Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = quantum navigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2885 KiB  
Proceeding Paper
Resilient Time Dissemination Fusion Framework for UAVs for Smart Cities
by Sorin Andrei Negru, Triyan Pal Arora, Ivan Petrunin, Weisi Guo, Antonios Tsourdos, David Sweet and George Dunlop
Eng. Proc. 2025, 88(1), 5; https://doi.org/10.3390/engproc2025088005 - 17 Mar 2025
Viewed by 397
Abstract
Future smart cities will consist of a heterogeneous environment, including UGVs (Unmanned Ground Vehicles) and UAVs (Unmanned Aerial Vehicles), used for different applications such as last mile delivery. Considering the vulnerabilities of GNSS (Global Navigation System Satellite) in urban environments, a resilient PNT [...] Read more.
Future smart cities will consist of a heterogeneous environment, including UGVs (Unmanned Ground Vehicles) and UAVs (Unmanned Aerial Vehicles), used for different applications such as last mile delivery. Considering the vulnerabilities of GNSS (Global Navigation System Satellite) in urban environments, a resilient PNT (Position, Navigation, Timing) solution is needed. A key research question within the PNT community is the capability to deliver a robust and resilient time solution to multiple devices simultaneously. The paper is proposing an innovative time dissemination framework, based on IQuila’s SDN (Software Defined Network) and quantum random key encryption from Quantum Dice to multiple users. The time signal is disseminated using a wireless IEEE 802.11ax, through a wireless AP (Access point) which is received by each user, where a KF (Kalman Filter) is used to enhance the timing resilience of each client into the framework. Each user is equipped with a Jetson Nano board as CC (Companion Computer), a GNSS receiver, an IEEE 802.11ax wireless card, an embedded RTC (Real Time clock) system, and a Pixhawk 2.1 as FCU (Flight Control Unit). The paper is presenting the performance of the fusion framework using the MUEAVI (Multi-user Environment for Autonomous Vehicle Innovation) Cranfield’s University facility. Results showed that an alternative timing source can securely be delivered fulfilling last mile delivery requirements for aerial platforms achieving sub millisecond offset. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

15 pages, 346 KiB  
Article
Application of Quantum Computers and Their Unique Properties for Constrained Optimization in Engineering Problems: Welded Beam Design
by Dawid Ewald
Electronics 2025, 14(5), 1027; https://doi.org/10.3390/electronics14051027 - 4 Mar 2025
Viewed by 928
Abstract
The welded beam design problem represents a real-world engineering challenge in structural optimization. The objective is to determine the optimal dimensions of a steel beam and weld length to minimize cost while satisfying constraints related to shear stress (τ), bending stress [...] Read more.
The welded beam design problem represents a real-world engineering challenge in structural optimization. The objective is to determine the optimal dimensions of a steel beam and weld length to minimize cost while satisfying constraints related to shear stress (τ), bending stress (σ), critical buckling load (Pc), end deflection (δ), and side constraints. The structural analysis of this problem involves the following four design variables: weld height (x1), weld length (x2), beam thickness (x3), and beam width (x4), which are commonly denoted in structural engineering as h,l,t,b respectively. The structural formulation of this problem leads to a nonlinear objective function, which is subject to five nonlinear and two linear inequality constraints. The optimal solution lies on the boundary of the feasible region, with a very small feasible-to-search-space ratio, making it a highly challenging problem for classical optimization algorithms. This paper explores the application of quantum computing to solve the welded beam optimization problem, utilizing the unique properties of quantum computers for constrained optimization in engineering problems. Specifically, we employ the D-Wave quantum computing system, which utilizes quantum annealing and is particularly well-suited for solving constrained optimization problems. The study presents a detailed formulation of the problem in a format compatible with the D-Wave system, ensuring the efficient encoding of constraints and objective functions. Furthermore, we analyze the performance of quantum computing in solving this problem and compare the obtained results with classical optimization methods. The effectiveness of quantum computing is evaluated in terms of computational efficiency, accuracy, and its ability to navigate complex, constrained search spaces. This research highlights the potential of quantum algorithms in tackling real-world engineering optimization problems and discusses the challenges and limitations of current quantum hardware in solving practical industrial application issues. Full article
Show Figures

Figure 1

28 pages, 6709 KiB  
Article
A 3D Model-Based Framework for Real-Time Emergency Evacuation Using GIS and IoT Devices
by Noopur Tyagi, Jaiteg Singh, Saravjeet Singh and Sukhjit Singh Sehra
ISPRS Int. J. Geo-Inf. 2024, 13(12), 445; https://doi.org/10.3390/ijgi13120445 - 9 Dec 2024
Cited by 2 | Viewed by 2025
Abstract
Advancements in 3D modelling technology have facilitated more immersive and efficient solutions in spatial planning and user-centred design. In healthcare systems, 3D modelling is beneficial in various applications, such as emergency evacuation, pathfinding, and localization. These models support the fast and efficient planning [...] Read more.
Advancements in 3D modelling technology have facilitated more immersive and efficient solutions in spatial planning and user-centred design. In healthcare systems, 3D modelling is beneficial in various applications, such as emergency evacuation, pathfinding, and localization. These models support the fast and efficient planning of evacuation routes, ensuring the safety of patients, staff, and visitors, and guiding them in cases of emergency. To improve urban modelling and planning, 3D representation and analysis are used. Considering the advantages of 3D modelling, this study proposes a framework for 3D indoor navigation and employs a multiphase methodology to enhance spatial planning and user experience. Our approach combines state-of-the art GIS technology with a 3D hybrid model. The proposed framework incorporates federated learning (FL) along with edge computing and Internet of Things (IoT) devices to achieve accurate floor-level localization and navigation. In the first phase of the methodology, Quantum Geographic Information System (QGIS) software was used to create a 3D model of the building’s architectural details, which are required for efficient indoor navigation during emergency evacuations in healthcare systems. In the second phase, the 3D model and an FL-based recurrent neural network (RNN) technique were utilized to achieve real-time indoor positioning. This method resulted in highly precise outcomes, attaining an accuracy rate over 99% at distances of no less than 10 metres. Continuous monitoring and effective pathfinding ensure that users can navigate safely and effectively during emergencies. IoT devices were connected with the building’s navigation software in Phase 3. As per the performed analysis, it was observed that the proposed framework provided 98.7% routing accuracy between different locations during emergency situations. By improving safety, building accessibility, and energy efficiency, this research addresses the health and environmental impacts of modern technologies. Full article
(This article belongs to the Special Issue HealthScape: Intersections of Health, Environment, and GIS&T)
Show Figures

Figure 1

16 pages, 4053 KiB  
Article
Quantum Positioning Scheme Based on Microwave–Optical Entanglement
by Qiang Miao and Dewei Wu
Sensors 2024, 24(23), 7712; https://doi.org/10.3390/s24237712 - 2 Dec 2024
Viewed by 878
Abstract
Microwaves exhibit superior performance in free-space transmission compared to optical waves, primarily due to their ability to penetrate fog and experience lower losses in the Earth’s atmosphere. Based on microwave–optical entanglement prepared by nano-cavity electro-opto-mechanic converters, we propose a scheme of a quantum [...] Read more.
Microwaves exhibit superior performance in free-space transmission compared to optical waves, primarily due to their ability to penetrate fog and experience lower losses in the Earth’s atmosphere. Based on microwave–optical entanglement prepared by nano-cavity electro-opto-mechanic converters, we propose a scheme of a quantum positioning system using the distance-based positioning method. Principles of microwave–optical entanglement preparation and our QPS scheme are introduced in detail. The entanglement feature, system stability and positioning feature of the scheme are analyzed after simulations. Furthermore, we delve into the impact of key parameters, such as transmissivity and photon conversion efficiency, on positioning. Notably, the entanglement degrees for both microwave–optic entanglement at the transmitter and optic–optic entanglement at the receiver surpass one, affirming the efficiency of the scheme in preparing and maintaining entanglement. When transmissivity in beam-splitter models of both ground stations equals 0.5, our scheme achieves a minimal positioning error of 6.4×107m2 under ideal conditions. Additionally, we map out traces of a plane through continuous positioning using our scheme. These results demonstrate the theoretical efficiency and robustness of our proposed approach. Full article
(This article belongs to the Collection Navigation Systems and Sensors)
Show Figures

Figure 1

32 pages, 4267 KiB  
Review
Advancements in Sensor Fusion for Underwater SLAM: A Review on Enhanced Navigation and Environmental Perception
by Fomekong Fomekong Rachel Merveille, Baozhu Jia, Zhizun Xu and Bissih Fred
Sensors 2024, 24(23), 7490; https://doi.org/10.3390/s24237490 - 24 Nov 2024
Cited by 9 | Viewed by 4363
Abstract
Underwater simultaneous localization and mapping (SLAM) has significant challenges due to the complexities of underwater environments, marked by limited visibility, variable conditions, and restricted global positioning system (GPS) availability. This study provides a comprehensive analysis of sensor fusion techniques in underwater SLAM, highlighting [...] Read more.
Underwater simultaneous localization and mapping (SLAM) has significant challenges due to the complexities of underwater environments, marked by limited visibility, variable conditions, and restricted global positioning system (GPS) availability. This study provides a comprehensive analysis of sensor fusion techniques in underwater SLAM, highlighting the amalgamation of proprioceptive and exteroceptive sensors to improve UUV navigational accuracy and system resilience. Essential sensor applications, including inertial measurement units (IMUs), Doppler velocity logs (DVLs), cameras, sonar, and LiDAR (light detection and ranging), are examined for their contributions to navigation and perception. Fusion methodologies, such as Kalman filters, particle filters, and graph-based SLAM, are evaluated for their benefits, limitations, and computational demands. Additionally, innovative technologies like quantum sensors and AI-driven filtering techniques are examined for their potential to enhance SLAM precision and adaptability. Case studies demonstrate practical applications, analyzing the compromises between accuracy, computational requirements, and adaptability to environmental changes. This paper proceeds to emphasize future directions, stressing the need for advanced filtering and machine learning to address sensor drift, noise, and environmental unpredictability, hence improving autonomous underwater navigation through reliable sensor fusion. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

37 pages, 3343 KiB  
Review
Quantum Computing: Navigating the Future of Computation, Challenges, and Technological Breakthroughs
by Qurban A. Memon, Mahmoud Al Ahmad and Michael Pecht
Quantum Rep. 2024, 6(4), 627-663; https://doi.org/10.3390/quantum6040039 - 16 Nov 2024
Cited by 13 | Viewed by 19277
Abstract
Quantum computing stands at the precipice of technological revolution, promising unprecedented computational capabilities to tackle some of humanity’s most complex problems. The field is highly collaborative and recent developments such as superconducting qubits with increased scaling, reduced error rates, and improved cryogenic infrastructure, [...] Read more.
Quantum computing stands at the precipice of technological revolution, promising unprecedented computational capabilities to tackle some of humanity’s most complex problems. The field is highly collaborative and recent developments such as superconducting qubits with increased scaling, reduced error rates, and improved cryogenic infrastructure, trapped-ion qubits with high-fidelity gates and reduced control hardware complexity, and photonic qubits with exploring room-temperature quantum computing are some of the key developments pushing the field closer to demonstrating real-world applications. However, the path to realizing this promise is fraught with significant obstacles across several key platforms, including sensitivity to errors, decoherence, scalability, and the need for new materials and technologies. Through an exploration of various quantum systems, this paper highlights both the potential and the challenges of quantum computing and discusses the essential role of middleware, quantum hardware development, and the strategic investments required to propel the field forward. With a focus on overcoming technical hurdles through innovation and interdisciplinary research, this review underscores the transformative impact quantum computing could have across diverse sectors. Full article
Show Figures

Figure 1

13 pages, 4538 KiB  
Article
Measuring Transverse Relaxation with a Single-Beam 894 nm VCSEL for Cs-Xe NMR Gyroscope Miniaturization
by Qingyang Zhao, Ruochen Zhang and Hua Liu
Sensors 2024, 24(17), 5692; https://doi.org/10.3390/s24175692 - 1 Sep 2024
Cited by 3 | Viewed by 1392
Abstract
The spin-exchange-pumped nuclear magnetic resonance gyroscope (NMRG) is a pivotal tool in quantum navigation. The transverse relaxation of atoms critically impacts the NMRG’s performance parameters and is essential for judging normal operation. Conventional methods for measuring transverse relaxation typically use dual beams, which [...] Read more.
The spin-exchange-pumped nuclear magnetic resonance gyroscope (NMRG) is a pivotal tool in quantum navigation. The transverse relaxation of atoms critically impacts the NMRG’s performance parameters and is essential for judging normal operation. Conventional methods for measuring transverse relaxation typically use dual beams, which involves complex optical path and frequency stabilization systems, thereby complicating miniaturization and integration. This paper proposes a method to construct a 133Cs parametric resonance magnetometer using a single-beam vertical-cavity surface-emitting laser (VCSEL) to measure the transverse relaxation of 129Xe and 131Xe. Based on this method, the volume of the gyroscope probe is significantly reduced to 50 cm3. Experimental results demonstrate that the constructed Cs-Xe NMRG can achieve a transverse relaxation time (T2) of 8.1 s under static conditions. Within the cell temperature range of 70 °C to 110 °C, T2 decreases with increasing temperature, while the signal amplitude inversely increases. The research lays the foundation for continuous measurement operations of miniaturized NMRGs. Full article
(This article belongs to the Special Issue Atomic Magnetic Sensors)
Show Figures

Figure 1

16 pages, 86910 KiB  
Article
Chaos-Assisted Dynamical Tunneling in Flat Band Superwires
by Anton M. Graf, Ke Lin, MyeongSeo Kim, Joonas Keski-Rahkonen, Alvar Daza and Eric J. Heller
Entropy 2024, 26(6), 492; https://doi.org/10.3390/e26060492 - 5 Jun 2024
Cited by 4 | Viewed by 1673
Abstract
Recent theoretical investigations have revealed unconventional transport mechanisms within high Brillouin zones of two-dimensional superlattices. Electrons can navigate along channels we call superwires, gently guided without brute force confinement. Such dynamical confinement is caused by weak superlattice deflections, markedly different from the static [...] Read more.
Recent theoretical investigations have revealed unconventional transport mechanisms within high Brillouin zones of two-dimensional superlattices. Electrons can navigate along channels we call superwires, gently guided without brute force confinement. Such dynamical confinement is caused by weak superlattice deflections, markedly different from the static or energetic confinement observed in traditional wave guides or one-dimensional electron wires. The quantum properties of superwires give rise to elastic dynamical tunneling, linking disjoint regions of the corresponding classical phase space, and enabling the emergence of several parallel channels. This paper provides the underlying theory and mechanisms that facilitate dynamical tunneling assisted by chaos in periodic lattices. Moreover, we show that the mechanism of dynamical tunneling can be effectively conceptualized through the lens of a paraxial approximation. Our results further reveal that superwires predominantly exist within flat bands, emerging from eigenstates that represent linear combinations of conventional degenerate Bloch states. Finally, we quantify tunneling rates across various lattice configurations and demonstrate that tunneling can be suppressed in a controlled fashion, illustrating potential implications in future nanodevices. Full article
(This article belongs to the Special Issue Tunneling in Complex Systems)
Show Figures

Figure 1

11 pages, 6719 KiB  
Article
Activation of Cryptochrome 4 from Atlantic Herring
by Anders Frederiksen, Mandus Aldag, Ilia A. Solov’yov and Luca Gerhards
Biology 2024, 13(4), 262; https://doi.org/10.3390/biology13040262 - 15 Apr 2024
Cited by 2 | Viewed by 2754
Abstract
Marine fish migrate long distances up to hundreds or even thousands of kilometers for various reasons that include seasonal dependencies, feeding, or reproduction. The ability to perceive the geomagnetic field, called magnetoreception, is one of the many mechanisms allowing some fish to navigate [...] Read more.
Marine fish migrate long distances up to hundreds or even thousands of kilometers for various reasons that include seasonal dependencies, feeding, or reproduction. The ability to perceive the geomagnetic field, called magnetoreception, is one of the many mechanisms allowing some fish to navigate reliably in the aquatic realm. While it is believed that the photoreceptor protein cryptochrome 4 (Cry4) is the key component for the radical pair-based magnetoreception mechanism in night migratory songbirds, the Cry4 mechanism in fish is still largely unexplored. The present study aims to investigate properties of the fish Cry4 protein in order to understand the potential involvement in a radical pair-based magnetoreception. Specifically, a computationally reconstructed atomistic model of Cry4 from the Atlantic herring (Clupea harengus) was studied employing classical molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) methods to investigate internal electron transfers and the radical pair formation. The QM/MM simulations reveal that electron transfers occur similarly to those found experimentally and computationally in Cry4 from European robin (Erithacus rubecula). It is therefore plausible that the investigated Atlantic herring Cry4 has the physical and chemical properties to form radical pairs that in turn could provide fish with a radical pair-based magnetic field compass sensor. Full article
(This article belongs to the Special Issue The Rules of Life Rethought: Latest Progress in Quantum Biology)
Show Figures

Graphical abstract

12 pages, 225 KiB  
Communication
Quantum Science and Technologies in K-12: Supporting Teachers to Integrate Quantum in STEM Classrooms
by Nancy Holincheck, Jessica L. Rosenberg, Xiaolu Zhang, Tiffany N. Butler, Michele Colandene and Benjamin W. Dreyfus
Educ. Sci. 2024, 14(3), 219; https://doi.org/10.3390/educsci14030219 - 21 Feb 2024
Cited by 6 | Viewed by 3677
Abstract
Quantum science and computing represent a vital intersection between science and technology, gaining increasing importance in modern society. There is a pressing need to incorporate these concepts into the K-12 curriculum, equipping new generations with the tools to navigate and thrive in an [...] Read more.
Quantum science and computing represent a vital intersection between science and technology, gaining increasing importance in modern society. There is a pressing need to incorporate these concepts into the K-12 curriculum, equipping new generations with the tools to navigate and thrive in an evolving technological landscape. This study explores the professional learning of K-12 teachers (n = 49) related to quantum concepts and pedagogy. We used open-ended surveys, field notes, workshop artifacts, and interviews to examine teachers’ perceptions of quantum and how they made connections between quantum and their curriculum. Our data reveal that most teachers were excited and interested in teaching quantum but were aware of potential barriers and concerns that might get in the way of teaching quantum. We found that teachers readily identified connections to math and science in their curriculum, but only a few made connections to computing. Enthusiasm for teaching quantum concepts was found in both elementary and secondary educators, suggesting a widespread recognition of its importance in preparing students for a future where quantum technology is a fundamental aspect of their lives and careers. Full article
34 pages, 1970 KiB  
Review
Forging the Future: Strategic Approaches to Quantum AI Integration for Industry Transformation
by Meng-Leong How and Sin-Mei Cheah
AI 2024, 5(1), 290-323; https://doi.org/10.3390/ai5010015 - 29 Jan 2024
Cited by 24 | Viewed by 24854
Abstract
The fusion of quantum computing and artificial intelligence (AI) heralds a transformative era for Industry 4.0, offering unprecedented capabilities and challenges. This paper delves into the intricacies of quantum AI, its potential impact on Industry 4.0, and the necessary change management and innovation [...] Read more.
The fusion of quantum computing and artificial intelligence (AI) heralds a transformative era for Industry 4.0, offering unprecedented capabilities and challenges. This paper delves into the intricacies of quantum AI, its potential impact on Industry 4.0, and the necessary change management and innovation strategies for seamless integration. Drawing from theoretical insights and real-world case studies, we explore the current landscape of quantum AI, its foreseeable influence, and the implications for organizational strategy. We further expound on traditional change management tactics, emphasizing the importance of continuous learning, ecosystem collaborations, and proactive approaches. By examining successful and failed quantum AI implementations, lessons are derived to guide future endeavors. Conclusively, the paper underscores the imperative of being proactive in embracing quantum AI innovations, advocating for strategic foresight, interdisciplinary collaboration, and robust risk management. Through a comprehensive exploration, this paper aims to equip stakeholders with the knowledge and strategies to navigate the complexities of quantum AI in Industry 4.0, emphasizing its transformative potential and the necessity for preparedness and adaptability. Full article
Show Figures

Figure 1

24 pages, 1770 KiB  
Article
Current Status and Future Trends of Meter-Level Indoor Positioning Technology: A Review
by Lin Qi, Yu Liu, Yue Yu, Liang Chen and Ruizhi Chen
Remote Sens. 2024, 16(2), 398; https://doi.org/10.3390/rs16020398 - 19 Jan 2024
Cited by 29 | Viewed by 8329
Abstract
High-precision indoor positioning technology is regarded as one of the core components of artificial intelligence (AI) and Internet of Things (IoT) applications. Over the past decades, society has observed a burgeoning demand for indoor location-based services (iLBSs). Concurrently, ongoing technological innovations have been [...] Read more.
High-precision indoor positioning technology is regarded as one of the core components of artificial intelligence (AI) and Internet of Things (IoT) applications. Over the past decades, society has observed a burgeoning demand for indoor location-based services (iLBSs). Concurrently, ongoing technological innovations have been instrumental in establishing more accurate, particularly meter-level indoor positioning systems. In scenarios where the penetration of satellite signals indoors proves problematic, research efforts focused on high-precision intelligent indoor positioning technology have seen a substantial increase. Consequently, a stable assortment of location sources and their respective positioning methods have emerged, characterizing modern technological resilience. This academic composition serves to illuminate the current status of meter-level indoor positioning technologies. An in-depth overview is provided in this paper, segmenting these technologies into distinct types based on specific positioning principles such as geometric relationships, fingerprint matching, incremental estimation, and quantum navigation. The purpose and principles underlying each method are elucidated, followed by a rigorous examination and analysis of their respective technological strides. Subsequently, we encapsulate the unique attributes and strengths of high-precision indoor positioning technology in a concise summary. This thorough investigation aspires to be a catalyst in the progression and refinement of indoor positioning technologies. Lastly, we broach prospective trends, including diversification, intelligence, and popularization, and we speculate on a bright future ripe with opportunities for these technological innovations. Full article
Show Figures

Figure 1

27 pages, 4635 KiB  
Article
Quantum Leap: A Price Leap Mechanism in Financial Markets
by Haoran Zheng and Jing Bai
Mathematics 2024, 12(2), 315; https://doi.org/10.3390/math12020315 - 18 Jan 2024
Cited by 1 | Viewed by 4726
Abstract
This study explores the quantum leapfrog mechanism within the context of quantum finance and presents a new interpretation of established financial models through a quantum perspective. In quantum physics, the well-documented phenomenon of particles tunneling through energy barriers has a parallel in finance. [...] Read more.
This study explores the quantum leapfrog mechanism within the context of quantum finance and presents a new interpretation of established financial models through a quantum perspective. In quantum physics, the well-documented phenomenon of particles tunneling through energy barriers has a parallel in finance. We propose a quantum financial leapfrog model in which asset prices make quantum leaps, penetrating market “energy barriers” in non-sequential advances. By leveraging the Hamiltonian operator and the Schrödinger equation, our approach simulates the dynamics of asset prices in a manner akin to the trajectories of particles in quantum mechanics. We draw an analogy between financial markets and gravitational fields, and from this we derive energy equations for pricing orbits. Using path integration techniques, we map out potential price transitions between these orbits, which are guided by the calculation of minimal energy barriers. Furthermore, we introduce a market “propagator” that aligns with the uncertainty principle, identifying the optimal price pathways. Our findings provide new insights and methodologies for navigating the complexities of financial markets, underscoring the significant potential of quantum approaches in the field of finance. These findings have theoretical implications for a variety of market stakeholders, offering strategic guidance and a reference point. We expect that the advancement of the quantum financial leapfrog theory will refine analytical methods and enhance investment strategies in practical financial applications. Full article
Show Figures

Figure 1

22 pages, 1609 KiB  
Review
Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis
by Sarfaraz K. Niazi and Zamara Mariam
Pharmaceuticals 2024, 17(1), 22; https://doi.org/10.3390/ph17010022 - 22 Dec 2023
Cited by 122 | Viewed by 21447
Abstract
In the dynamic landscape of drug discovery, Computer-Aided Drug Design (CADD) emerges as a transformative force, bridging the realms of biology and technology. This paper overviews CADDs historical evolution, categorization into structure-based and ligand-based approaches, and its crucial role in rationalizing and expediting [...] Read more.
In the dynamic landscape of drug discovery, Computer-Aided Drug Design (CADD) emerges as a transformative force, bridging the realms of biology and technology. This paper overviews CADDs historical evolution, categorization into structure-based and ligand-based approaches, and its crucial role in rationalizing and expediting drug discovery. As CADD advances, incorporating diverse biological data and ensuring data privacy become paramount. Challenges persist, demanding the optimization of algorithms and robust ethical frameworks. Integrating Machine Learning and Artificial Intelligence amplifies CADDs predictive capabilities, yet ethical considerations and scalability challenges linger. Collaborative efforts and global initiatives, exemplified by platforms like Open-Source Malaria, underscore the democratization of drug discovery. The convergence of CADD with personalized medicine offers tailored therapeutic solutions, though ethical dilemmas and accessibility concerns must be navigated. Emerging technologies like quantum computing, immersive technologies, and green chemistry promise to redefine the future of CADD. The trajectory of CADD, marked by rapid advancements, anticipates challenges in ensuring accuracy, addressing biases in AI, and incorporating sustainability metrics. This paper concludes by highlighting the need for proactive measures in navigating the ethical, technological, and educational frontiers of CADD to shape a healthier, brighter future in drug discovery. Full article
(This article belongs to the Special Issue Computer-Aided Drug Design and Drug Discovery)
Show Figures

Graphical abstract

17 pages, 3584 KiB  
Article
Enhancing Indoor Navigation in Intelligent Transportation Systems with 3D RIF and Quantum GIS
by Jaiteg Singh, Noopur Tyagi, Saravjeet Singh, Ahmad Ali AlZubi, Firas Ibrahim AlZubi, Sukhjit Singh Sehra and Farman Ali
Sustainability 2023, 15(22), 15833; https://doi.org/10.3390/su152215833 - 10 Nov 2023
Cited by 4 | Viewed by 2701
Abstract
Innovative technologies have been incorporated into intelligent transportation systems (ITS) to improve sustainability, safety, and efficiency, hence revolutionising traditional transportation. The combination of three-dimensional (3D) indoor building mapping and navigation is a groundbreaking development in the field of ITS. A novel methodology, the [...] Read more.
Innovative technologies have been incorporated into intelligent transportation systems (ITS) to improve sustainability, safety, and efficiency, hence revolutionising traditional transportation. The combination of three-dimensional (3D) indoor building mapping and navigation is a groundbreaking development in the field of ITS. A novel methodology, the “Three-Dimensional Routing Information Framework “(3D RIF), is designed to improve indoor navigation systems in the field of ITS. By leveraging the Quantum Geographic Information System (QGIS), this framework can produce three-dimensional routing data and incorporate sophisticated routing algorithms to handle the complexities associated with indoor navigation. The paper provides a detailed examination of how the framework can be implemented in transport systems in urban environments, with a specific focus on optimising indoor navigation for various applications, including emergency services, tourism, and logistics. The framework includes real-time updates and point-of-interest information, thereby enhancing the overall indoor navigation experience. The 3D RIF’s framework boosts the efficiency and effectiveness of intelligent transportation services by optimising the utilisation of internal resources. The research outcomes are emphasised, demonstrating a mean enhancement of around 25.51% in travel. The measurable enhancement highlighted in this statement emphasises the beneficial influence of ITS on the efficiency of travel, hence underscoring the significance of the ongoing progress in this field. Full article
(This article belongs to the Special Issue Intelligent Transportation Systems towards Sustainable Transportation)
Show Figures

Figure 1

Back to TopTop