Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (279)

Search Parameters:
Keywords = quantum-dot film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1346 KiB  
Article
Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications
by Shiyi He, Silong Zhang, Liang Chen, Yang Li, Fangbao Wang, Nan Zhang, Naizhe Zhao and Xiaoping Ouyang
Materials 2025, 18(15), 3691; https://doi.org/10.3390/ma18153691 - 6 Aug 2025
Abstract
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low [...] Read more.
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low luminous intensity and significant self-absorption. Therefore, an enhanced method was proposed to tune the wavelength of materials via coating perovskite quantum dot (QD) films. Three-layer samples based on GZO were primarily investigated and characterized. Radioluminescence (RL) spectra from each face of the samples, as well as their decay times, were obtained. Lower temperatures further enhanced the luminous intensity of the samples. Its overall luminous intensity increased by 2.7 times at 60 K compared to room temperature. The changes in the RL processes caused by perovskite QD and low temperatures were discussed using the light tuning and transporting model. In addition, an experiment under a pico-second electron beam was conducted to verify their pulse response and decay time. Accordingly, the samples were successfully applied in beam state monitoring of nanosecond pulsed proton beams, which indicates that GZO wafer coating with perovskite QD films has broad application prospects in pulsed radiation detection. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

10 pages, 2398 KiB  
Article
APTES-Modified Interface Optimization in PbS Quantum Dot SWIR Photodetectors and Its Influence on Optoelectronic Properties
by Qian Lei, Lei Rao, Wencan Deng, Xiuqin Ao, Fan Fang, Wei Chen, Jiaji Cheng, Haodong Tang and Junjie Hao
Colloids Interfaces 2025, 9(4), 49; https://doi.org/10.3390/colloids9040049 - 22 Jul 2025
Viewed by 303
Abstract
Lead sulfide colloidal quantum dots (PbS QDs) have demonstrated great potential in short-wave infrared (SWIR) photodetectors due to their tunable bandgap, low cost, and broad spectral response. While significant progress has been made in surface ligand modification and defect state passivation, studies focusing [...] Read more.
Lead sulfide colloidal quantum dots (PbS QDs) have demonstrated great potential in short-wave infrared (SWIR) photodetectors due to their tunable bandgap, low cost, and broad spectral response. While significant progress has been made in surface ligand modification and defect state passivation, studies focusing on the interface between QDs and electrodes remain limited, which hinders further improvement in device performance. In this work, we propose an interface engineering strategy based on 3-aminopropyltriethoxysilane (APTES) to enhance the interfacial contact between PbS QD films and ITO interdigitated electrodes, thereby significantly boosting the overall performance of SWIR photodetectors. Experimental results demonstrate that the optimal 0.5 h APTES treatment duration significantly enhances responsivity by achieving balanced interface passivation and charge carrier transport. Moreover, The APTES-modified device exhibits a controllable dark current and faster photo-response under 1310 nm illumination. This interface engineering approach provides an effective pathway for the development of high-performance PbS QD-based SWIR photodetectors, with promising applications in infrared imaging, spectroscopy, and optical communication. Full article
(This article belongs to the Special Issue State of the Art of Colloid and Interface Science in Asia)
Show Figures

Figure 1

16 pages, 1420 KiB  
Article
Light-Driven Quantum Dot Dialogues: Oscillatory Photoluminescence in Langmuir–Blodgett Films
by Tefera Entele Tesema
Nanomaterials 2025, 15(14), 1113; https://doi.org/10.3390/nano15141113 - 18 Jul 2025
Viewed by 320
Abstract
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm [...] Read more.
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm laser illumination on the red absorption edge of the blue-emitting smaller QDs (QD450), the red-emitting larger QDs (QD645) exhibited oscillatory temporal dynamics in their photoluminescence (PL), characterized by a pronounced blueshift in the emission peak wavelength and an abrupt decrease in peak intensity. Conversely, excitation by a 405 nm laser on the blue absorption edge induced a drastic redshift in the emission wavelength over time. These significant shifts in emission spectra are attributed to photon- and anisotropic-strain-assisted interlayer atom transfer. The findings provide new insights into strain-driven atomic rearrangements and their impact on the photophysical behavior of QD systems. Full article
Show Figures

Graphical abstract

23 pages, 1546 KiB  
Review
From Microbes to Molecules: Synthetic Biology Approaches for Advanced Materials Design
by Roshini Ramachandran, Frank Macabenta, Grace Bettencourt and Shulammite Feng
BioChem 2025, 5(2), 12; https://doi.org/10.3390/biochem5020012 - 28 May 2025
Cited by 1 | Viewed by 681
Abstract
Traditional materials synthesis often involves energy-intensive processes with significant waste generation and limited control over material properties. This review examines synthetic biology as a sustainable alternative for designing advanced materials with enhanced precision and versatility. It explores microbial biomineralization, detailing how microorganisms influence [...] Read more.
Traditional materials synthesis often involves energy-intensive processes with significant waste generation and limited control over material properties. This review examines synthetic biology as a sustainable alternative for designing advanced materials with enhanced precision and versatility. It explores microbial biomineralization, detailing how microorganisms influence the formation of mineral deposits and participate in key biogeochemical cycles. It highlights recent research advancements in using a wide variety of microorganisms for the synthesis of inorganic materials such as metal and metal oxide nanoparticles, quantum dots, magnetic nanoparticles, and thin films. The review also discusses the production and properties of various biopolymers. Important factors that can influence the size, morphology, and uniformity of these biomaterials are covered in detail. Emphasis is placed on advancements utilizing synthetic biology tools, such as protein engineering and genome editing, and recent research for creating smart and responsive materials. Considering the present limitations of synthetic biology, challenges related to scale-up, yield, and uniformity are discussed, and suggestions for future research are detailed. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 6178 KiB  
Article
Enhanced Photoelectrochromic Performance of WO3 Through MoS2 and GO–MoS2 Quantum Dot Doping for Self-Powered Smart Window Application
by Jacinta Akoth Okwako, Seung-Han Song, Sunghyoek Park, Sebastian Waita, Bernard Aduda, Young-Sik Hong and Chi-Hwan Han
Energies 2025, 18(10), 2411; https://doi.org/10.3390/en18102411 - 8 May 2025
Viewed by 570
Abstract
Photoelectrochromic devices, which combine light-induced color change with energy-efficient optical modulation, have attracted significant attention for applications such as smart windows, displays, and optical sensors. However, achieving high optical modulation, fast switching speeds, and long-term stability remains a major challenge. In this study, [...] Read more.
Photoelectrochromic devices, which combine light-induced color change with energy-efficient optical modulation, have attracted significant attention for applications such as smart windows, displays, and optical sensors. However, achieving high optical modulation, fast switching speeds, and long-term stability remains a major challenge. In this study, we explore the structural and photoelectrochromic enhancements in tungsten oxide (WO3) films achieved by doping with molybdenum disulfide quantum dots (MoS2 QDs) and grapheneoxide–molybdenum disulfide quantum dots (GO–MoS2 QDs) for advanced photoelectrochromic devices. X-ray diffraction (XRD) analysis revealed that doping with MoS2 QDs and GO–MoS2 QDs leads to a reduction in the crystallite size of WO3, as evidenced by the broadening and decrease in peak intensity. Transmission Electron Microscopy (TEM) confirmed the presence of characteristic lattice fringes with interplanar spacings of 0.36 nm, 0.43 nm, and 0.34 nm, corresponding to the planes of WO3, MoS2, and graphene. Energy-Dispersive X-ray Spectroscopy (EDS) mapping indicated a uniform distribution of tungsten, oxygen, molybdenum, and sulfur, suggesting homogeneous doping throughout the WO3 matrix. Scanning Electron Microscopy (SEM) analysis showed a significant decrease in film thickness from 724.3 nm for pure WO3 to 578.8 nm for MoS2 QD-doped WO3 and 588.7 nm for GO–MoS2 QD-doped WO3, attributed to enhanced packing density and structural reorganization. These structural modifications are expected to enhance photoelectrochromic performance by improving charge transport and mechanical stability. Photoelectrochromic performance analysis showed a significant improvement in optical modulation upon incorporating MoS2 QDs and GO–MoS2 QDs into the WO3 matrix, achieving a coloration depth of 56.69% and 70.28% at 630 nm, respectively, within 10 min of 1.5 AM sun illumination, with more than 90% recovery of the initial transmittance within 7 h in dark conditions. Additionally, device stability was improved by the incorporation of GO–MoS2 QDs into the WO3 layer. The findings demonstrate that incorporating MoS2 QDs and GO–MoS2 QDs effectively modifies the structural properties of WO3, making it a promising material for high-performance photoelectrochromic applications. Full article
Show Figures

Figure 1

13 pages, 10147 KiB  
Article
Effect of Quantum Dot-Based Remote Lenses on the Emission Properties of White LED Lighting Studied by Optical Simulation and Experiment
by Sung Min Park, Eunki Baek, Sohee Kim, Jaehyeong Yoo, Sung-Yoon Joe, Jae-Hyeon Ko, Taehee Park and Young Wook Ko
Ceramics 2025, 8(2), 39; https://doi.org/10.3390/ceramics8020039 - 19 Apr 2025
Viewed by 639
Abstract
The introduction of side-emitting lenses into white light-emitting diodes (LEDs) has enabled thin panel lighting technology based on LED technology, but also presents the disadvantage of low color rendering due to insufficient red components in the spectra of typical white LEDs. Additional application [...] Read more.
The introduction of side-emitting lenses into white light-emitting diodes (LEDs) has enabled thin panel lighting technology based on LED technology, but also presents the disadvantage of low color rendering due to insufficient red components in the spectra of typical white LEDs. Additional application of remote quantum dot (QD) components such as QD films or caps presents the issues of increased numbers of components and higher costs. In this study, we incorporated red QDs directly into a lens placed on white LEDs and analyzed the effects of QD lenses on the optical characteristics of a lighting device through experiments and simulations. By incorporating red CdSe/ZnS QDs into UV-curable resin to fabricate QD lenses and applying them to white LEDs, we significantly improved the color rendering index and were able to adjust the correlated color temperature over a wide range between 2700 and 9900 K. However, as the concentration of QDs in the lens increased, scattering by the QD particles was enhanced, strengthening the Lambertian distribution in the intensity plot. Following the development of optical models for QD lenses under experimental conditions, comprehensive optical simulations of white LED lighting systems revealed that increasing the device height proved more effective than modifying TiO2 scattering particle concentration in the diffuser plate for mitigating QD-induced bright spots and enhancing illumination uniformity. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

11 pages, 2896 KiB  
Article
Hydrophobic Silicon Quantum Dots for Potential Imaging of Tear Film Lipid Layer
by Sidra Sarwat, Fiona Stapleton, Mark D. P. Willcox, Peter B. O’Mara and Maitreyee Roy
Nanomaterials 2025, 15(7), 552; https://doi.org/10.3390/nano15070552 - 4 Apr 2025
Viewed by 1351
Abstract
The tear film, consisting of the aqueous and lipid layers, maintains the homeostasis of the ocular surface; therefore, when disturbed, it can cause dry eye, which affects millions of people worldwide. Understanding the dynamics of the tear film layers is essential for developing [...] Read more.
The tear film, consisting of the aqueous and lipid layers, maintains the homeostasis of the ocular surface; therefore, when disturbed, it can cause dry eye, which affects millions of people worldwide. Understanding the dynamics of the tear film layers is essential for developing efficient drug delivery systems for dry eye disease. Quantum dots (QDs) offer the potential for real-time monitoring of tear film and evaluating its dynamics. Hydrophilic silicon QDs (Si-QDs) have already been optimised to image the aqueous layer of the tear film. This study was conducted to optimise hydrophobic Si-QDs to image the lipid layer of the tear film. Si-QDs were synthesised in solution and characterised by transmission electron microscope and spectrofluorophotometry. The fluorescence emission of Si-QDs was monitored in vitro when mixed with artificial tears. The cytotoxicity was assessed in cultured human corneal epithelial cells using an MTT assay following 24 h of exposure. Si-QDs were 2.65 ± 0.35 nm in size and were non-toxic at <16 µg/mL. Si-QDs emitted stable green fluorescence for 20 min but demonstrated aggregation at higher concentrations. These findings highlight the potential of hydrophobic Si-QDs as a biomarker for the real-time imaging of the tear film lipid layer. However, further research on surface functionalisation and preclinical evaluations are recommended for enhanced solubility and biocompatibility in the ocular surface. Full article
Show Figures

Figure 1

15 pages, 5983 KiB  
Article
Mn2+-Doped CsPbBr2I Quantum Dots Photosensitive Films for High-Performance Photodetectors
by Mengwei Chen, Wei Huang, Chenguang Shen, Yingping Yang and Jie Shen
Nanomaterials 2025, 15(6), 444; https://doi.org/10.3390/nano15060444 - 15 Mar 2025
Viewed by 833
Abstract
The variable bandgap and high absorption coefficient of all-inorganic halide perovskite quantum dots (QDs), particularly CsPbBr2I make them highly promising for photodetector applications. However, their high defect density and poor stability limit their performance. To overcome these problems, Mn2+-doped [...] Read more.
The variable bandgap and high absorption coefficient of all-inorganic halide perovskite quantum dots (QDs), particularly CsPbBr2I make them highly promising for photodetector applications. However, their high defect density and poor stability limit their performance. To overcome these problems, Mn2+-doped CsPbBr2I QDs with varying concentrations were synthesized via the one-pot method in this work. By replacing Pb2+ ions, moderate Mn2+ doping caused lattice contraction and improved crystallinity. At the same time, Mn2+-doping effectively passivated surface defects, reducing the defect density by 33%, and suppressed non-radiative recombination, thereby improving photoluminescence (PL) intensity and carrier mobility. The optimized Mn:CsPbBr2I QDs-based photodetector exhibited superior performance, with a dark current of 1.19 × 10−10 A, a photocurrent of 1.29 × 10−5 A, a responsivity (R) of 0.83 A/W, a specific detectivity (D*) of 3.91 × 1012 Jones, an on/off ratio up to 105, and the response time reduced to less than 10 ms, all outperforming undoped CsPbBr2I QDs devices. Stability tests demonstrated enhanced durability, retaining 80% of the initial photocurrent after 200 s of cycling (compared to 50% for undoped devices) and stable operation over 20 days. This work offers a workable strategy for rational doping and structural optimization in the construction of high-performance perovskite optoelectronic devices. Full article
(This article belongs to the Special Issue Advances in Polymer Nanofilms)
Show Figures

Figure 1

17 pages, 4858 KiB  
Article
Dual Roles of Carbon Quantum Dots from Green Carbon Sources: A Fluorescence Sensor for Fe3+ Ions, UV and High-Energy Blue Light Screening
by Lina Zhong, Chang Sun, Xiaomin Zhao and Qinghua Zhao
Nanomaterials 2025, 15(6), 436; https://doi.org/10.3390/nano15060436 - 12 Mar 2025
Cited by 2 | Viewed by 1015
Abstract
It is of great significance to develop carbon quantum dots (CQDs) using green carbon sources, which are cheap, non-toxic and harmless, and further expand their application scopes, e.g., fluorescence sensors, blue light screening. In this study, we have prepared Peperomia tetraphylla-based carbon quantum [...] Read more.
It is of great significance to develop carbon quantum dots (CQDs) using green carbon sources, which are cheap, non-toxic and harmless, and further expand their application scopes, e.g., fluorescence sensors, blue light screening. In this study, we have prepared Peperomia tetraphylla-based carbon quantum dots (PT-CQDs) with strong water solubility, good salt resistance, specific quenching reactions and excellent optical properties via a simple one-step hydrothermal method. In one application, PT-CQDs are utilized as a fluorescence sensor due to their high selectivity and sensitivity to ferric ions (Fe3+). The limit of detection (LOD) was 2.7 μmol·L−1. On the other hand, PT-CQDs/polyvinyl alcohol (PVA) films with excellent ultraviolet- (UV) and high-energy blue light (HEBL)-blocking properties were obtained. The obtained films exhibited a high blue light weight blocking rate of 100% in UV and 80% in HEBL. The concentrations of the composites could also be controlled to achieve the desired light-blocking rate. In addition, the composites were able to absorb blue light and convert it to other forms of light. These properties suggest their potential applications in the development of advanced blue light screening and fluorescence sensors. Full article
Show Figures

Figure 1

11 pages, 4127 KiB  
Article
Optimizing Semiconductor Saturable Absorption Mirrors Using Subwavelength Dielectric Gratings for Fiber Lasers
by Chaoqun Wei, Xiansheng Jia, Hongmei Chen, Boyuan Liu, Ziyang Zhang and Cheng Jiang
Photonics 2025, 12(3), 213; https://doi.org/10.3390/photonics12030213 - 28 Feb 2025
Viewed by 664
Abstract
Ultrafast fiber lasers have shown exceptional performance across various domains, including material processing, medical applications, and optoelectronic communication. The semiconductor saturable absorber mirror (SESAM) is a key enabler of ultrafast laser operation. However, the narrow wavelength range and limited modulation depth of conventional [...] Read more.
Ultrafast fiber lasers have shown exceptional performance across various domains, including material processing, medical applications, and optoelectronic communication. The semiconductor saturable absorber mirror (SESAM) is a key enabler of ultrafast laser operation. However, the narrow wavelength range and limited modulation depth of conventional SESAMs pose challenges to further advancing ultrafast fiber laser technology. To address these limitations, we explored the integration of guided mode resonance (GMR) effects to enhance light–matter interaction within the absorption layer. By incorporating subwavelength dielectric film gratings onto the cap layer of SESAMs, we excited GMR and formed a microcavity structure in conjunction with the distributed Bragg mirror (DBR). This design significantly improved the absorption efficiency of InAs quantum dots. The experimental results demonstrate that the modulation depth of the SESAM increased from 6.7% to 17.3%, while the pulse width was reduced by 2.41 times. These improvements facilitated the realization of a high-quality, stable ultrafast fiber laser. This study not only broadens the application potential of ultrafast lasers in diverse fields but also offers a practical pathway for advancing SESAM technology toward industrial-scale deployment. Full article
(This article belongs to the Special Issue Fiber Lasers: Recent Advances and Applications)
Show Figures

Figure 1

10 pages, 2777 KiB  
Article
An In-Plane Single-Photon Emitter Combining a Triangular Split-Ring Micro-Optical Resonator and a Colloidal Quantum Dot
by Kohki Mukai, Kyosuke Uchiyama, Kohei Iwata and Issei Pribyl
Nanomaterials 2025, 15(5), 335; https://doi.org/10.3390/nano15050335 - 21 Feb 2025
Viewed by 565
Abstract
We propose a simple and innovative configuration consisting of a quantum dot and micro-optical resonator that emits single photons with good directionality in a plane parallel to the substrate. In this device, a single quantum dot is placed as a light source between [...] Read more.
We propose a simple and innovative configuration consisting of a quantum dot and micro-optical resonator that emits single photons with good directionality in a plane parallel to the substrate. In this device, a single quantum dot is placed as a light source between the slits of a triangular split-ring micro-optical resonator (SRR) supported in an optical polymer film with an air-bridge structure. Although most of the previous single photon emitters in solid-state devices emitted photons upward from the substrate, operation simulations confirmed that this configuration realizes lateral light emission in narrow regions above, below, left, and right in the optical polymer film, despite the absence of a light confinement structure such as an optical waveguide. This device can be fabricated using silica-coated colloidal quantum dots, focused ion beam (FIB) lithography, and wet etching using an oxide layer on a silicon substrate as a sacrificial layer. The device has a large tolerance to the variation in the position of the SRR in the optical polymer film and the height of the air-bridge. We confirmed that Pt-SRRs can be formed on the optical polymer film using FIB lithography. This simple lateral photon emitter is suitable for coupling with optical fibers and for fabricating planar optical quantum solid-state circuits, and is useful for the development of quantum information processing technology. Full article
Show Figures

Figure 1

17 pages, 15700 KiB  
Article
All-Organic Quantum Dots-Boosted Energy Storage Density in PVDF-Based Nanocomposites via Dielectric Enhancement and Loss Reduction
by Ru Guo, Xi Yuan, Xuefan Zhou, Haiyan Chen, Haoran Xie, Quan Hu, Hang Luo and Dou Zhang
Polymers 2025, 17(3), 390; https://doi.org/10.3390/polym17030390 - 31 Jan 2025
Viewed by 1185
Abstract
Dielectric capacitors offer immense application potential in advanced electrical and electronic systems with their unique ultrahigh power density. Polymer-based dielectric composites with high energy density are urgently needed to meet the ever-growing demand for the integration and miniaturization of electronic devices. However, the [...] Read more.
Dielectric capacitors offer immense application potential in advanced electrical and electronic systems with their unique ultrahigh power density. Polymer-based dielectric composites with high energy density are urgently needed to meet the ever-growing demand for the integration and miniaturization of electronic devices. However, the universal contradictory relationship between permittivity and breakdown strength in traditional ceramic/polymer nanocomposite still poses a huge challenge for a breakthrough in energy density. In this work, all-organic carbon quantum dot CDs were synthesized and introduced into a poly(vinylidene fluoride) PVDF polymer matrix to achieve significantly boosted energy storage performance. The ultrasmall and surface functionalized CDs facilitate the polar β-phase transition and crystallinity of PVDF polymer and modulate the energy level and traps of the nanocomposite. Surprisingly, a synergistic dielectric enhancement and loss reduction were achieved in CD/PVDF nanocomposite. For one thing, the improvement in εr and high-field Dm originates from the CD-induced polar transition and interface polarization. For another thing, the suppressed dielectric loss and high-field Dr are attributed to the conductive loss depression via the introduction of deep trap levels to capture charges. More importantly, Eb was largely strengthened from 521.9 kV mm−1 to 627.2 kV mm−1 by utilizing the coulomb-blockade effect of CDs to construct energy barriers and impede carrier migration. As a result, compared to the 9.9 J cm−3 for pristine PVDF, the highest discharge energy density of 18.3 J cm−3 was obtained in a 0.5 wt% CD/PVDF nanocomposite, which is competitive with most analogous PVDF-based nanocomposites. This study demonstrates a new paradigm of organic quantum dot-enhanced ferroelectric polymer-based dielectric energy storage performance and will promote its application for electrostatic film capacitors. Full article
(This article belongs to the Special Issue Piezoelectric Polymers and Devices)
Show Figures

Figure 1

25 pages, 7109 KiB  
Review
Research Progress on Quantum Dot-Embedded Polymer Films and Plates for LCD Backlight Display
by Bin Xu, Jiankang Zhou, Chengran Zhang, Yunfu Chang and Zhengtao Deng
Polymers 2025, 17(2), 233; https://doi.org/10.3390/polym17020233 - 17 Jan 2025
Cited by 3 | Viewed by 2138
Abstract
Abstract: Quantum dot–polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates [...] Read more.
Abstract: Quantum dot–polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted. Various polymers, such as methyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), polyvinylidene fluoride (PVDF), polypropylene (PP), etc., are widely used in packaging quantum dot materials because of their high plasticity, simple curing, high chemical stability, and good compatibility with quantum dot materials. This paper focuses on the application and development of quantum dot–polymer materials in the field of backlight displays, summarizes and expounds the synthesis strategies, advantages, and disadvantages of different quantum dot–polymer materials, provides inspiration for the optimization of quantum dot–polymer materials, and promotes their application in the field of wide-color-gamut backlight display. Full article
(This article belongs to the Special Issue Polymers/Their Hybrid Materials for Optoelectronic Applications)
Show Figures

Figure 1

17 pages, 2598 KiB  
Article
Anti-Tissue-Transglutaminase IgA Antibodies Presence Determination Using Electrochemical Square Wave Voltammetry and Modified Electrodes Based on Polypyrrole and Quantum Dots
by Angela Gabriela Pãun, Simona Popescu, Alisa Ioana Ungureanu, Roxana Trusca, Alina Popp, Cristina Dumitriu and George-Octavian Buica
Biosensors 2025, 15(1), 42; https://doi.org/10.3390/bios15010042 - 13 Jan 2025
Cited by 2 | Viewed by 1308
Abstract
A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein [...] Read more.
A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode. Initial, quantum dots (QDs) were obtained from Bombyx mori silk fibroin and embedded in polypyrrole film. Using carbodiimide coupling, a polyamidoamine (PAMAM) dendrimer was linked with GQDs-polypyrrole film to improve sensor sensitivity. The tissue transglutaminase (tTG) antigen was cross-linked onto PAMAM using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)-N-hydroxy succinimide (NHS) chemistry to develop a nanoprobe that can detect human serum anti-tTG antibodies. The physicochemical characteristics of the synthesized nanocomposite were examined by FTIR, UV-visible, FE-SEM, EDX, and electrochemical studies. The novel electrode measures anti-tissue antibody levels in real time using human blood serum samples. The modified electrode has great repeatability and an 8.7 U/mL detection limit. Serum samples from healthy people and CD patients were compared to standard ELISA kit assays. SPSS and Excel were used for statistical analysis. The improved electrode and detection system can identify anti-tissue antibodies up to 80 U/mL. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2024)
Show Figures

Figure 1

12 pages, 2318 KiB  
Article
Model Calculation of Enhanced Light Absorption Efficiency in Two-Dimensional Photonic Crystal Phosphor Films
by Taehun Kim, Sanghoon Lee and Kyungtaek Min
Photonics 2025, 12(1), 10; https://doi.org/10.3390/photonics12010010 - 26 Dec 2024
Viewed by 939
Abstract
When a phosphor film based on a photonic crystal (PhC) is excited at the photonic band-edge wavelength, the absorption of excitation light increases, which can potentially enhance the color-conversion efficiency. In this study, we modeled a two-dimensional (2D) PhC quantum dot (QD) film [...] Read more.
When a phosphor film based on a photonic crystal (PhC) is excited at the photonic band-edge wavelength, the absorption of excitation light increases, which can potentially enhance the color-conversion efficiency. In this study, we modeled a two-dimensional (2D) PhC quantum dot (QD) film with a square-lattice structure using the finite-difference time-domain method to theoretically investigate its optical properties. The embedment of a thin-film layer with a high refractive index on the surface of the QD film enables an effective localization of excitation light within the phosphor. A numerical estimation shows that the optimized 2D PhC QD film can enhance the light absorption by up to 4.2 times with a monochromatic source and by up to 1.8 times with a broadband (FWHM~30 nm) source compared to a flat-type reference QD film. Full article
(This article belongs to the Special Issue Optical Metamaterials for Advanced Optoelectronic Devices)
Show Figures

Figure 1

Back to TopTop