mineralization were identified. The main primary substrate for them is fractured near-fault carbonate rocks of the Cambrian and Vendian–Cambrian age. Along with this, hydrothermalites developed on slightly cemented fine-pebble quartz conglomerates of the Middle Permian age were found in the core of exploration wells. Two types of metasomatic rocks are identified: quartz-potassium feldspar and jasperoid. The main ore minerals were galena and pyrite, different ratios by sites were revealed. Gold was identified in the form of small particles in the carbonate and siliceous substrate of hydrothermal-metasomatic formations. The lithological factor was one of the leading favorable factors for the ore formation due to the presence of near-fault highly permeable fractured carbonate and slightly cemented terrigenous rocks. The structural control of the studied ore occurrences is determined by their localization in the Mayat–Logoy and Dogoy–Kuoy faults of the Molodo–Popigay system of discontinuous faults. We assume a two-stage formation of the gold ore occurrences: during the first stage, the ore components in the form of primary hydrothermal-sedimentary ores in the near-gault zones were formed. The second stage was related to the processes of the Mesozoic tectonic-magmatic activation, when the intrusion of basite dikes initiated the mobilization of ore components the gold-sulfide occurrences were formed in the near-fault zone as a result of silicic-potassic metasomatosis of the carbonate and terrigenous rocks. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

15 pages, 2162 KiB  
Article
A Challenge toward Novel Quaternary Sulfides SrLnCuS3 (Ln = La, Nd, Tm): Unraveling Synthetic Pathways, Structures and Properties
by Anna V. Ruseikina, Maxim V. Grigoriev, Leonid A. Solovyov, Vladimir A. Chernyshev, Aleksandr S. Aleksandrovsky, Alexander S. Krylov, Svetlana N. Krylova, Nikolai P. Shestakov, Dmitriy A. Velikanov, Alexander A. Garmonov, Alexey V. Matigorov, Marcel A. Eberle, Thomas Schleid and Damir A. Safin
Int. J. Mol. Sci. 2022, 23(20), 12438; https://doi.org/10.3390/ijms232012438 - 18 Oct 2022
Cited by 11 | Viewed by 3492
Abstract
We report on the novel heterometallic quaternary sulfides SrLnCuS3 (Ln = La, Nd, Tm), obtained as both single crystals and powdered samples. The structures of both the single crystal and powdered samples of SrLaCuS3 and SrNdCuS3 belong to the orthorhombic [...] Read more.
We report on the novel heterometallic quaternary sulfides SrLnCuS3 (Ln = La, Nd, Tm), obtained as both single crystals and powdered samples. The structures of both the single crystal and powdered samples of SrLaCuS3 and SrNdCuS3 belong to the orthorhombic space group Pnma but are of different structural types, while both samples of SrTmCuS3 crystallize in the orthorhombic space group Cmcm with the structural type KZrCuS3. Three-dimensional crystal structures of SrLaCuS3 and SrNdCuS3 are formed from the (Sr/Ln)S7 capped trigonal prisms and CuS4 tetrahedra. In SrLaCuS3, alternating 2D layers are stacked, while the main backbone of the structure of SrNdCuS3 is a polymeric 3D framework [(Sr/Ln)S7]n, strengthened by 1D polymeric chains (CuS4)n with 1D channels, filled by the other Sr2+/Ln3+ cations, which, in turn, form 1D dimeric ribbons. A 3D crystal structure of SrTmCuS3 is constructed from the SrS6 trigonal prisms, TmS6 octahedra and CuS4 tetrahedra. The latter two polyhedra are packed together into 2D layers, which are separated by 1D chains (SrS6)n and 1D free channels. In both crystal structures of SrLaCuS3 obtained in this work, the crystallographic positions of strontium and lanthanum were partially mixed, while only in the structure of SrNdCuS3, solved from the powder X-ray diffraction data, were the crystallographic positions of strontium and neodymium partially mixed. Band gaps of SrLnCuS3 (Ln = La, Nd, Tm) were found to be 1.86, 1.94 and 2.57 eV, respectively. Both SrNdCuS3 and SrTmCuS3 were found to be paramagnetic at 20–300 K, with the experimental magnetic characteristics being in good agreement with the corresponding calculated parameters. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

11 pages, 1313 KiB  
Article
The Absolute Age and Origin of the Giant Gypsum Geode of Pulpí (Almería, SE Spain)
by Fernando Gázquez, Ana Monteserín, Christina Obert, Carsten Münker, Ángel Fernández-Cortés and José María Calaforra
Geosciences 2022, 12(4), 144; https://doi.org/10.3390/geosciences12040144 - 23 Mar 2022
Cited by 8 | Viewed by 6452
Abstract
Subaqueous gypsum (CaSO4·2H2O) crystals are relatively common in epithermal systems where sulfide ore deposits are present. The Giant Geode of Pulpí (Almería, SE Spain) hosts some of the largest (up to 2 m in length) subaqueous gypsum crystals discovered [...] Read more.
Subaqueous gypsum (CaSO4·2H2O) crystals are relatively common in epithermal systems where sulfide ore deposits are present. The Giant Geode of Pulpí (Almería, SE Spain) hosts some of the largest (up to 2 m in length) subaqueous gypsum crystals discovered to date. Here, we present the first U-series ages of its crystals and reconstruct the oxygen and hydrogen isotopic composition (δ18O and δ2H) of the Pulpí paleo-aquifer from which the crystals formed by using stable isotopes of gypsum hydration water. We successfully dated the onset of gypsum precipitation in the Geode at 164 ± 15 ka. However, the extremely low U concentration (11 ppb) and relatively high detrital Th content (230Th/232Th 3.2) hinder accurate dating other gypsum samples. The δ18O and δD values of the paleo-aquifer during the growth of the crystals aligned with the local meteoric water line, suggesting that the sulfate-enriched mother solution consisted of meteoric water that recharged the aquifer during that period. The mean isotopic composition of the Pulpí paleo-aquifer (δ18O = −6.5 ± 0.1‰ and δ2H = −42.3 ± 0.5‰) during the formation of the crystals was similar to the current groundwater in this area (δ18O = −6.1 ± 0.8‰, δ2H = −42 ± 6‰). The isotopic differences observed in samples collected from distinct locations and in individual crystals were probably related to changes in the isotopic composition of the aquifer, as a consequence of varying climate that impacted on the isotopic composition of rainwater during thousands of years in this region. Our results indicated that subaqueous selenite crystals may be useful for paleo-hydrological reconstructions. However, improving the current analytical techniques for dating gypsum with low U concentrations will be essential to obtain accurate and reliable records from Quaternary gypsum cave crystals in the future. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

24 pages, 3513 KiB  
Article
Quaternary Selenides EuLnCuSe3: Synthesis, Structures, Properties and In Silico Studies
by Maxim V. Grigoriev, Leonid A. Solovyov, Anna V. Ruseikina, Aleksandr S. Aleksandrovsky, Vladimir A. Chernyshev, Dmitriy A. Velikanov, Alexander A. Garmonov, Maxim S. Molokeev, Aleksandr S. Oreshonkov, Nikolay P. Shestakov, Alexey V. Matigorov, Svetlana S. Volkova, Evgeniy A. Ostapchuk, Alexander V. Kertman, Thomas Schleid and Damir A. Safin
Int. J. Mol. Sci. 2022, 23(3), 1503; https://doi.org/10.3390/ijms23031503 - 28 Jan 2022
Cited by 21 | Viewed by 3639
Abstract
In this work, we report on the synthesis, in-depth crystal structure studies as well as optical and magnetic properties of newly synthesized heterometallic quaternary selenides of the Eu+2Ln+3Cu+1Se3 composition. Crystal structures of the obtained compounds were [...] Read more.
In this work, we report on the synthesis, in-depth crystal structure studies as well as optical and magnetic properties of newly synthesized heterometallic quaternary selenides of the Eu+2Ln+3Cu+1Se3 composition. Crystal structures of the obtained compounds were refined by the derivative difference minimization (DDM) method from the powder X-ray diffraction data. The structures are found to belong to orthorhombic space groups Pnma (structure type Ba2MnS3 for EuLaCuSe3 and structure type Eu2CuS3 for EuLnCuSe3, where Ln = Sm, Gd, Tb, Dy, Ho and Y) and Cmcm (structure type KZrCuS3 for EuLnCuSe3, where Ln = Tm, Yb and Lu). Space groups Pnma and Cmcm were delimited based on the tolerance factor t’, and vibrational spectroscopy additionally confirmed the formation of three structural types. With a decrease in the ionic radius of Ln3+ in the reported structures, the distortion of the (LnCuSe3) layers decreases, and a gradual formation of the more symmetric structure occurs in the sequence Ba2MnS3 → Eu2CuS3 → KZrCuS3. According to magnetic studies, compounds EuLnCuSe3 (Ln = Tb, Dy, Ho and Tm) each exhibit ferrimagnetic properties with transition temperatures ranging from 4.7 to 6.3 K. A negative magnetization effect is observed for compound EuHoCuSe3 at temperatures below 4.8 K. The magnetic properties of the discussed selenides and isostructural sulfides were compared. The direct optical band gaps for EuLnCuSe3, subtracted from the corresponding diffuse reflectance spectra, were found to be 1.87–2.09 eV. Deviation between experimental and calculated band gaps is ascribed to lower d states of Eu2+ in the crystal field of EuLnCuSe3, while anomalous narrowing of the band gap of EuYbCuSe3 is explained by the low-lying charge-transfer state. Ab initio calculations of the crystal structures, elastic properties and phonon spectra of the reported compounds were performed. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

23 pages, 7760 KiB  
Article
The Gold Mineralization of the Baranyevskoe Au-Ag Epithermal Deposit in Central Kamchatka
by Nadezhda Tolstykh, Daria Bukhanova, Maria Shapovalova, Andrey Borovikov and Maksim Podlipsky
Minerals 2021, 11(11), 1225; https://doi.org/10.3390/min11111225 - 4 Nov 2021
Cited by 9 | Viewed by 2997
Abstract
The Baranyevskoe Au-Ag epithermal deposit of low-sulfidation (LS) type is located on the Kamchatka Peninsula in the Neogene-Quaternary Central Kamchatka Volcanic Belt, where Au-bearing quartz veins are usually accompanied by veinlet stockworks. Two economic associations are typical of the Baranyevskoe deposit. The first [...] Read more.
The Baranyevskoe Au-Ag epithermal deposit of low-sulfidation (LS) type is located on the Kamchatka Peninsula in the Neogene-Quaternary Central Kamchatka Volcanic Belt, where Au-bearing quartz veins are usually accompanied by veinlet stockworks. Two economic associations are typical of the Baranyevskoe deposit. The first corresponds to gold-pyrite-quartz association with low-grade native gold (521–738‱) intergrown with pyrite. Some accessory Au-Ag minerals within the early association were also identified: acanthite AgS2, hessite AgTe2, lenaite Ag(Fe,Cu)S2, petzite Ag3AuTe2, utenbogardite Ag3AuS2 and unnamed Ag-Sb-As sulfosalts. The former Au-Ag minerals were most likely formed in the temperature range of 320–330 °C based on the study of arsenopyrite thermometers and fluid inclusions. The second, a gold-sulfosalt-quartz association, includes high-grade native gold (883-941‱) in intergrowth with chalcopyrite. Cuprous phases (bornite, chalcocite, heerite, native copper, Cu-Zn solid solutions), Bi-rich sulfosalts (aikinite PbCuBiS3, emplectite CuBiS2, witticenite Cu3BiS3), stannoidite Cu8Fe3Sn2S12, mawsonite Cu6Fe2SnS8), Au-bearing galena, Te-free and Bi-rich tetrahedrite-tennantite represent this association. Fluid inclusions in gold-sulfosalt-quartz association are characterized by homogenization temperature ranging from 226 to 298 °C, and salinity from 0.4 to 1.2 wt. % NaCl eq. Full article
(This article belongs to the Special Issue Gold Deposits in Russia: Geology, Mineralogy and Ore Genesis)
Show Figures

Figure 1

12 pages, 2252 KiB  
Article
Rapid Extraction Chemistry Using a Single Column for 230Th/U Dating of Quaternary Hydrothermal Sulfides
by Li-Sheng Wang, Ye-Jian Wang, Jun Ye, Xue-Feng Wang, Ju-Le Xiao and Zhi-Bang Ma
Minerals 2021, 11(9), 983; https://doi.org/10.3390/min11090983 - 9 Sep 2021
Cited by 3 | Viewed by 2413
Abstract
230Th/U dating can provide high-precision age constraints on Quaternary hydrothermal sulfides. However, low content of U and Th often involves extraction chemistry for the separation and enrichment of U and Th, but these chemical processes are very complex. We developed a simplified [...] Read more.
230Th/U dating can provide high-precision age constraints on Quaternary hydrothermal sulfides. However, low content of U and Th often involves extraction chemistry for the separation and enrichment of U and Th, but these chemical processes are very complex. We developed a simplified procedure consisting of total sample dissolution and single-column extraction chemistry, which can reduce the time and improve the accuracy of the dating. Concentrated HCl-HF followed by HNO3 was added to ensure complete dissolution. A single column filled with 0.4 mL of AG 1-X8 anion resin was used, then 8 M HNO3, 8 M HCl and 0.1 M HNO3 were used to elute most of the matrix metals, Th and U. This process provided more than 95% recoveries for U and Th, and negligible blanks. Meanwhile, Pb and Bi interferences were tested and showed no effect on the U and Th isotope ratio. The 230Th/238U activity of the Geological Survey of Japan geochemical reference material JZn-1 in secular equilibrium was determined and showed a radioactive equilibrium (1.00 ± 0.01, n = 5, all errors 2σ) and an in-house standard QS-1 was consistent to 0.0078 ± 0.0001 (n = 8, ±2σ) with an average age of 705 ± 10 yrs BP (n = 8, ±2σ). The technique greatly shortens the sample preparation time and allows more concise and effective analysis of U-Th isotopes. It is ideally suited for the high-precision 230Th/U dating of Quaternary submarine hydrothermal sulfides and sulfides from other settings. Full article
(This article belongs to the Topic Advances in Separation and Purification Techniques)
Show Figures

Figure 1

6 pages, 628 KiB  
Proceeding Paper
Photoconductivity of the Single Crystals Pb4Ga4GeS12 and Pb4Ga4GeSe12
by Hadj Bellagra, Oksana Nyhmatullina, Yuri Kogut, Halyna Myronchuk and Lyudmyla Piskach
Proceedings 2020, 62(1), 4; https://doi.org/10.3390/proceedings2020062004 - 31 Dec 2020
Viewed by 1532
Abstract
Quaternary semiconductor materials of the Pb4Ga4GeS(Se)12 composition have attracted the attention of researchers due to their possible use as active elements of optoelectronics and nonlinear optics. The Pb4Ga4GeS(Se)12 phases belong to the solid [...] Read more.
Quaternary semiconductor materials of the Pb4Ga4GeS(Se)12 composition have attracted the attention of researchers due to their possible use as active elements of optoelectronics and nonlinear optics. The Pb4Ga4GeS(Se)12 phases belong to the solid solution ranges of the Pb3Ga2GeS(Se)8 compounds which form in the quasi-ternary systems PbS(Se)−Ga2S(Se)3−GeS(Se)2 at the cross of the PbGa2S(Se)4−Pb2GeS(Se)4 and PbS(Se)−PbGa2GeS(Se)6 sections. The quaternary sulfide melts congruently at 943 K. The crystallization of the Pb4Ga4GeSe12 phase is associated with the ternary peritectic process Lp + PbSe ↔ PbGa2S4 + Pb3Ga2GeSe8 at 868 K. For the single crystal studies, Pb4Ga4GeS(Se)12 were pre-synthesized by co-melting high-purity elements. The X-ray diffraction results confirm that these compounds possess non-centrosymmetric crystal structure (tetragonal symmetry, space group P–421c). The crystals were grown by the vertical Bridgman method in a two-zone furnace. The starting composition was stoichiometric for Pb4Ga4GeS12, and the solution-melt method was used for the selenide Pb4Ga4GeSe12. The obtained value of the bandgap energy for the Pb4Ga4GeS12 and Pb4Ga4GeSe12 crystals is 1.86 and 2.28 eV, respectively. Experimental measurements of the spectral distribution of photoconductivity for the Pb4Ga4GeS12 and Pb4Ga4GeSe12 crystals exhibit the presence of two spectral maxima. The first lies in the region of 570 (2.17 eV) and 680 nm (1.82 eV), respectively, and matches the optical bandgap estimates well. The locations of the admixture maxima at about 1030 (1.20 eV) and 1340 nm (0.92 eV), respectively, agree satisfactorily with the calculated energy positions of the defects vs. and VSe. Full article
(This article belongs to the Proceedings of The 2nd International Online Conference on Crystals)
Show Figures

Figure 1

17 pages, 3434 KiB  
Article
Magnetism of Kesterite Cu2ZnSnS4 Semiconductor Nanopowders Prepared by Mechanochemically Assisted Synthesis Method
by Katarzyna Lejda, Mariusz Drygaś, Jerzy F. Janik, Jacek Szczytko, Andrzej Twardowski and Zbigniew Olejniczak
Materials 2020, 13(16), 3487; https://doi.org/10.3390/ma13163487 - 7 Aug 2020
Cited by 14 | Viewed by 2587
Abstract
High energy ball milling is used to make first the quaternary sulfide Cu2ZnSnS4 raw nanopowders from two different precursor systems. The mechanochemical reactions in this step afford cubic pre-kesterite with defunct semiconducting properties and showing no solid-state 65Cu and [...] Read more.
High energy ball milling is used to make first the quaternary sulfide Cu2ZnSnS4 raw nanopowders from two different precursor systems. The mechanochemical reactions in this step afford cubic pre-kesterite with defunct semiconducting properties and showing no solid-state 65Cu and 119Sn MAS NMR spectra. In the second step, each of the milled raw materials is annealed at 500 and 550 °C under argon to result in tetragonal kesterite nanopowders with the anticipated UV-Vis-determined energy band gap and qualitatively correct NMR characteristics. The magnetic properties of all materials are measured with SQUID magnetometer and confirm the pre-kesterite samples to show typical paramagnetism with a weak ferromagnetic component whereas all the kesterite samples to exhibit only paramagnetism of relatively decreased magnitude. Upon conditioning in ambient air for 3 months, a pronounced increase of paramagnetism is observed in all materials. Correlations between the magnetic and spectroscopic properties of the nanopowders including impact of oxidation are discussed. The magnetic measurements coupled with NMR spectroscopy appear to be indispensable for comprehensive kesterite evaluation. Full article
Show Figures

Figure 1

Back to TopTop