Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = quantum metric fluctuations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 413 KiB  
Article
An Effective Parameter Analysis for Sending-or-Not-Sending Quantum Key Distribution with Untrusted Light Sources
by Jiajian Huang, Weigang Li and Yucheng Qiao
Entropy 2025, 27(6), 547; https://doi.org/10.3390/e27060547 - 22 May 2025
Viewed by 399
Abstract
The twin-field (TF) protocol is a key protocol in quantum key distribution (QKD) that enables remote key distribution, achieving a maximum secure transmission distance of over 500 km. However, the TF protocol still faces several security issues in real-world environments. To address the [...] Read more.
The twin-field (TF) protocol is a key protocol in quantum key distribution (QKD) that enables remote key distribution, achieving a maximum secure transmission distance of over 500 km. However, the TF protocol still faces several security issues in real-world environments. To address the issue of untrusted sources, one effective solution is to introduce a light-source monitoring module into the system. Analysis shows that a solution based on untagged bits (UBs) can achieve ideal monitoring performance. This solution can capture UB signals to accurately estimate key parameters in the protocol’s security analysis, ultimately deriving a tight bound for the secure bit rate. Simulations show that this solution approximates the performance of ideal light sources in the presence of untrusted sources and effectively mitigates the impact of light-source fluctuations. It outperforms other solutions in key performance metrics, such as transmission distance. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

18 pages, 356 KiB  
Article
Entropy of the Quantum–Classical Interface: A Potential Metric for Security
by Sarah Chehade, Joel A. Dawson, Stacy Prowell and Ali Passian
Entropy 2025, 27(5), 517; https://doi.org/10.3390/e27050517 - 12 May 2025
Cited by 1 | Viewed by 655
Abstract
Hybrid quantum–classical systems are emerging as key platforms in quantum computing, sensing, and communication technologies, but the quantum–classical interface (QCI)—the boundary enabling these systems—introduces unique and largely unexplored security vulnerabilities. This position paper proposes using entropy-based metrics to monitor and enhance security, specifically [...] Read more.
Hybrid quantum–classical systems are emerging as key platforms in quantum computing, sensing, and communication technologies, but the quantum–classical interface (QCI)—the boundary enabling these systems—introduces unique and largely unexplored security vulnerabilities. This position paper proposes using entropy-based metrics to monitor and enhance security, specifically at the QCI. We present a theoretical security outline that leverages well-established information-theoretic entropy measures, such as Shannon entropy, von Neumann entropy, and quantum relative entropy, to detect anomalous behaviors and potential breaches at the QCI. By linking entropy fluctuations to scenarios of practical relevance—including quantum key distribution, quantum sensing, and hybrid control systems—we promote the potential value and applicability of entropy-based security monitoring. While explicitly acknowledging practical limitations and theoretical assumptions, we argue that entropy-based metrics provide a complementary approach to existing security methods, inviting further empirical studies and theoretical refinements that can strengthen future quantum technologies. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

45 pages, 697 KiB  
Article
The Computational Universe: Quantum Quirks and Everyday Reality, Actual Time, Free Will, the Classical Limit Problem in Quantum Loop Gravity and Causal Dynamical Triangulation
by Piero Chiarelli and Simone Chiarelli
Quantum Rep. 2024, 6(2), 278-322; https://doi.org/10.3390/quantum6020020 - 20 Jun 2024
Viewed by 2094
Abstract
The simulation analogy presented in this work enhances the accessibility of abstract quantum theories, specifically the stochastic hydrodynamic model (SQHM), by relating them to our daily experiences. The SQHM incorporates the influence of fluctuating gravitational background, a form of dark energy, into quantum [...] Read more.
The simulation analogy presented in this work enhances the accessibility of abstract quantum theories, specifically the stochastic hydrodynamic model (SQHM), by relating them to our daily experiences. The SQHM incorporates the influence of fluctuating gravitational background, a form of dark energy, into quantum equations. This model successfully addresses key aspects of objective-collapse theories, including resolving the ‘tails’ problem through the definition of quantum potential length of interaction in addition to the De Broglie length, beyond which coherent Schrödinger quantum behavior and wavefunction tails cannot be maintained. The SQHM emphasizes that an external environment is unnecessary, asserting that the quantum stochastic behavior leading to wavefunction collapse can be an inherent property of physics in a spacetime with fluctuating metrics. Embedded in relativistic quantum mechanics, the theory establishes a coherent link between the uncertainty principle and the constancy of light speed, aligning seamlessly with finite information transmission speed. Within quantum mechanics submitted to fluctuations, the SQHM derives the indeterminacy relation between energy and time, offering insights into measurement processes impossible within a finite time interval in a truly quantum global system. Experimental validation is found in confirming the Lindemann constant for solid lattice melting points and the 4He transition from fluid to superfluid states. The SQHM’s self-consistency lies in its ability to describe the dynamics of wavefunction decay (collapse) and the measure process. Additionally, the theory resolves the pre-existing reality problem by showing that large-scale systems naturally decay into decoherent states stable in time. Continuing, the paper demonstrates that the physical dynamics of SQHM can be analogized to a computer simulation employing optimization procedures for realization. This perspective elucidates the concept of time in contemporary reality and enriches our comprehension of free will. The overall framework introduces an irreversible process impacting the manifestation of macroscopic reality at the present time, asserting that the multiverse exists solely in future states, with the past comprising the formed universe after the current moment. Locally uncorrelated projective decays of wavefunction, at the present time, function as a reduction of the multiverse to a single universe. Macroscopic reality, characterized by a foam-like consistency where microscopic domains with quantum properties coexist, offers insights into how our consciousness perceives dynamic reality. It also sheds light on the spontaneous emergence of gravity in discrete quantum spacetime evolution, and the achievement of the classical general relativity limit in quantum loop gravity and causal dynamical triangulation. The simulation analogy highlights a strategy focused on minimizing information processing, facilitating the universal simulation in solving its predetermined problem. From within, reality becomes the manifestation of specific physical laws emerging from the inherent structure of the simulation devised to address its particular issue. In this context, the reality simulation appears to employ an optimization strategy, minimizing information loss and data management in line with the simulation’s intended purpose. Full article
Show Figures

Figure 1

19 pages, 381 KiB  
Article
Cosmic Time and the Initial State of the Universe
by Chopin Soo
Universe 2023, 9(12), 489; https://doi.org/10.3390/universe9120489 - 23 Nov 2023
Cited by 1 | Viewed by 1851
Abstract
The exact solution of the Hamiltonian constraint in canonical gravity and the resultant reduction of Einstein’s theory reveal the synergy between gravitation and the intrinsic cosmic clock of our expanding universe. Intrinsic Time Geometrodynamics advocates a paradigm shift from four covariance to just [...] Read more.
The exact solution of the Hamiltonian constraint in canonical gravity and the resultant reduction of Einstein’s theory reveal the synergy between gravitation and the intrinsic cosmic clock of our expanding universe. Intrinsic Time Geometrodynamics advocates a paradigm shift from four covariance to just spatial diffeomorphism invariance. Consequently, causal time-ordering and quantum Schrödinger–Heisenberg evolution in cosmic time become meaningful. The natural addition of a Cotton–York term to the physical Hamiltonian changes the initial data problem radically. In the classical context, this is studied with the Lichnerowicz–York equation; quantum mechanically, it lends weight to the origin of the universe as an exact Chern–Simons Hartle–Hawking state, which features Euclidean–Lorentzian instanton tunneling. At the level of expectation values, this quantum state yields a low-entropy hot smooth Robertson–Walker beginning in accord with Penrose’s Weyl Curvature Hypothesis. The Chern–Simons Hartle–Hawking state also manifests transverse traceless quantum metric fluctuations, with, at the lowest approximation, scale-invariant two-point correlations as one of its defining characteristics. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2023—Gravitation)
Show Figures

Figure 1

23 pages, 370 KiB  
Article
Background Independence and Gauge Invariance in General Relativity Part 2—Covariant Quantum Gravity
by Massimo Tessarotto and Claudio Cremaschini
Symmetry 2022, 14(11), 2229; https://doi.org/10.3390/sym14112229 - 24 Oct 2022
Cited by 3 | Viewed by 1493
Abstract
Background independence is often being claimed as the characteristic property of several current and past models of Quantum Gravity. In actual fact, such a notion has a wider connotation and must be rooted into the validity of the general covariance principle, demanding its [...] Read more.
Background independence is often being claimed as the characteristic property of several current and past models of Quantum Gravity. In actual fact, such a notion has a wider connotation and must be rooted into the validity of the general covariance principle, demanding its logical connection with the notions of manifest covariance and (quantum) gauge invariance. In fact, as we intend to show here, it involves (a) the existence of a well-defined, albeit arbitrary, classical background space-time; and (b) the suitable realization of a dynamical equation for the related background metric field tensor, referred to as quantum-modified Einstein tensor field equation, which actually determines it in a suitable functional setting. Remarkably, it is proved that in the context of the theory of Covariant Quantum Gravity (CQG-theory), recently developed by Cremaschini and Tessarotto (2015–2022), background independence implies that such an equation “emerges” rigorously from the same CQG-theory. This follows in terms of a stochastic quantum expectation value evaluated with respect to the corresponding characteristic quantum PDE. It is shown that an analogous emergence property applies also to the background metric field tensor in terms of stochastic fluctuations of the corresponding underlying quantum tensor of gravitational field. These results warrant the consistent validity of background independence for the prescription of the space-time metric tensor in CQG-theory. Full article
(This article belongs to the Special Issue Supersymmetry and Supersymmetric Field Theories)
9 pages, 1201 KiB  
Communication
Surface Electromagnetic Waves near a Black Hole Event Horizon and Their Observational Consequences
by Igor I. Smolyaninov
Astronomy 2022, 1(1), 49-57; https://doi.org/10.3390/astronomy1010006 - 7 Jun 2022
Viewed by 2699
Abstract
Localization phenomena in light, scattering from random fluctuations of matter fields and space–time metrics near a black hole horizon, were predicted to produce a pronounced peak in the angular distribution of second-harmonic light in the direction normal to the horizon. Therefore, the detection [...] Read more.
Localization phenomena in light, scattering from random fluctuations of matter fields and space–time metrics near a black hole horizon, were predicted to produce a pronounced peak in the angular distribution of second-harmonic light in the direction normal to the horizon. Therefore, the detection of second-harmonic generation may become a viable observational tool to study spacetime physics near event horizons of astronomical black holes. The light localization phenomena near the horizon may be facilitated by the existence of surface electromagnetic wave solutions. In this communication, we study such surface electromagnetic wave solutions near the horizon of a Schwarzschild metric, describing a black hole in vacuum. We demonstrate that such surface wave solutions must appear when quantum gravity effects are taken into account. Potential observational evidence of this effect is also discussed. Full article
Show Figures

Figure 1

20 pages, 2456 KiB  
Article
Characterizing the Reproducibility of Noisy Quantum Circuits
by Samudra Dasgupta and Travis S. Humble
Entropy 2022, 24(2), 244; https://doi.org/10.3390/e24020244 - 5 Feb 2022
Cited by 14 | Viewed by 3169
Abstract
The ability of a quantum computer to reproduce or replicate the results of a quantum circuit is a key concern for verifying and validating applications of quantum computing. Statistical variations in circuit outcomes that arise from ill-characterized fluctuations in device noise may lead [...] Read more.
The ability of a quantum computer to reproduce or replicate the results of a quantum circuit is a key concern for verifying and validating applications of quantum computing. Statistical variations in circuit outcomes that arise from ill-characterized fluctuations in device noise may lead to computational errors and irreproducible results. While device characterization offers a direct assessment of noise, an outstanding concern is how such metrics bound the reproducibility of a given quantum circuit. Here, we first directly assess the reproducibility of a noisy quantum circuit, in terms of the Hellinger distance between the computational results, and then we show that device characterization offers an analytic bound on the observed variability. We validate the method using an ensemble of single qubit test circuits, executed on a superconducting transmon processor with well-characterized readout and gate error rates. The resulting description for circuit reproducibility, in terms of a composite device parameter, is confirmed to define an upper bound on the observed Hellinger distance, across the variable test circuits. This predictive correlation between circuit outcomes and device characterization offers an efficient method for assessing the reproducibility of noisy quantum circuits. Full article
(This article belongs to the Special Issue Methods and Applications of Quantum Data Processing)
Show Figures

Figure 1

19 pages, 788 KiB  
Article
Towards Quantum Simulation of Black Holes in a dc-SQUID Array
by Adrián Terrones and Carlos Sabín
Universe 2021, 7(12), 499; https://doi.org/10.3390/universe7120499 - 15 Dec 2021
Cited by 4 | Viewed by 3096
Abstract
We propose quantum simulations of 1 + 1D radial sections of different black hole spacetimes (Schwarzschild, Reissner–Nordstrøm, Kerr and Kerr–Newman), by means of a dc-SQUID array embedded on an open transmission line. This was achieved by reproducing the spatiotemporal dependence of 1 + [...] Read more.
We propose quantum simulations of 1 + 1D radial sections of different black hole spacetimes (Schwarzschild, Reissner–Nordstrøm, Kerr and Kerr–Newman), by means of a dc-SQUID array embedded on an open transmission line. This was achieved by reproducing the spatiotemporal dependence of 1 + 1D sections of the spacetime metric with the propagation speed of the electromagnetic field in the simulator, which can be modulated by an external magnetic flux. We show that the generation of event horizons—and therefore Hawking radiation—in the simulator could be achieved for non-rotating black holes, although we discuss limitations related to fluctuations of the quantum phase. In the case of rotating black holes, it seems that the simulation of ergospheres is beyond reach. Full article
(This article belongs to the Special Issue Analogue Gravity)
Show Figures

Figure 1

37 pages, 1335 KiB  
Article
Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum Dynamics of Cosmological Perturbations
by Jen-Tsung Hsiang and Bei-Lok Hu
Entropy 2021, 23(11), 1544; https://doi.org/10.3390/e23111544 - 20 Nov 2021
Cited by 11 | Viewed by 2604
Abstract
Density contrasts in the universe are governed by scalar cosmological perturbations which, when expressed in terms of gauge-invariant variables, contain a classical component from scalar metric perturbations and a quantum component from inflaton field fluctuations. It has long been known that the effect [...] Read more.
Density contrasts in the universe are governed by scalar cosmological perturbations which, when expressed in terms of gauge-invariant variables, contain a classical component from scalar metric perturbations and a quantum component from inflaton field fluctuations. It has long been known that the effect of cosmological expansion on a quantum field amounts to squeezing. Thus, the entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems. Entropy of a free quantum field is a seemingly simple yet subtle issue. In this paper, different from previous treatments, we tackle this issue with a fully developed nonequilibrium quantum field theory formalism for such systems. We compute the covariance matrix elements of the parametric quantum field and solve for the evolution of the density matrix elements and the Wigner functions, and, from them, derive the von Neumann entropy. We then show explicitly why the entropy for the squeezed yet closed system is zero, but is proportional to the particle number produced upon coarse-graining out the correlation between the particle pairs. We also construct the bridge between our quantum field-theoretic results and those using the probability distribution of classical stochastic fields by earlier authors, preserving some important quantum properties, such as entanglement and coherence, of the quantum field. Full article
(This article belongs to the Special Issue Entropy Measures and Applications in Astrophysics)
Show Figures

Figure 1

26 pages, 557 KiB  
Article
Effects of Quantum Metric Fluctuations on the Cosmological Evolution in Friedmann-Lemaitre-Robertson-Walker Geometries
by Zahra Haghani and Tiberiu Harko
Physics 2021, 3(3), 689-714; https://doi.org/10.3390/physics3030042 - 24 Aug 2021
Cited by 8 | Viewed by 3665
Abstract
In this paper, the effects of the quantum metric fluctuations on the background cosmological dynamics of the universe are considered. To describe the quantum effects, the metric is assumed to be given by the sum of a classical component and a fluctuating component [...] Read more.
In this paper, the effects of the quantum metric fluctuations on the background cosmological dynamics of the universe are considered. To describe the quantum effects, the metric is assumed to be given by the sum of a classical component and a fluctuating component of quantum origin . At the classical level, the Einstein gravitational field equations are equivalent to a modified gravity theory, containing a non-minimal coupling between matter and geometry. The gravitational dynamics is determined by the expectation value of the fluctuating quantum correction term, which can be expressed in terms of an arbitrary tensor Kμν. To fix the functional form of the fluctuation tensor, the Newtonian limit of the theory is considered, from which the generalized Poisson equation is derived. The compatibility of the Newtonian limit with the Solar System tests allows us to fix the form of Kμν. Using these observationally consistent forms of Kμν, the generalized Friedmann equations are obtained in the presence of quantum fluctuations of the metric for the case of a flat homogeneous and isotropic geometry. The corresponding cosmological models are analyzed using both analytical and numerical method. One finds that a large variety of cosmological models can be formulated. Depending on the numerical values of the model parameters, both accelerating and decelerating behaviors can be obtained. The obtained results are compared with the standard ΛCDM (Λ Cold Dark Matter) model. Full article
(This article belongs to the Special Issue New Advances in Quantum Geometry)
Show Figures

Figure 1

16 pages, 836 KiB  
Review
Cosmological Particle Production in Quantum Gravity
by Yaser Tavakoli
Universe 2021, 7(8), 258; https://doi.org/10.3390/universe7080258 - 22 Jul 2021
Cited by 2 | Viewed by 1720
Abstract
Quantum theory of a test field on a quantum cosmological spacetime may be viewed as a theory of the test field on an emergent classical background. In such a case, the resulting dressed metric for the field propagation is a function of the [...] Read more.
Quantum theory of a test field on a quantum cosmological spacetime may be viewed as a theory of the test field on an emergent classical background. In such a case, the resulting dressed metric for the field propagation is a function of the quantum fluctuations of the original geometry. When the backreaction is negligible, massive modes can experience an anisotropic Bianchi type I background. The field modes propagating on such a quantum-gravity-induced spacetime can then unveil interesting phenomenological consequences of the super-Planckian scales, such as gravitational particle production. The aim of this paper is to address the issue of gravitational particle production associated with the massive modes in such an anisotropic dressed spacetime. By imposing a suitable adiabatic condition on the vacuum state and computing the energy density of the created particles, the significance of the particle production on the dynamics of the universe in Planck era is discussed. Full article
(This article belongs to the Special Issue Quantum Cosmology)
12 pages, 459 KiB  
Article
Quantum-Only Metrics in Spherically Symmetric Gravity
by Giovanni Modanese
Quantum Rep. 2020, 2(2), 314-325; https://doi.org/10.3390/quantum2020021 - 18 Jun 2020
Cited by 1 | Viewed by 2390
Abstract
The Einstein action for the gravitational field has some properties which make of it, after quantization, a rare prototype of systems with quantum configurations that do not have a classical analogue. Assuming spherical symmetry in order to reduce the effective dimensionality, we have [...] Read more.
The Einstein action for the gravitational field has some properties which make of it, after quantization, a rare prototype of systems with quantum configurations that do not have a classical analogue. Assuming spherical symmetry in order to reduce the effective dimensionality, we have performed a Monte Carlo simulation of the path integral with transition probability e β | S | . Although this choice does not allow to reproduce the full dynamics, it does lead us to find a large ensemble of metric configurations having action | S | ħ by several magnitude orders. These vacuum fluctuations are strong deformations of the flat space metric (for which S = 0 exactly). They exhibit a periodic polarization in the scalar curvature R. In the simulation we fix a length scale L and divide it into N sub-intervals. The continuum limit is investigated by increasing N up to 10 6 ; the average squared action S 2 is found to scale as 1 / N 2 and thermalization of the algorithm occurs at a very low temperature (classical limit). This is in qualitative agreement with analytical results previously obtained for theories with stabilized conformal factor in the asymptotic safety scenario. Full article
Show Figures

Figure 1

70 pages, 2792 KiB  
Article
Black Hole as a Quantum Field Configuration
by Hikaru Kawai and Yuki Yokokura
Universe 2020, 6(6), 77; https://doi.org/10.3390/universe6060077 - 4 Jun 2020
Cited by 23 | Viewed by 13340
Abstract
We describe 4D evaporating black holes as quantum field configurations by solving the semi-classical Einstein equation G μ ν = 8 π G ψ | T μ ν | ψ and quantum matter fields in a self-consistent manner. As the matter [...] Read more.
We describe 4D evaporating black holes as quantum field configurations by solving the semi-classical Einstein equation G μ ν = 8 π G ψ | T μ ν | ψ and quantum matter fields in a self-consistent manner. As the matter fields, we consider N massless free scalar fields (N is large). We find a spherically symmetric self-consistent solution of the metric g μ ν and the state | ψ . Here, g μ ν is locally A d S 2 × S 2 geometry, and | ψ provides ψ | T μ ν | ψ = 0 | T μ ν | 0 + T μ ν ( ψ ) , where | 0 is the ground state of the matter fields in the metric and T μ ν ( ψ ) consists of the excitation of s-waves that describe the collapsing matter and Hawking radiation with the ingoing negative energy flow. This object is supported by a large tangential pressure 0 | T θ θ | 0 due to the vacuum fluctuation of the bound modes with large angular momenta l 1 . This describes the interior of the black hole when the back reaction of the evaporation is taken into account. In this picture, the black hole is a compact object with a surface (instead of horizon) that looks like a conventional black hole from the outside and eventually evaporates without a singularity. If we count the number of configurations { | ψ } that satisfy the self-consistent equation, we reproduce the area law of the entropy. This tells that the information is carried by the s-waves inside the black hole. | ψ also describes the process that the negative ingoing energy flow created with Hawking radiation is superposed on the collapsing matter to decrease the total energy while the total energy density remains positive. Finally, as a special case, we consider conformal matter fields and show that the interior metric is determined by the matter content of the theory, which leads to a new constraint to the matter contents for the black hole to evaporate. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

14 pages, 292 KiB  
Article
General Relativistic Wormhole Connections from Planck-Scales and the ER = EPR Conjecture
by Fabrizio Tamburini and Ignazio Licata
Entropy 2020, 22(1), 3; https://doi.org/10.3390/e22010003 - 18 Dec 2019
Cited by 15 | Viewed by 6069
Abstract
Einstein’s equations of general relativity (GR) can describe the connection between events within a given hypervolume of size L larger than the Planck length L P in terms of wormhole connections where metric fluctuations give rise to an indetermination relationship that involves the [...] Read more.
Einstein’s equations of general relativity (GR) can describe the connection between events within a given hypervolume of size L larger than the Planck length L P in terms of wormhole connections where metric fluctuations give rise to an indetermination relationship that involves the Riemann curvature tensor. At low energies (when L L P ), these connections behave like an exchange of a virtual graviton with wavelength λ G = L as if gravitation were an emergent physical property. Down to Planck scales, wormholes avoid the gravitational collapse and any superposition of events or space–times become indistinguishable. These properties of Einstein’s equations can find connections with the novel picture of quantum gravity (QG) known as the “Einstein–Rosen (ER) = Einstein–Podolski–Rosen (EPR)” (ER = EPR) conjecture proposed by Susskind and Maldacena in Anti-de-Sitter (AdS) space–times in their equivalence with conformal field theories (CFTs). In this scenario, non-traversable wormhole connections of two or more distant events in space–time through Einstein–Rosen (ER) wormholes that are solutions of the equations of GR, are supposed to be equivalent to events connected with non-local Einstein–Podolski–Rosen (EPR) entangled states that instead belong to the language of quantum mechanics. Our findings suggest that if the ER = EPR conjecture is valid, it can be extended to other different types of space–times and that gravity and space–time could be emergent physical quantities if the exchange of a virtual graviton between events can be considered connected by ER wormholes equivalent to entanglement connections. Full article
(This article belongs to the Special Issue Relativistic Quantum Information)
12 pages, 648 KiB  
Article
Metrics with Zero and Almost-Zero Einstein Action in Quantum Gravity
by Giovanni Modanese
Symmetry 2019, 11(10), 1288; https://doi.org/10.3390/sym11101288 - 14 Oct 2019
Cited by 4 | Viewed by 2378
Abstract
We generate numerically on a lattice an ensemble of stationary metrics, with spherical symmetry, which have Einstein action S E . This is obtained through a Metropolis algorithm with weight exp ( β 2 S E 2 ) and [...] Read more.
We generate numerically on a lattice an ensemble of stationary metrics, with spherical symmetry, which have Einstein action S E . This is obtained through a Metropolis algorithm with weight exp ( β 2 S E 2 ) and β 1 . The squared action in the exponential allows to circumvene the problem of the non-positivity of S E . The discretized metrics obtained exhibit a spontaneous polarization in regions of positive and negative scalar curvature. We compare this ensemble with a class of continuous metrics previously found, which satisfy the condition S E = 0 exactly, or in certain cases even the stronger condition R ( x ) = 0 for any x . All these gravitational field configurations are of considerable interest in quantum gravity, because they represent possible vacuum fluctuations and are markedly different from Wheeler’s “spacetime foam”. Full article
(This article belongs to the Special Issue Symmetry and Quantum Gravity)
Show Figures

Figure 1

Back to TopTop