Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis
Abstract
:1. Introduction to Computer-Aided Drug Design (CADD)
Computer-Aided Drug Design (CADD): A Synthesis of Biology and Technology
2. Key Techniques and Approaches in CADD
Delineating the Array of Techniques in Computer-Aided Drug Design
3. Integration of Machine Learning and AI in CADD
3.1. Machine Learning and AI: The New Vanguard in Drug Discovery
3.2. Implications of ML in CADD
4. Challenges and Limitations in CADD
Understanding the Obstacles: The Roadblocks in Computer-Aided Drug Design
5. Experimental Validation in CADD: From In-Silico to the Lab Bench
Bridging Computational Predictions with Reality
6. Harnessing the Power of AI: A Paradigm Shift in Drug Discovery
7. Integration of Multi-Omics Data in CADD
Holistic Viewpoints: Embracing the Complexity of Biology through Multi-Omic Integration
8. Current Challenges in CADD
Overcoming Barriers: The Evolving Landscape of Challenges in Computer-Aided Drug Design
9. Case Studies: Success Stories in CADD
From Concept to Clinic: Triumphs in Computer-Aided Drug Design
10. The Future of CADD: Emerging Technologies and Innovations
10.1. Charting the Horizon: Navigating the Next Frontiers of Computer-Aided Drug Design
10.2. Unity in Diversity: Harnessing Global Intelligence in Computer-Aided Drug Design
10.3. Drawing Lines in the Digital Sand: Navigating the Ethical and Regulatory Labyrinths of Computer-Aided Drug Design
10.4. A Glimpse into the Horizon: Envisioning the Next Epoch of Computer-Aided Drug Design
11. Bridging the Gap: Integrating Experimental Data with CADD
11.1. Forging Synergy: When the Computational Meets the Experimental in Drug Design
11.2. Shaping the Drug Designers of Tomorrow: The Essentiality of CADD in Modern Education
12. The Future Outlook: CADDs Trajectory and Upcoming Challenges
13. Collaborative Efforts and Global Initiatives in CADD
Bridging Boundaries: How Global Collaborations Are Amplifying the Impact of CADD
14. CADD in Personalized Medicine: Tailoring Therapies to Individuals
15. Elevating Drug Design: The Convergence of AI, Machine Learning, and CADD
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, A.M.; Smith, B.C. Historical perspectives in drug discovery: The advent of computational tools. J. Drug Discov. 1995, 12, 5–15. [Google Scholar]
- Patel, Y.; Chalmers, D.K. Modeling drug-receptor interactions: Advances and challenges. J. Med. Chem. 2003, 46, 2543–2554. [Google Scholar]
- Green, P.L.; Edwards, P.H. Structural biology and computational chemistry: A symbiotic relationship. Chem. Rev. 2010, 110, 5678–5698. [Google Scholar]
- Walker, N.T.; Williams, J.P. Zanamivir: The making of a drug. Nat. Biotechnol. 1997, 15, 232–235. [Google Scholar]
- Martinez, A. Computational strategies in drug design. Drug Discov. Today 2006, 11, 149–155. [Google Scholar]
- CC BY 4.0 Deed/Attribution 4.0 International/Creative Commons (n.d.). Available online: https://creativecommons.org/licenses/by/4.0/ (accessed on 10 November 2023).
- Lu, W.; Zhang, R.; Jiang, H.; Zhang, H.; Luo, C. Computer-Aided drug design in epigenetics. Front. Chem. 2018b, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, L.; Oprea, T.I. From empirical to rational drug discovery: The importance of CADD. Drug Des. Rev. 2018, 15, 345–356. [Google Scholar]
- Fu, C.; Xiang, M.A.; Chen, S.; Dong, G.; Liu, Z.; Chen, C.; Liang, J.; Cao, Y.; Zhang, M.; Liu, Q. Molecular drug simulation and experimental validation of the CD36 receptor competitively binding to Long-Chain fatty acids by 7-Ketocholesteryl-9-carboxynonanoate. ACS Omega 2023, 8, 28277–28289. [Google Scholar] [CrossRef]
- Schaduangrat, N.; Lampa, S.; Simeon, S.; Gleeson, M.P.; Spjuth, O.; Nantasenamat, C. Towards reproducible computational drug discovery. J. Cheminform. 2020, 12, 9. [Google Scholar] [CrossRef]
- Thompson, M.A. Techniques in Computer-Aided Drug Design. Bioorganic Med. Chem. 2004, 12, 3101–3110. [Google Scholar]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- ERC. Computational Biology: Spotlight on ERC projects. Available online: https://erc.europa.eu/projects-statistics/science-stories/computational-biology-spotlight-erc-projects (accessed on 27 November 2023).
- Leach, A.R.; Gillet, V.J. Molecular modeling: Principles and applications. J. Chem. Inf. Model. 2007, 47, 5–27. [Google Scholar]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci. USA 2020, 117, 1496–1503. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 2021, 16, 5634–5651. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004, 32, W526–W531. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Language models of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv 2022, 2020, 500902. [Google Scholar] [CrossRef]
- Wu, R.; Ding, F.; Wang, R.; Shen, R.; Zhang, X.; Luo, S.; Su, C.; Wu, Z.; Xie, Q.; Berger, B.; et al. High-resolution de novo structure prediction from primary sequence. bioRxiv 2022. [Google Scholar] [CrossRef]
- Niazi, S.K.; Mariam, Z. Reinventing Therapeutic Proteins: Mining a treasure of new therapies. Biologics 2023, 3, 72–94. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Van Der Spoel, D.; Van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Harvey, M.; Giupponi, G.; De Fabritiis, G. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. J. Chem. Theory Comput. 2009, 5, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.; Simmonett, A.C.; Harrigan, M.P.; Stern, C.; et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017, 13, e1005659. [Google Scholar] [CrossRef] [PubMed]
- Adcock, S.A.; McCammon, J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev. 2006, 106, 1589–1615. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol. 2008, 443, 365–382. [Google Scholar] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Ewing, T.J.A.; Makino, S.; Skillman, A.G.; Kuntz, I.D. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411–428. [Google Scholar] [CrossRef]
- Venkatachalam, C.M.; Jiang, X.; Oldfield, T.; Waldman, M. LigandFit: A novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 2003, 21, 289–307. [Google Scholar] [CrossRef]
- Bitencourt-Ferreira, G.; De Azevedo, W.F. Docking with SwissDock. Methods Mol. Biol. 2019, 2053, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Willett, P. Virtual screening using molecular docking. Drug Discov. Today Technol. 2006, 3, 229–234. [Google Scholar]
- Karatzas, E.; Zamora, J.E.; Athanasiadis, E.; Dellis, D.; Cournia, Z.; Spyrou, G.M. ChemBioServer 2.0: An advanced web server for filtering, clustering and networking of chemical compounds facilitating both drug discovery and repurposing. Bioinformatics 2020, 36, 2602–2604. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, R.N.; Pattanaik, S.; Pattnaik, G.; Mallick, S.; Mohapatra, R. Review on the use of Molecular Docking as the First Line Tool in Drug Discovery and Development. Indian J. Pharm. Sci. 2022, 84, 1334–1337. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A. Exploring QSAR: Hydrophobic, Electronic, and Steric Constants; ACS Professional Reference Book: Washington, DC, USA, 1995. [Google Scholar]
- Niazi, S.K.; Mariam, Z. Recent Advances in Machine-Learning-Based Chemoinformatics: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 11488. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, X.S.; Tropsha, A. Comparative Analysis of QSAR-based vs. Chemical Similarity Based Predictors of GPCRs Binding Affinity. Mol. Inform. 2016, 35, 36–41. [Google Scholar] [CrossRef]
- Raj, N.; Jain, S.K. 3d QSAR studies in conjunction with k-nearest neighbor molecular field analysis (k-NN-MFA) on a series of substituted 2-phenyl-benzimidazole derivatives as an anti allergic agents. Dig. J. Nanomater. Biostructures 2011, 6, 1811–1821. [Google Scholar]
- Nigsch, F.; Bender, A.; van Buuren, B.; Tissen, J.; Nigsch, E.; Mitchell, J.B. Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization. J. Chem. Inf. Model. 2006, 46, 2412–2422. [Google Scholar] [CrossRef]
- Güner, O.F. Pharmacophore perception, development, and use in drug design. J. Med. Chem. 2002, 45, 5–12. [Google Scholar]
- Zhang, Y.; Yang, S.; Jiao, Y.; Liu, H.; Yuan, H.; Lü, S.; Ran, T.; Yao, S.; Ke, Z.; Xu, J.; et al. An integrated virtual screening approach for VEGFR-2 inhibitors. J. Chem. Inf. Model. 2013, 53, 3163–3177. [Google Scholar] [CrossRef] [PubMed]
- Fidom, K.; Ísberg, V.; Hauser, A.S.; Mordalski, S.; Lehto, T.; Bojarski, A.J.; Gloriam, D.E. A new crystal structure fragment-based pharmacophore method for G protein-coupled receptors. Methods 2015, 71, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Munk, C.; Harpsøe, K.; Hauser, A.S.; Isberg, V.; Gloriam, D.E. Integrating structural and mutagenesis data to elucidate GPCR ligand binding. Curr. Opin. Pharmacol. 2016, 30, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Ekins, S.; Williams, A.J. In silico pharmacokinetics: ADME in drug discovery. Drug Discov. World 2007, 8, 17–24. [Google Scholar]
- Schneider, G.; Fechner, U. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov. 2005, 4, 649–663. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tan, J. AI and its role in drug discovery. J. Drug Discov. Des. 2019, 5, 1–10. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Goh, G.B.; Hodas, N.O.; Vishnu, A. Deep learning for computational chemistry. J. Comput. Chem. 2017, 38, 1291–1307. [Google Scholar] [CrossRef]
- Vilar, S.; Uriarte, E.; Santana, L.; Lorberbaum, T.; Hripcsak, G. Predicting drug-drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge. J. Cheminformatics 2016, 8, 12. [Google Scholar]
- Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm. 2016, 13, 2524–2530. [Google Scholar] [CrossRef]
- Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget 2017, 8, 10883–10890. [Google Scholar] [CrossRef]
- Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Toxicity prediction using deep learning. Front. Environ. Sci. 2016, 3, 80. [Google Scholar] [CrossRef]
- Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today 2018, 23, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L. The many roles of computation in drug discovery. Science 2004, 303, 1813–1818. [Google Scholar] [CrossRef] [PubMed]
- Warren, G.L.; Andrews, C.W.; Capelli, A.M.; Clarke, B.; LaLonde, J.; Lambert, M.H.; Murray, C.W. A critical assessment of docking programs and scoring functions. J. Med. Chem. 2006, 49, 5912–5931. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, A. Machine-Learning Scoring Functions to Improve Structure-Based Binding Affinity Prediction and Virtual Screening. 2016. Available online: https://www.academia.edu/28830051/Machine_learning_scoring_functions_to_improve_structure_based_binding_affinity_prediction_and_virtual_screening (accessed on 10 November 2023).
- Fujimoto, K.; Minami, S.; Yanai, T. Machine-Learning- and Knowledge-Based scoring functions incorporating ligand and protein fingerprints. ACS Omega 2022, 7, 19030–19039. [Google Scholar] [CrossRef] [PubMed]
- Guedes, I.A.; Barreto, A.; Marinho, D.; Krempser, E.; Kuenemann, M.A.; Spérandio, O.; Dardenne, L.E.; Miteva, M.A. New machine learning and physics-based scoring functions for drug discovery. Sci. Rep. 2021, 11, 3198. [Google Scholar] [CrossRef]
- Walters, W.P.; Murcko, M.A. Prediction of ‘drug-likeness’. Adv. Drug Deliv. Rev. 2002, 54, 255–271. [Google Scholar] [CrossRef]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935–949. [Google Scholar] [CrossRef]
- Dror, R.O.; Dirks, R.M.; Grossman, J.P.; Xu, H.; Shaw, D.E. Biomolecular simulation: A computational microscope for molecular biology. Annu. Rev. Biophys. 2012, 41, 429–452. [Google Scholar] [CrossRef]
- Teague, S.J. Implications of protein flexibility for drug discovery. Nat. Rev. Drug Discov. 2003, 2, 527–541. [Google Scholar] [CrossRef]
- Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Greene, C.S. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 2018, 15, 20170387. [Google Scholar] [CrossRef] [PubMed]
- Bajorath, J. Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 2012, 1, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Shoichet, B.K. Virtual screening of chemical libraries. Nature 2004, 432, 862–865. [Google Scholar] [CrossRef] [PubMed]
- Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Hertzberg, R.P. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 2011, 10, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Chung, T.D.; Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 1999, 4, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Pound, P.; Bracken, M.B. Is animal research sufficiently evidence-based to be a cornerstone of biomedical research? BMJ 2014, 348, g3387. [Google Scholar] [CrossRef] [PubMed]
- Blundell, T.L. Protein crystallography and drug discovery: Recollections of knowledge exchange between academia and industry. IUCrJ 2017, 4, 308–321. [Google Scholar] [CrossRef]
- Sterling, T.; Irwin, J.J. ZINC 15—Ligand discovery for everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef]
- Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 2018, 17, 97–113. [Google Scholar] [CrossRef]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Puhl, A.C. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef]
- Qureshi, R.; Irfan, M.; Gondal, T.M.; Khan, S.; Wu, J.; Hadi, M.U.; Heymach, J.; Le, X.; Yan, H.; Alam, T. AI in drug discovery and its clinical relevance. Heliyon 2023, 9, e17575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tan, J.; Han, D.; Zhu, H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov. Today 2017, 22, 1680–1685. [Google Scholar] [CrossRef] [PubMed]
- Le, W.T.; Maleki, F.; Romero, F.P.; Forghani, R.; Kadoury, S. Overview of Machine Learning: Part 2: Deep Learning for Medical Image Analysis. Neuroimaging Clin. N. Am. 2020, 30, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Walters, W.P.; Murcko, M. Assessing the impact of generative AI on medicinal chemistry. Nat. Biotechnol. 2020, 38, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Lindon, J.C. Systems biology: Metabonomics. Nature 2008, 455, 1054–1056. [Google Scholar] [CrossRef]
- Zhang, W.; Chien, J.; Yong, J.; Kuang, R. Network-based machine learning and graph theory algorithms for precision oncology. NPJ Precis. Oncol. 2017, 1, 25. [Google Scholar] [CrossRef]
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform. Biol. Insights 2020, 14, 1177932219899051. [Google Scholar] [CrossRef]
- Kim, M.S.; Pinto, S.M.; Getnet, D.; Nirujogi, R.S.; Manda, S.S.; Chaerkady, R.; Prasad, T.S.K. A draft map of the human proteome. Nature 2014, 509, 575–581. [Google Scholar] [CrossRef]
- Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016, 15, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 2011, 12, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.J.; Harland, L.; Groth, P.; Pettifer, S.; Chichester, C.; Willighagen, E.L.; Goble, C. Open PHACTS: Semantic interoperability for drug discovery. Drug Discov. Today 2012, 17, 1188–1198. [Google Scholar] [CrossRef] [PubMed]
- Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model. 2017, 57, 2911–2937. [Google Scholar] [CrossRef] [PubMed]
- Gayathiri, E.; Prakash, P.; Kumaravel, P.; Jayaprakash, J.; Ragunathan, M.G.; Sankar, S.; Pandiaraj, S.; Thirumalaivasan, N.; Thiruvengadam, M.; Govindasamy, R. Computational approaches for modeling and structural design of biological systems: A comprehensive review. Prog. Biophys. Mol. Biol. 2023, 185, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Mascalzoni, D.; Dove, E.S.; Rubinstein, Y.; Dawkins, H.J.; Kole, A.; McCormack, P.; Woods, S. International Charter of principles for sharing bio-specimens and data. Eur. J. Hum. Genet. 2014, 23, 721–728. [Google Scholar] [CrossRef]
- Bassani, D.; Moro, S. Past, Present, and Future Perspectives on Computer-Aided Drug Design Methodologies. Molecules 2023, 28, 3906. [Google Scholar] [CrossRef]
- Wlodawer, A.; Vondrasek, J. Inhibitors of HIV-1 protease: A major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 249–284. [Google Scholar] [CrossRef]
- von Itzstein, M. The war against influenza: Discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov. 2007, 6, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Deininger, M.W.N.; Druker, B.J. Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol. Rev. 2003, 55, 401–423. [Google Scholar] [CrossRef] [PubMed]
- Harper, S.; McCauley, J.A.; Rudd, M.T. Recent advances in the discovery of small molecule inhibitors of hepatitis C virus. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 317–338. [Google Scholar]
- Ghosh, A.K.; Brindisi, M.; Tang, J. Developing β-secretase inhibitors for treatment of Alzheimer’s disease. J. Neurochem. 2012, 120, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Mintun, M.A.; Lo, A.; Evans, C.; Wessels, A.M.; Ardayfio, P.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Bryś, M.; et al. Donanemab in early Alzheimer’s disease. N. Engl. J. Med. 2021, 384, 1691–1704. [Google Scholar] [CrossRef] [PubMed]
- Doody, R.R.S.; Thomas, R.R.G.R.; Farlow, M.R.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; Raman, R.; Sun, X.; Aisen, P.S.; et al. Phase 3 trials of Solanezumab for Mild-to-Moderate Alzheimer’s Disease. N. Engl. J. Med. 2014, 370, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Rani, I.; Kalsi, A.; Kaur, G.; Sharma, P.; Gupta, S.; Gautam, R.K.; Chopra, H.; Bibi, S.; Ahmad, S.U.; Singh, I.; et al. Modern drug discovery applications for the identification of novel candidates for COVID-19 infections. Ann. Med. Surg. 2022, 80, 104125. [Google Scholar] [CrossRef]
- Amir, S.; Arathi, A.; Reshma, S.; Mohanan, P.V. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review. Int. J. Biol. Macromol. 2023, 235, 123784. [Google Scholar] [CrossRef]
- Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Aspuru-Guzik, A. Quantum chemistry in the age of quantum computing. Chem. Rev. 2019, 119, 10856–10915. [Google Scholar] [CrossRef]
- O’Connor, M.; Deeks, H.M.; Dawn, E.; Metatla, O.; Roudaut, A.; Sutton, M.; Glowacki, D.R. Sampling molecular conformations and dynamics in a multi-user virtual reality framework. Sci. Adv. 2018, 4, eaat2731. [Google Scholar] [CrossRef]
- Ryan, D.K.; Maclean, R.H.; Balston, A.; Scourfield, A.; Shah, A.D.; Ross, J. Artificial intelligence and machine learning for clinical pharmacology. Br. J. Clin. Pharmacol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Kanza, S.; Frey, J.G. A new wave of innovation in Semantic web tools for drug discovery. Expert Opin. Drug Discov. 2019, 14, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Woelfle, M.; Olliaro, P.; Todd, M.H. Open science is a research accelerator. Nat. Chem. 2011, 3, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Morgera, E.; Tsioumani, E.; Buck, M. Unraveling the Nagoya Protocol: A commentary on the Nagoya Protocol on Access and Benefit-Sharing to the Convention on Biological Diversity; Brill: Leiden, The Netherlands, 2014. [Google Scholar]
- Bhardwaj, A.; Scaria, V.; Raghava, G.P.; Lynn, A.M.; Chandra, N.; Banerjee, S.; Open Source Drug Discovery Consortium. Open source drug discovery—A new paradigm of collaborative research in tuberculosis drug development. Tuberculosis 2011, 91, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Ranard, B.L.; Ha, Y.P.; Meisel, Z.F.; Asch, D.A.; Hill, S.S.; Becker, L.B.; Merchant, R.M. Crowdsourcing—Harnessing the masses to advance health and medicine, a systematic review. J. Gen. Intern. Med. 2014, 29, 187–203. [Google Scholar] [CrossRef]
- Warr, W.A. Scientific workflow systems: Pipeline Pilot and KNIME. J. Comput. Aided Mol. Des. 2012, 26, 801–804. [Google Scholar] [CrossRef]
- McKiernan, E.C.; Bourne, P.E.; Brown, C.T.; Buck, S.; Kenall, A.; Lin, J.; Spies, J.R. How open science helps researchers succeed. eLife 2016, 5, e16800. [Google Scholar] [CrossRef]
- Mons, B.; Neylon, C.; Velterop, J.; Dumontier, M.; da Silva Santos, L.O.B.; Wilkinson, M.D. Cloudy, increasingly FAIR: Revisiting the FAIR Data guiding principles for the European Open Science Cloud. Inf. Serv. Use 2017, 37, 49–56. [Google Scholar] [CrossRef]
- Brownsword, R.; Goodwin, M. Law and the Technologies of the Twenty-First Century; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Voigt, P.; Von dem Bussche, A. The EU General Data Protection Regulation (GDPR); Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Torrance, A.W.; Tomlinson, B. Patents and the Regress of Useful Arts. Columbia Sci. Technol. Law Rev. 2019, 10, 130–168. [Google Scholar]
- Mitchell, M.; Wu, S.; Zaldivar, A.; Barnes, P.; Vasserman, L.; Hutchinson, B.; Gebru, T. Model cards for model reporting. In Proceedings of the Conference on Fairness 2019, Accountability, and Transparency, Atlanta, GA, USA, 29–31 January 2019; pp. 220–229. [Google Scholar]
- Baker, M. 1500 scientists lift the lid on reproducibility. Nat. News 2016, 533, 452. [Google Scholar] [CrossRef] [PubMed]
- Tannenbaum, J.; Bennett, B.T. Russell and Burch′s 3Rs then and now: The need for clarity in definition and purpose. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 120–132. [Google Scholar] [PubMed]
- Eichler, H.G.; Pignatti, F.; Flamion, B.; Leufkens, H.; Breckenridge, A. Balancing early market access to new drugs with the need for benefit/risk data: A mounting dilemma. Nat. Rev. Drug Discov. 2008, 7, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Hulsen, T. Literature analysis of artificial intelligence in biomedicine. Ann. Transl. Med. 2022, 10, 1284. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Bouwman, J. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef]
- Branković, M. Green chemical analysis: Main principles and current efforts towards greener analytical methodologies. Anal. Methods 2023, 15, 6631–6642. [Google Scholar] [CrossRef]
- Rahwan, I.; Cebrian, M.; Obradovich, N.; Bongard, J.; Bonnefon, J.F.; Breazeal, C.; Jennings, N.R. Machine behaviour. Nature 2019, 568, 477–486. [Google Scholar] [CrossRef]
- Karplus, M.; Petsko, G.A. Molecular dynamics simulations in biology. Nature 1990, 347, 631–639. [Google Scholar] [CrossRef]
- Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industry′s grand challenge. Nat. Rev. Drug Discov. 2010, 9, 203–214. [Google Scholar] [PubMed]
- Deliorman, M.; Ali, D.S.; Qasaimeh, M.A. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications. Biomed. Eng. Comput. Biol. 2023, 14, 11795972231214387. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [PubMed]
- Breinig, M.; Klein, F.A.; Huber, W.; Boutros, M. A chemical-genetic interaction map of small molecules using high-throughput imaging in cancer cells. Mol. Syst. Biol. 2015, 11, 846. [Google Scholar] [CrossRef] [PubMed]
- Tindall, M.J.; Cucurull-Sanchez, L.; Mistry, H.; Yates, J.W.T. Quantitative Systems Pharmacology and Machine Learning: A Match Made in Heaven or Hell? J. Pharmacol. Exp. Ther. 2023, 387, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Boran, A.D.; Iyengar, R. Systems approaches to polypharmacology and drug discovery. Curr. Opin. Drug Discov. Dev. 2010, 13, 297–309. [Google Scholar]
- Kirchmair, J.; Göller, A.H.; Lang, D.; Kunze, J.; Testa, B.; Wilson, I.D.; Schneider, G. Predicting drug metabolism: Experiment and/or computation? Nat. Rev. Drug Discov. 2015, 14, 387–404. [Google Scholar] [CrossRef]
- Oprea, T.I.; Gottfries, J. Chemography: The art of navigating in chemical space. J. Comb. Chem. 2001, 3, 157–166. [Google Scholar] [CrossRef]
- Xia, S.; Chen, E.; Zhang, Y. Integrated Molecular Modeling and Machine Learning for Drug Design. J. Chem. Theory Comput. 2023, 19, 7478–7495. [Google Scholar] [CrossRef]
- Pirard, B. The quest for novel chemical matter and the contribution of computer-aided de novo design. Expert Opin. Drug Discov. 2011, 6, 225–231. [Google Scholar] [CrossRef]
- Ekins, S.; Puhl, A.C.; Zorn, K.M.; Lane, T.R.; Russo, D.P.; Klein, J.J.; Zahoránszky-Kőhalmi, G. Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 2019, 18, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Lusher, S.J.; McGuire, R.; van Schaik, R.C.; Nicholson, C.D.; de Vlieg, J. Data-driven medicinal chemistry in the era of big data. Drug Discov. Today 2011, 19, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Good, A.C.; Krystek, S.R.; Mason, J.S. High-throughput and virtual screening: Core lead discovery technologies move towards integration. Drug Discov. Today 2000, 5, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Andrade, E.L.; Bento, A.F.; Cavalli, J.; Oliveira, S.K.; Freitas, C.S.; Marcon, R.; Schwanke, R.C.; Siqueira, J.M.; Calixto, J.B. Non-clinical studies required for new drug development—Part I: Early in silico and in vitro studies, new target discovery and validation, proof of principles and robustness of animal studies. Braz. J. Med. Biol. Res. 2016, 49, e5644. [Google Scholar] [CrossRef] [PubMed]
- James, T.; Hristozov, D. Deep Learning and Computational Chemistry. Methods Mol. Biol. 2022, 2390, 125–151. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.A.; McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 2007, 450, 1001–1009. [Google Scholar] [CrossRef]
- Lyon, J. AI ethics in predictive modeling and precision medicine. J. Mol. Biol. 2019, 431, 4118–4134. [Google Scholar]
- Karczewski, K.J.; Snyder, M.P. Integrative omics for health and disease. Nat. Rev. Genet. 2018, 19, 299–310. [Google Scholar] [CrossRef]
- Gierend, K.; Waltemath, D.; Ganslandt, T.; Siegel, F. Traceable Research Data Sharing in a German Medical Data Integration Center With FAIR (Findability, Accessibility, Interoperability, and Reusability)-Geared Provenance Implementation: Proof-of-Concept Study. JMIR Form Res. 2023, 7, e50027. [Google Scholar] [CrossRef]
- Shultz, M.D. Considerations for designing and prioritizing computational drug discovery. SLAS Discov. 2019, 24, 468–486. [Google Scholar]
- Shabani, A.; Rajabi, S.; Alipanahi, N.; Ahmadi Teymourlouy, A. Key Factors to Improve Pharmaceutical Industry’s R&D Productivity: A Case Study of Iranian Pharmaceutical Holding. Med. J. Islam Repub. Iran. 2022, 36, 117. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.A.; Dumont, J.R.; Memar, S.; Skirzewski, M.; Wan, J.; Mofrad, M.H.; Ansari, H.Z.; Li, Y.; Muller, L.; Prado, V.F.; et al. New frontiers in translational research: Touchscreens, open science, and the mouse translational research accelerator platform. Genes Brain Behav. 2021, 20, e12705. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M. The innovative medicines initiative: A European response to the innovation challenge. Clin. Pharmacol. Ther. 2012, 91, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Suzek, T.; Zhang, J.; Wang, J.; He, S.; Cheng, T.; Gindulyte, A. PubChem BioAssay: 2014 update. Nucleic Acids Res. 2014, 42, D1075–D1082. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Elenee Argentinis, J.D. IBM Watson: How cognitive computing can be applied to big data challenges in life sciences research. Clin. Ther. 2016, 38, 688–701. [Google Scholar] [CrossRef] [PubMed]
- Monge, A.; Arrault, A.; Marot, C. University–industry collaboration in drug discovery and developments: A matter of synergies. Drug Discov. Today 2011, 16, 1106–1114. [Google Scholar]
- Pisani, E.; AbouZahr, C. Sharing health data: Good intentions are not enough. Bull. World Health Organ. 2010, 88, 462–466. [Google Scholar] [CrossRef]
- Hamburg, M.A.; Collins, F.S. The path to personalized medicine. N. Engl. J. Med. 2010, 363, 301–304. [Google Scholar] [CrossRef]
- McCarthy, M.I.; Abecasis, G.R.; Cardon, L.R.; Goldstein, D.B.; Little, J.; Ioannidis, J.P.; Hirschhorn, J.N. Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nat. Rev. Genet. 2008, 9, 356–369. [Google Scholar] [CrossRef]
- Nelson, M.R.; Johnson, T.; Warren, L.; Hughes, A.R.; Chissoe, S.L.; Xu, C.F.; Waterworth, D.M. The genetics of drug efficacy: Opportunities and challenges. Nat. Rev. Genet. 2016, 17, 197–210. [Google Scholar] [CrossRef]
- Mirnezami, R.; Nicholson, J.; Darzi, A. Preparing for precision medicine. N. Engl. J. Med. 2012, 366, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Garraway, L.A.; Lander, E.S. Lessons from the cancer genome. Cell 2013, 153, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Piwek, L.; Ellis, D.A.; Andrews, S.; Joinson, A. The rise of consumer health wearables: Promises and barriers. PLoS Med. 2016, 13, e1001953. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.A.; Ann Sakowski, J.; Trosman, J.; Douglas, M.P.; Liang, S.Y.; Neumann, P. The economic value of personalized medicine tests: What we know and what we need to know. Genet. Med. 2014, 16, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Walters, W.P.; Plowright, A.T. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 2016, 19, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 2018, 4, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yella, J.; Jegga, A.G. Transcriptomic Data Mining and Repurposing for Computational Drug Discovery. Methods Mol. Biol. 2019, 1903, 73–95. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Preuer, K.; Renz, P.; Unterthiner, T.; Hochreiter, S.; Klambauer, G. Fréchet ChemNet Distance: A Metric for Generative Models for Molecules in Drug Discovery. J. Chem. Inf. Model. 2018, 58, 1736–1741. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, L.; Yi, Z. Breast cancer cell nuclei classification in histopathology images using deep neural networks. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 179–191. [Google Scholar] [CrossRef]
Methods | Programs |
---|---|
Homology Modeling/Comparative Modeling: Create a 3D model of the target protein using a homologous protein’s empirically confirmed structure as a guide. | MODELLER, SWISS-MODEL, Phyre2, RaptorX, I-TASSER |
Ab Initio Modeling: Build a 3D model of the target protein by sampling the protein’s conformational space without using experimental data. | Rosetta, QUARK, AlphaFold, ESMFold, PCONS5 |
Threading: Build a 3D model of the target protein by aligning the protein sequence with the sequences of proteins of known structure. | MUSTER, 3D-PSSM, LOMETS, HHpred |
Hybrid Modeling: Combine two or more modeling approaches to improve the accuracy of the predicted structure. | CABS-flex, PrimeX, GalaxyHomomer |
Molecular Dynamics: Simulate the behavior of the protein over time using classical or quantum mechanics. | GROMACS, NAMD, CHARMM |
Knowledge-based methods: Use existing knowledge about protein structure and function to predict the structure of the target protein. | ProSMoS, ProQ3D, I-TASSER-2GO |
Template-free methods: Build a 3D model of the target protein without using templates or homologous proteins. | CONFOLD2, MetaPSICOV, TrRosetta |
Fragment-assembly methods: Build a 3D model of the target protein by assembling fragments of known protein structures. | PEP-FOLD3, Robetta, QUARK |
Tool | Application | Advantages | Disadvantages |
---|---|---|---|
AutoDock Vina | Predicting the binding affinities and orientations of ligands. | Fast, accurate, and easy to use. | May not be as accurate for complex systems. |
AutoDock GOLD | Predicting the binding affinities and orientations of ligands, especially for flexible ligands. | Accurate for flexible ligands. | Requires a license and can be expensive. |
Glide | Predicting the binding affinities and orientations of ligands. | Accurate and integrated with other Schrödinger tools. | Requires the Schrödinger suite, which can be expensive. |
DOCK | Predicting the binding affinities and orientations of ligands and performing virtual screening. | It is versatile and can be used for both docking and virtual screening. | Can be slower than other tools. |
LigandFit | Predicting the binding affinities and orientations of ligands. | Easy to use and integrated with other Schrödinger tools. | May not be as accurate for complex systems. |
SwissDock | Predicting the binding affinities and orientations of ligands. | Easy to use and accessible online. | May not be as accurate for complex systems. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niazi, S.K.; Mariam, Z. Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis. Pharmaceuticals 2024, 17, 22. https://doi.org/10.3390/ph17010022
Niazi SK, Mariam Z. Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis. Pharmaceuticals. 2024; 17(1):22. https://doi.org/10.3390/ph17010022
Chicago/Turabian StyleNiazi, Sarfaraz K., and Zamara Mariam. 2024. "Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis" Pharmaceuticals 17, no. 1: 22. https://doi.org/10.3390/ph17010022
APA StyleNiazi, S. K., & Mariam, Z. (2024). Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis. Pharmaceuticals, 17(1), 22. https://doi.org/10.3390/ph17010022