The Absolute Age and Origin of the Giant Gypsum Geode of Pulpí (Almería, SE Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Analytical Methods
2.2.1. U–Th Dating
2.2.2. Stable Isotopes of Gypsum Hydration Water
3. Results and Discussion
3.1. The Age of the Giant Geode
3.2. Paleoclimatic Significance of Subaqueous Gypsum Crystals
4. Conclusions
Sample ID | U (ng/g) | Th (ng/g) | Th/U | (230Th/232Th) | 2σ ± | (234U/238U) Corrected | 2σ ± | (230Th/238U) Corrected | 2σ ± | Uncorrected Age (ka) | 2σ ± | Corrected Age (ka) | 2σ ± | Initial (234U/238U) Corrected | 2σ ± |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MI-15-A | 8.98 | 5.76 | 0.641 | 3.202 | 0.124 | 0.788 | 0.034 | 0.598 | 0.019 | 212 | 41 | 179 | 36 | 0.649 | 0.092 |
MI-15-B | 9.84 | 6.19 | 0.630 | 3.131 | 0.127 | 0.810 | 0.038 | 0.567 | 0.021 | 173 | 25 | 143 | 23 | 0.716 | 0.074 |
MI-15-D | 11.73 | 7.99 | 0.681 | 3.174 | 0.079 | 0.849 | 0.010 | 0.637 | 0.019 | 196 | 14 | 166 | 14 | 0.756 | 0.021 |
MI-15-E | 11.20 | 8.01 | 0.715 | 3.122 | 0.059 | 0.868 | 0.009 | 0.661 | 0.014 | 200 | 11 | 169 | 11 | 0.788 | 0.019 |
M.15-Mean Age | 164 | ±15 | |||||||||||||
GE-1 A | 2.11 | 2.79 | 1.321 | 2.032 | 0.109 | 0.956 | 0.060 | 0.805 | 0.076 | 264 | 111 | 208 | 100 | 0.922 | 0.135 |
GE-1 B | 2.04 | 1.29 | 0.630 | 2.225 | 0.176 | 1.054 | 0.054 | 0.340 | 0.044 | 63 | 8 | 42 | 7 | 1.060 | 0.060 |
GE-1 C | 2.68 | 1.93 | 0.722 | 2.505 | 0.204 | 0.979 | 0.053 | 0.486 | 0.061 | 101 | 16 | 75 | 15 | 0.974 | 0.066 |
GE-1-Mean Age | 108 | ±87 |
Sample ID | Description | Location (m asl) | δ18Ogyp (‰) | 1SD | δ18Oaquifer (‰) | δ2Hgyp (‰) | 1SD | δ2Haquifer (‰) | d-Excess (‰) |
---|---|---|---|---|---|---|---|---|---|
GE-1 | Geode crystal (1 cm from the base) | 98 | −2.2 | 0.2 | −5.6 | −57.1 | 1.1 | −38.9 | 5.7 |
GE-2 | Geode crystal (2 cm from the base) | 98 | −2.1 | 0.1 | −5.5 | −58.4 | 0.9 | −40.1 | 3.8 |
GE-3 | Geode crystal (3 cm from the base) | 98 | −1.9 | 0.1 | −5.3 | −57.4 | 1.8 | −39.1 | 3.5 |
GE-4 | Geode crystal (4 cm from the base) | 98 | −2.5 | 0.0 | −5.9 | −57.4 | 1.2 | −39.1 | 8.2 |
GE-5 | Geode crystal (5 cm from the base) | 98 | −2.5 | 0.2 | −5.9 | −57.6 | 1.3 | −39.3 | 8.1 |
GE-6 | Geode crystal (6 cm from the base) | 98 | −2.4 | 0.2 | −5.8 | −56.2 | 1.5 | −37.9 | 8.2 |
GE-7 | Geode crystal (7 cm from the base) | 98 | −2.5 | 0.2 | −5.9 | −56.3 | 1.9 | −38.1 | 9.3 |
GE-8 | Geode crystal (8 cm from the base) | 98 | −2.7 | 0.2 | −6.0 | −57.1 | 0.7 | −38.8 | 9.5 |
GE-9 | Geode crystal (9 cm from the base) | 98 | −2.6 | 0.1 | −6.0 | −58.7 | 0.3 | −40.5 | 7.3 |
GE-10 | Geode crystal (10 cm from the base) | 98 | −2.7 | 0.1 | −6.1 | −57.8 | 1.8 | −39.6 | 9.4 |
GE-11 | Geode crystal (11 cm from the base) | 98 | −2.6 | 0.1 | −6.0 | −58.6 | 0.5 | −40.4 | 7.6 |
GE-12 | Geode crystal (12 cm from the base) | 98 | −2.6 | 0.1 | −6.0 | −58.9 | 0.4 | −40.7 | 7.5 |
GE-13 | Geode crystal (13 cm from the base) | 98 | −2.6 | 0.2 | −6.0 | −57.3 | 1.1 | −39.0 | 8.8 |
GE-14 | Geode crystal (14 cm from the base) | 98 | −2.7 | 0.1 | −6.1 | −57.8 | 0.9 | −39.6 | 9.3 |
GE-15 | Geode crystal (15 cm from the base) | 98 | −2.8 | 0.1 | −6.2 | −57.1 | 0.2 | −38.9 | 10.5 |
GE-16 | Geode crystal (16 cm from the base) | 98 | −2.8 | 0.1 | −6.1 | −57.3 | 0.9 | −39.0 | 10.1 |
GE-17 | Geode crystal (17 cm from the base) | 98 | −2.5 | 0.2 | −5.9 | −56.9 | 0.4 | −38.7 | 8.7 |
GE-18 | Geode crystal (18 cm from the base) | 98 | −2.7 | 0.1 | −6.1 | −55.4 | 2.6 | −37.1 | 11.6 |
GE-19 | Geode crystal (19 cm from the base) | 98 | −2.8 | 0.1 | −6.1 | −55.3 | 2.2 | −37.1 | 12.0 |
GE-20 | Geode crystal (20 cm from the base) | 98 | −2.7 | 0.2 | −6.1 | −57.9 | 0.6 | −39.7 | 9.1 |
GE-21 | Geode crystal (21 cm from the base) | 98 | −2.8 | 0.2 | −6.2 | −58.2 | 0.7 | −40.0 | 9.4 |
GE-22 | Geode crystal (22 cm from the base) | 98 | −2.8 | 0.1 | −6.2 | −57.7 | 0.8 | −39.5 | 10.2 |
MI-1 | Main mine gallery | 128 | −3.2 | 0.2 | −6.6 | −62.2 | 0.4 | −44.1 | 8.8 |
MI-2 | Main mine gallery | 128 | −2.5 | 0.2 | −5.8 | −54.9 | 0.5 | −36.6 | 10.1 |
MI-3 | Main mine gallery | 128 | −2.9 | 0.1 | −6.3 | −60.4 | 0.6 | −42.2 | 8.1 |
MI-5 | Main mine gallery | 128 | −3.2 | 0.3 | −6.6 | −60.9 | 0.7 | −42.7 | 10.3 |
MI-10 | Main mine gallery | 128 | −3.0 | 0.1 | −6.3 | −61.8 | 1.3 | −43.6 | 7.1 |
MI-11 | Main mine gallery | 126 | −3.7 | 0.4 | −7.1 | −60.5 | 0.9 | −42.3 | 14.4 |
MI-13 | Main mine gallery | 113 | −2.5 | 0.1 | −5.9 | −60.8 | 0.2 | −42.6 | 4.7 |
MI-14 | Main mine gallery | 110 | −2.9 | 0.2 | −6.3 | −58.4 | 0.4 | −40.2 | 10.3 |
MI-15 | Giant Gypsum Geode | 97 | −3.1 | 0.0 | −6.5 | −58.9 | 0.3 | −40.7 | 11.5 |
MI-16 | Main mine gallery | 106 | −3.5 | 0.0 | −6.9 | −61.6 | 0.4 | −43.4 | 11.9 |
MI-18 | Main mine gallery | 102 | −3.7 | 0.2 | −7.1 | −62.8 | 0.5 | −44.6 | 12.4 |
MI-19 | Main mine gallery | 93 | −2.9 | 0.2 | −6.3 | −60.3 | 0.4 | −42.1 | 8.2 |
MI-20 | Main mine gallery | 93 | −3.5 | 0.2 | −6.8 | −60.4 | 1.3 | −42.2 | 12.5 |
MI-21 | Main mine gallery | 128 | −3.3 | 0.1 | −6.7 | −63.1 | 1.3 | −45.0 | 8.6 |
MI-22 | Main mine gallery | 128 | −3.3 | 0.1 | −6.7 | −62.0 | 0.2 | −43.8 | 9.4 |
MI-24 | Main mine gallery | 128 | −2.9 | 0.1 | −6.3 | −60.1 | 0.9 | −41.9 | 8.3 |
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calaforra, J.M.; Moreno, R.; García-Guinea, J.; Guerrero, M.; Romero, A. La geoda gigante de Pulpí (The giant Geode of Pulpí): Patrimonio geológico y minero. Medio Ambiente 2001, 37, 42–43. [Google Scholar]
- García-Guinea, J.; Morales, S.; Delgado, A.; Recio, C.; Calaforra, J.M. Formation of gigantic gypsum crystals. Geol. Soc. Spec. Publ. 2002, 159, 347–350. [Google Scholar] [CrossRef]
- Calaforra, J.M.; Gázquez, F.; Guerrero, M.; García-Guinea, J.; Fernández-Cortés, A. La geoda gigante de Pulpí. Un hito en la conservación y puesta en valor del patrimonio geológico y minero. Enseñanza Cienc. Tierra 2019, 27, 221–226. [Google Scholar]
- Canals, A.; Van Driessche, A.E.S.; Palero, F.; García-Ruíz, J.M. The origin of large gypsum crystals in the Geode of Pulpí (Almería, Spain). Geology 2019, 47, 1161–1165. [Google Scholar] [CrossRef]
- Gázquez, F. Registros Paleoambientales a Partir de Espeleotemas Yesíferos y Carbonáticos. Ph.D. Thesis, University of Almería, Almería, Spain, 2012; 381p. [Google Scholar]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.; Diener, A.; Ebneth, S.; Godderis, Y. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Ortí, F.; García-Veigas, J.; Rosell, L.; Cendón, D.I.; Pérez-Valera, F. Sulfate isotope compositions (δ34S, δ18O) and strontium isotopic ratios (87Sr/86Sr) of Triassic evaporites in the Betic Cordillera (SE Spain). Rev. Soc. Geol. Esp. 2014, 27, 79–89. [Google Scholar]
- Evans, N.P.; Turchyn, A.V.; Gázquez, F.; Bontognali, T.; Chapman, H.; Hodell, D.A. Coupled measurements of δ18O and δD of hydration water and salinity of fluid inclusions in gypsum from the Messinian Yesares Member, Sorbas Basin (SE Spain). Earth Planet. Sci. Lett. 2015, 430, 499–510. [Google Scholar] [CrossRef] [Green Version]
- Capo, R.C.; Stewart, B.W.; Chadwick, O.A. Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma 1998, 82, 197–225. [Google Scholar] [CrossRef]
- Obert, J.C.; Münker, C.; Staubwasser, M.; Herwartz, D.; Reicherter, K.; Chong, G. 230Th dating of gypsum from lacustrine, brackish-marine and terrestrial environments. Chem. Geol. 2022. under review. [Google Scholar]
- Richter, S.; Eykens, R.; Kuhn, H.; Aregbe, Y.; Verbruggen, Y.; Weyer, A. New average values for the n(238U)/n(235U) isotope ratios of natural uranium standards. Int. J. Mass Spectrom. 2010, 295, 94–97. [Google Scholar] [CrossRef]
- Ludwig, K.R.; Paces, J.B. Uranium-series dating of pedogenic silica and carbonate, Crater Flat, Nevada. Geochim. Cosmochim. Acta 2002, 66, 487–506. [Google Scholar] [CrossRef]
- Cheng, H.; Edwards, R.L.; Shen, C.C.; Polyak, V.J.; Asmerom, Y.; Woodhead, J.; Hellstrom, J.; Wang, Y.; Kong, X.; Spötl, C. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 2013, 371, 82–91. [Google Scholar] [CrossRef]
- Jaffey, A.H.; Flynn, K.F.; Glendenin, L.E.; Bentley, W.T.; Essling, A.M. Precision measurement of half-lives and specific activities of U235 and U238. Phys. Rew. C 1971, 4, 1889–1906. [Google Scholar]
- Gázquez, F.; Mather, I.; Rolfe, J.; Evans, N.P.; Herwartz, D.; Staubwasser, M.; Hodell, D.A. Simultaneous analysis of 17O/16O, 18O/16O and 2H/1H of gypsum hydration water by cavity ringdown laser spectroscopy. Rapid Comm. Mass Spectr. 2015, 21, 1997–2006. [Google Scholar] [CrossRef] [Green Version]
- Bauska, T.; Walters, G.; Gázquez, F.; Hodell, D.A. On-line Differential Thermal Isotope Analysis of Hydration Water in Minerals by Cavity Ring-down Laser Spectroscopy. Anal. Chem. 2018, 90, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Gázquez, F.; Evans, N.P.; Hodell, D.A. Precise and accurate isotope fractionation factors (α17O, α18O and αD) for water and CaSO4·2H2O (gypsum). Geochim. Cosmochim. Acta 2017, 198, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Evans, N.P.; Bauska, T.K.; Gázquez, F.; Curtis, J.H.; Brenner, M.; Hodell, D.A. Quantification of drought during the collapse of the classic Maya civilization. Science 2018, 361, 498–501. [Google Scholar] [CrossRef] [Green Version]
- Gázquez, F.; Morellón, M.; Bauska, T.; Herwartz, D.; Surma, J.; Moreno, A.; Staubwasser, M.; Valero-Garcés, B.; Delgado-Huertas, A.; Hodell, D.A. Triple oxygen and hydrogen isotopes of gypsum hydration water for quantitative paleo-humidity reconstruction. Earth Planet. Sci. Lett. 2018, 481, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Gázquez, F.; Bauska, T.K.; Comas-Bru, L.; Calaforra, J.M.; Ghaleb, B.; Hodell, D.A. The potential of gypsum speleothems for paleoclimatology: Application to the Iberian Roman Humid Period. Sci. Rep. 2020, 10, 1470. [Google Scholar] [CrossRef]
- Sanna, L.; Saez, F.; Simonsen, S.; Constantin, S.; Calaforra, J.M.; Forti, P.; Lauritzen, S.E. Uranium-series dating of gypsum speleothems: Methodology examples. Int. J. Speleol. 2010, 39, 35–46. [Google Scholar]
- Hodge, E.J.; David, A.; Richards, D.A.; Smart, P.L.; Andreo, B.; Hoffman, D.L.; Mattey, D.P.; González-Ramón, A. Effective precipitation in southern Spain (∼266 to 46 ka) based on a speleothem stable carbon isotope record. Quat. Res. 2008, 69, 447–457. [Google Scholar] [CrossRef]
- Barragán-Alarcón, G. Assessment of hydrogeochemical processes in a semi-arid region using factor analysis and speciation calculations (Bajo Almanzora, SE Spain). In Proceedings of the XXXVIII Congress of the International Association of Hydrogeologists, Krakow, Poland, 12–17 September 2010; pp. 458–467. [Google Scholar]
- Rodríguez-Arévalo, J.; Díaz-Teijeiro, M.F.; Castaño, S. Modelling and mapping oxygen-18 isotope composition of precipitation in Spain for hydrologic and climatic applications. In Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies Proceedings of an International Symposium, Monaco; IAEA: Vienna, Austria, 2011; Volume 1, pp. 171–177. [Google Scholar]
- Barnes, H.L. Geochemistry of Hydrothemal ORE Deposits, 3rd ed.; John Wiley Sons, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Antonioli, F.; Bard, E.; Emma-Kate, P.; Silenzi, S.; Improta, S. 215-ka history of sea-level oscillations from marine and continental layers in Argentarola Cave speleothems (Italy). Glob. Planet. Chang. 2004, 43, 57–78. [Google Scholar] [CrossRef]
- Araguas-Araguas, L.J.; Diaz Teijeiro, M.F. Isotope composition of precipitation and water vapour in the Iberian Peninsula. First results of the Spanish Network of Isotopes in Precipitation, Isotopic composition of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate. Int. At. Energy Agency Tech. Rep. 2005, 1453, 173–190. [Google Scholar]
- Celle-Jeanton, H.; Travi, Y.; Blavoux, B. Isotopic typology of the precipitation in the Western Mediterranean Region at three different time scales. Geophys. Res. Lett. 2001, 28, 1215–1218. [Google Scholar] [CrossRef]
- Toney, J.L.; García-Alix, A.; Jiménez-Moreno, G.; Anderson, R.S.; Moossen, H.; Seki, O. New insights into Holocene hydrology and temperature from lipid biomarkers in western Mediterranean alpine wetlands. Quat. Sci. Rev. 2020, 240, 106395. [Google Scholar] [CrossRef]
- Gázquez, F.; Columbu, A.; De Waele, J.; Breitenbach, S.F.; Huang, C.-R.; Shen, C.-C.; Lu, Y.; Calaforra, J.-M.; Vautravers, M.J.M.; Hodell, D.A. Quantification of paleo-aquifer changes using clumped isotopes in subaqueous carbonate speleothems. Chem. Geol. 2018, 497, 246–257. [Google Scholar] [CrossRef]
- Bajnai, D.; Coplen, T.B.; Methner, K.; Löffler, N.; Krsnik, E.; Fiebig, J. Devils Hole calcite was precipitated at ±1°C stable aquifer temperatures during the last half million years. Geophys. Res. Lett. 2021, 48, e2021GL093257. [Google Scholar] [CrossRef]
- Martrat, B.; Grimalt, J.; Lopez-Martinez, C.; Cacho, I.; Sierro, F.J.; Flores, J.A.; Zahn, R.; Canals, M.; Curtis, J.H.; Hodell, D.A. Abrupt temperature changes in the Western Mediterranean over the past 250,000 yr. Science 2004, 306, 1762–1765. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gázquez, F.; Monteserín, A.; Obert, C.; Münker, C.; Fernández-Cortés, Á.; Calaforra, J.M. The Absolute Age and Origin of the Giant Gypsum Geode of Pulpí (Almería, SE Spain). Geosciences 2022, 12, 144. https://doi.org/10.3390/geosciences12040144
Gázquez F, Monteserín A, Obert C, Münker C, Fernández-Cortés Á, Calaforra JM. The Absolute Age and Origin of the Giant Gypsum Geode of Pulpí (Almería, SE Spain). Geosciences. 2022; 12(4):144. https://doi.org/10.3390/geosciences12040144
Chicago/Turabian StyleGázquez, Fernando, Ana Monteserín, Christina Obert, Carsten Münker, Ángel Fernández-Cortés, and José María Calaforra. 2022. "The Absolute Age and Origin of the Giant Gypsum Geode of Pulpí (Almería, SE Spain)" Geosciences 12, no. 4: 144. https://doi.org/10.3390/geosciences12040144
APA StyleGázquez, F., Monteserín, A., Obert, C., Münker, C., Fernández-Cortés, Á., & Calaforra, J. M. (2022). The Absolute Age and Origin of the Giant Gypsum Geode of Pulpí (Almería, SE Spain). Geosciences, 12(4), 144. https://doi.org/10.3390/geosciences12040144