Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = quantification of indocyanine green

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2415 KB  
Article
Improved Quantification of ICG Perfusion Through Motion Compensation in Fluorescence-Guided Surgery
by Sermed Ellebæk Nicolae, Thomas Baastrup Piper, Nikolaj Albeck Nerup, Michael Patrick Achiam and Morten Bo Søndergaard Svendsen
Diagnostics 2026, 16(2), 176; https://doi.org/10.3390/diagnostics16020176 - 6 Jan 2026
Viewed by 98
Abstract
Background/Objectives: Motion artifacts significantly distort fluorescence measurements during surgical perfusion assessment, potentially leading to incorrect clinical decisions. This study evaluates the efficacy of automated motion compensation (MC) in quantitative indocyanine green (q-ICG) imaging to improve the accuracy of perfusion assessment. Methods: [...] Read more.
Background/Objectives: Motion artifacts significantly distort fluorescence measurements during surgical perfusion assessment, potentially leading to incorrect clinical decisions. This study evaluates the efficacy of automated motion compensation (MC) in quantitative indocyanine green (q-ICG) imaging to improve the accuracy of perfusion assessment. Methods: Frames from ICG perfusion assessment during 17 pancreaticoduodenectomies were analyzed. Regions of interest (ROIs) were systematically placed on each frame series, and automated MC was applied to track tissue movement. Performance was evaluated by comparing MC with surgeon-adjusted placement using multiple image quality metrics and analyzing perfusion metrics on time–intensity curves. Principal Component Analysis (PCA) was applied to explore whether image patterns could distinguish between successful and unsuccessful motion compensation. Results: Automated motion compensation successfully corrected motion artifacts in 67.5% of frame sequences, achieving comparable performance to surgeon-guided adjustments. PCA demonstrated clear separation between sufficient and insufficient corrections (AUC = 0.80). At the population level, MC did not significantly change perfusion slope (t(59) = 1.60, p = 0.11) or time-to-peak (Tmax; t(58) = 0.81, p = 0.42). Bland–Altman analysis showed a mean bias of −0.54 (SD = 3.32) for slope and 24.95 (SD = 238.40) for Tmax. At the individual level, 86.7% of slope and 79.7% of Tmax values differed by ≥10% after MC, with mean absolute percentage changes of 108.5% (median 37.8%) and 431.5% (median 65.9%), respectively. Conclusions: MC effectively reduces motion artifacts in fluorescence-guided perfusion assessment. By improving the precision of ICG-derived parameters, this technology enhances measurement reliability and represents an enabler for accurate intraoperative perfusion quantification. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

15 pages, 2075 KB  
Article
Standardized and Quantitative ICG Perfusion Assessment: Feasibility and Reproducibility in a Multicentre Setting
by Eline Feitsma, Hugo Schouw, Tim Hoffman, Sam van Dijk, Wido Heeman, Jasper Vonk, Floris Tange, Jan Koetje, Liesbeth Jansen, Abbey Schepers, Tessa van Ginhoven, Wendy Kelder, Gooitzen van Dam, Wiktor Szymanski, Milou Noltes and Schelto Kruijff
Life 2025, 15(12), 1868; https://doi.org/10.3390/life15121868 - 5 Dec 2025
Viewed by 401
Abstract
Indocyanine green near-infrared fluorescence (ICG-NIRF) imaging is widely used to assess tissue perfusion, yet its subjective interpretation limits correlation with postoperative parathyroid function. To address this, the Workflow model for ICG-angiography integrating Standardization and Quantification (WISQ) was developed. This exploratory prospective multicenter study [...] Read more.
Indocyanine green near-infrared fluorescence (ICG-NIRF) imaging is widely used to assess tissue perfusion, yet its subjective interpretation limits correlation with postoperative parathyroid function. To address this, the Workflow model for ICG-angiography integrating Standardization and Quantification (WISQ) was developed. This exploratory prospective multicenter study evaluated the reproducibility of WISQ in adults undergoing total thyroidectomy at two Dutch university centres. Patients with contraindications to ICG or prior neck surgery were excluded. Intraoperative imaging used standardized camera settings with blood volume-adjusted ICG dosing, and perfusion curves were analyzed using predefined regions of interest. Eighty patients were included. Significant inter-centre variability was observed in maximum fluorescence intensity, inflow slope, and outflow slope (n = 30). At the lead centre, outflow was the most promising predictor of postoperative hypoparathyroidism (HPT) (median −0.33 [IQR −0.49–−0.15] a.f.u./s for HPT vs. −0.68 [−0.91–−0.41], n = 17, p = 0.08), although no parameter significantly predicted HPT. Repeated ICG injections consistently produced lower maximal intensities irrespective of injection rate, and reproducible curves were achieved only when ICG was freshly dissolved at 0.5 mg/mL instead of 2.5 mg/mL. These findings indicate that ICG concentration and injection technique influence perfusion kinetics and underscore the need to update WISQ with standardized injection dilution to improve its clinical utility. Full article
(This article belongs to the Special Issue Thyroid and Parathyroid Diseases: Advances in Molecular Imaging)
Show Figures

Figure 1

23 pages, 3243 KB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 1150
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

13 pages, 6817 KB  
Article
A Potential Pitfall in the Interpretation of Microscope-Integrated Fluorescence Angiography: The Center–Periphery Effect
by Dieder Stolk, Paul Bloemen, Richard Martin van den Elzen, Martijn de Bruin and Caroline Driessen
Med. Sci. 2025, 13(2), 54; https://doi.org/10.3390/medsci13020054 - 3 May 2025
Cited by 1 | Viewed by 708
Abstract
Background/Objectives: Indocyanine green fluorescence angiography (ICG-FA) enables the real-time visualization of tissue perfusion. However, objective research on microscope-integrated fluorescence angiography (FA) has not been conducted before. This study aims to evaluate the fluorescence light distribution in images formed by ICG-FA in two surgical [...] Read more.
Background/Objectives: Indocyanine green fluorescence angiography (ICG-FA) enables the real-time visualization of tissue perfusion. However, objective research on microscope-integrated fluorescence angiography (FA) has not been conducted before. This study aims to evaluate the fluorescence light distribution in images formed by ICG-FA in two surgical microscopes using a phantom, and to provide recommendations for their application. Methods: An 11.8 by 6.8 cm ICG and Intralipid phantom was made to evaluate overall spatial fluorescence sensitivity in two surgical microscopes in multiple working distances (WDs) and magnification factors (MFs). The signal was quantified using a tailor-made software in Python 3.8.10. Results: A clear center–periphery effect was present in most settings in both microscopes, with the highest peripheral fluorescence signal loss in the lowest MF: 100% in the Tivato and 83% in the Pentero. Increasing the MF improved homogeneity, where the biggest difference was seen between the first and second MF. A 30 cm WD and 3.5× MF produced the most homogeneous images suitable for free-flap surgery. Manually opening the light beam diameter also reduced the center–periphery effect. Conclusions: Peripheral signal loss in microscope-integrated ICG-FA must be considered during clinical interpretation and for the quantification of tissue perfusion. In clinical practice during reconstructive free-flap surgery, a 30 cm WD, 3.5 MF, and manually opened light beam diameter should be applied to achieve the most homogeneous image. Full article
Show Figures

Figure 1

10 pages, 4559 KB  
Article
Quantification of Choroidal Vascular Hyperpermeability on Ultra-Widefield Indocyanine Green Angiography in Macular Neovascularization
by Ho Ra, Younhea Jung, Seung Hoon Lee, Seo-woo Park, Jay Chhablani and Jiwon Baek
Diagnostics 2024, 14(7), 754; https://doi.org/10.3390/diagnostics14070754 - 2 Apr 2024
Cited by 2 | Viewed by 1894
Abstract
To obtain a quantitative parameter for the measurement of choroidal vascular hyperpermeability (CVH) on ultra-widefield indocyanine green angiography (UWICGA) using an objective analysis method in macular choroidal neovascularization (CNV). A total of 113 UWICGA images from 113 subjects were obtained, including with 25 [...] Read more.
To obtain a quantitative parameter for the measurement of choroidal vascular hyperpermeability (CVH) on ultra-widefield indocyanine green angiography (UWICGA) using an objective analysis method in macular choroidal neovascularization (CNV). A total of 113 UWICGA images from 113 subjects were obtained, including with 25 neovascular age-related macular degeneration (nAMD), 37 with polypoidal choroidal vasculopathy (PCV) (19 with thin-choroid and 18 with thick-choroid), 33 with pachychoroid neovasculopathy (PNV), and 18 age-matched controls. CVH was quantified on a gray image by the subtraction of 2 synchronized UWICGA images of early and late phases. The measured CVH parameter was compared with human graders and among CNV subtypes and correlated with choroidal vascular density (CVD) and subfoveal choroidal thickness (SFCT). The mean CVH values were 28.58 ± 4.97, 33.36 ± 8.40, 33.61 ± 11.50, 42.19 ± 13.25, and 43.59 ± 7.86 in controls and patients with nAMD, thin-choroid PCV, thick-choroid PCV, and PNV, respectively (p < 0.001). CVH was higher in thick-choroid PCV and PNV compared to the other groups (all p ≤ 0.006). The measured CVH value positively correlated with those reported by human graders (p < 0.001), CVD, and SFCT (p = 0.001 and p < 0.001, respectively). CVH can be measured objectively using quantitative UWICGA analysis. The CVH parameter differs among macular CNV subtypes and correlates with CVD and SFCT. Full article
(This article belongs to the Special Issue Vitreo-Retinal Disorders: Pathophysiology and Diagnostic Imaging)
Show Figures

Figure 1

15 pages, 3906 KB  
Systematic Review
Quantification of Indocyanine Green Fluorescence Imaging in General, Visceral and Transplant Surgery
by Lukas Pollmann, Mazen Juratli, Nicola Roushansarai, Andreas Pascher and Jens Peter Hölzen
J. Clin. Med. 2023, 12(10), 3550; https://doi.org/10.3390/jcm12103550 - 18 May 2023
Cited by 18 | Viewed by 5049
Abstract
Near-infrared (NIR) imaging with indocyanine green (ICG) has proven to be useful in general, visceral, and transplant surgery. However, most studies have performed only qualitative assessments. Therefore, a systematic overview of all studies performing quantitative indocyanine green evaluation in general, visceral, and transplant [...] Read more.
Near-infrared (NIR) imaging with indocyanine green (ICG) has proven to be useful in general, visceral, and transplant surgery. However, most studies have performed only qualitative assessments. Therefore, a systematic overview of all studies performing quantitative indocyanine green evaluation in general, visceral, and transplant surgeries should be conducted. Free term and medical subject heading (MeSH) term searches were performed in the Medline and Cochrane databases until October 2022. The main categories of ICG quantification were esophageal surgery (24.6%), reconstructive surgery (24.6%), and colorectal surgery (21.3%). Concordantly, anastomotic leak (41%) was the main endpoint, followed by the assessment of flap perfusion (23%) and the identification of structures and organs (14.8%). Most studies examined open surgery (67.6%) or laparoscopic surgery (23.1%). The analysis was mainly carried out using manufacturer software (44.3%) and open-source software (15.6%). The most frequently analyzed parameter was intensity over time for blood flow assessment, followed by intensity alone or intensity-to-background ratios for structure and organ identification. Intraoperative ICG quantification could become more important with the increasing impact of robotic surgery and machine learning algorithms for image and video analysis. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

11 pages, 2861 KB  
Article
Mapping the Lymphatic Drainage Pattern of Esophageal Cancer with Near-Infrared Fluorescent Imaging during Robotic Assisted Minimally Invasive Ivor Lewis Esophagectomy (RAMIE)—First Results of the Prospective ESOMAP Feasibility Trial
by Dolores T. Müller, Lars M. Schiffmann, Alissa Reisewitz, Seung-Hun Chon, Jennifer A. Eckhoff, Benjamin Babic, Thomas Schmidt, Wolfgang Schröder, Christiane J. Bruns and Hans F. Fuchs
Cancers 2023, 15(8), 2247; https://doi.org/10.3390/cancers15082247 - 12 Apr 2023
Cited by 11 | Viewed by 3124
Abstract
While the sentinel lymph node concept is routinely applied in other surgical fields, no established and valid modality for lymph node mapping for esophageal cancer surgery currently exists. Near-infrared light fluorescence (NIR) using indocyanine green (ICG) has been recently proven to be a [...] Read more.
While the sentinel lymph node concept is routinely applied in other surgical fields, no established and valid modality for lymph node mapping for esophageal cancer surgery currently exists. Near-infrared light fluorescence (NIR) using indocyanine green (ICG) has been recently proven to be a safe technology for peritumoral injection and consecutive lymph node mapping in small surgical cohorts, mostly without the usage of robotic technology. The aim of this study was to identify the lymphatic drainage pattern of esophageal cancer during highly standardized RAMIE and to correlate the intraoperative images with the histopathological dissemination of lymphatic metastases. Patients with clinically advanced stage squamous cell carcinoma or adenocarcinoma of the esophagus undergoing a RAMIE at our Center of Excellence for Surgery of the Upper Gastrointestinal Tract were prospectively included in this study. Patients were admitted on the day prior to surgery, and an additional EGD with endoscopic injection of the ICG solution around the tumor was performed. Intraoperative imaging procedures were performed using the Stryker 1688 or the FIREFLY fluorescence imaging system, and resected lymph nodes were sent to pathology. A total of 20 patients were included in the study, and feasibility and safety for the application of NIR using ICG during RAMIE were shown. NIR imaging to detect lymph node metastases can be safely performed during RAMIE. Further analyses in our center will focus on pathological analyses of ICG-positive tissue and quantification using artificial intelligence tools with a correlation of long-term follow-up data. Full article
(This article belongs to the Special Issue New Trends in Esophageal Cancer Management)
Show Figures

Figure 1

9 pages, 1817 KB  
Article
Investigating and Compensating for Periphery-Center Effect among Commercial Near Infrared Imaging Systems Using an Indocyanine Green Phantom
by Johanna J. Joosten, Paul R. Bloemen, Richard M. van den Elzen, Jeffrey Dalli, Ronan A. Cahill, Mark I. van Berge Henegouwen, Roel Hompes and Daniel M. de Bruin
Appl. Sci. 2023, 13(4), 2042; https://doi.org/10.3390/app13042042 - 4 Feb 2023
Cited by 6 | Viewed by 2504
Abstract
Near infrared imaging (NIR) camera systems have been clinically deployed to visualize intravenous injected indocyanine green (ICG) spreading through the vascular bed, thereby creating the ability to assess tissue perfusion. While standardization is key to make fluorescence angiography (FA) comparable and reproducible, optical [...] Read more.
Near infrared imaging (NIR) camera systems have been clinically deployed to visualize intravenous injected indocyanine green (ICG) spreading through the vascular bed, thereby creating the ability to assess tissue perfusion. While standardization is key to make fluorescence angiography (FA) comparable and reproducible, optical characteristics like field illumination homogeneity are often not considered. Therefore the aim of this study is to investigate light distribution and the center-periphery effect among five different NIR imaging devices in an indocyanine green phantom. A 13 × 13 cm fluorescence phantom was created by diluting ICG in Intralipid (representing 0.1 mg/kg dose in an 80 kg reference male), to evaluate the overall spatial collection efficiency with fluorescent modalities of five different NIR camera systems using a 0-degree laparoscope. The fluorescence signal from the phantom was quantified at a fixed distance of 16 cm using tailor-made software in Python. The results showed considerable variability in regard to light distribution among the five camera systems, especially toward the periphery of the field of view. In conclusion, NIR signal distribution varies between different systems and within the same displayed image. The fluorescence intensity diminishes peripherally away from the center of the field of view. These optical phenomena need to be considered when clinically interpreting the signal and in the development of computational fluorescence quantification. Full article
(This article belongs to the Special Issue Biomedical Optics: From Methods to Applications)
Show Figures

Figure 1

19 pages, 2117 KB  
Review
Heterogeneity in Utilization of Optical Imaging Guided Surgery for Identifying or Preserving the Parathyroid Glands—A Meta-Narrative Review
by Eline A. Feitsma, Hugo M. Schouw, Milou E. Noltes, Wido Heeman, Wendy Kelder, Gooitzen M. van Dam and Schelto Kruijff
Life 2022, 12(3), 388; https://doi.org/10.3390/life12030388 - 8 Mar 2022
Cited by 7 | Viewed by 3665
Abstract
Background: Postoperative hypoparathyroidism is the most common complication after total thyroidectomy. Over the past years, optical imaging techniques, such as parathyroid autofluorescence, indocyanine green (ICG) angiography, and laser speckle contrast imaging (LSCI) have been employed to save parathyroid glands during thyroid surgery. This [...] Read more.
Background: Postoperative hypoparathyroidism is the most common complication after total thyroidectomy. Over the past years, optical imaging techniques, such as parathyroid autofluorescence, indocyanine green (ICG) angiography, and laser speckle contrast imaging (LSCI) have been employed to save parathyroid glands during thyroid surgery. This study provides an overview of the utilized methods of the optical imaging techniques during total thyroidectomy for parathyroid gland identification and preservation. Methods: PUBMED, EMBASE and Web of Science were searched for studies written in the English language utilizing parathyroid autofluorescence, ICG-angiography, or LSCI during total thyroidectomy to support parathyroid gland identification or preservation. Case reports, reviews, meta-analyses, animal studies, and post-mortem studies were excluded after the title and abstract screening. The data of the studies were analyzed qualitatively, with a focus on the methodologies employed. Results: In total, 59 articles were included with a total of 6190 patients. Overall, 38 studies reported using parathyroid autofluorescence, 24 using ICG-angiography, and 2 using LSCI. The heterogeneity between the utilized methodology in the studies was large, and in particular, regarding study protocols, imaging techniques, and the standardization of the imaging protocol. Conclusion: The diverse application of optical imaging techniques and a lack of standardization and quantification leads to heterogeneous conclusions regarding their clinical value. Worldwide consensus on imaging protocols is needed to establish the clinical utility of these techniques for parathyroid gland identification and preservation. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Image-Guided Surgery)
Show Figures

Figure 1

10 pages, 2340 KB  
Article
Multispectral Imaging Using Fluorescent Properties of Indocyanine Green and Methylene Blue in Colorectal Surgery—Initial Experience
by Wojciech Polom, Marcin Migaczewski, Jaroslaw Skokowski, Maciej Swierblewski, Tomasz Cwalinski, Leszek Kalinowski, Michal Pedziwiatr, Marcin Matuszewski and Karol Polom
J. Clin. Med. 2022, 11(2), 368; https://doi.org/10.3390/jcm11020368 - 13 Jan 2022
Cited by 20 | Viewed by 3412
Abstract
Introduction: Image-guided surgery is becoming a new tool in colorectal surgery. Intraoperative visualisation of different structures using fluorophores helps during various steps of operations. In our report, we used two fluorophores—indocyanine green (ICG), and methylene blue (MB)—during different steps of colorectal surgery, [...] Read more.
Introduction: Image-guided surgery is becoming a new tool in colorectal surgery. Intraoperative visualisation of different structures using fluorophores helps during various steps of operations. In our report, we used two fluorophores—indocyanine green (ICG), and methylene blue (MB)—during different steps of colorectal surgery, using one camera system for two separate near-infrared wavelengths. Material and methods: Twelve patients who underwent complex open or laparoscopic colorectal surgeries were enrolled. Intravenous injections of MB and ICG at different time points were administered. Visualisation of intraoperative ureter position and fluorescent angiography for optimal anastomosis was performed. A retrospective analysis of patients treated in our departments during 2020 was performed, and data about ureter injury and anastomotic site complications were collected. Results: Intraoperative localisation of ureters with MB under fluorescent light was possible in 11 patients. The mean signal-to-background ratio was 1.58 ± 0.71. Fluorescent angiography before performing anastomosis using ICG was successful in all 12 patients, and none required a change in position of the planned colon resection for anastomosis. The median signal-to-background ratios was 1.25 (IQR: 1.22–1.89). Across both centres, iatrogenic injury of the ureter was found in 0.4% of cases, and complications associated with anastomosis was found in 5.5% of cases. Conclusions: Our study showed a substantial opportunity for using two different fluorophores in colorectal surgery, whereby the visualisation of one will not change the possible quantification analysis of the other. Using two separate dyes during one procedure may help in optimisation of the fluorescent properties of both dyes when using them for different applications. Visualisation of different structures by different fluorophores seems to be the future of image-guided surgery, and shows progress in optical technologies used in image-guided surgery. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

12 pages, 3807 KB  
Article
Tumor Accumulation and Off-Target Biodistribution of an Indocyanine-Green Fluorescent Nanotracer: An Ex Vivo Study on an Orthotopic Murine Model of Breast Cancer
by Marta Sevieri, Leopoldo Sitia, Arianna Bonizzi, Marta Truffi, Serena Mazzucchelli and Fabio Corsi
Int. J. Mol. Sci. 2021, 22(4), 1601; https://doi.org/10.3390/ijms22041601 - 5 Feb 2021
Cited by 18 | Viewed by 3966
Abstract
Indocyanine green (ICG) is a near infrared fluorescent tracer used in image-guided surgery to assist surgeons during resection. Despite appearing as a very promising tool for surgical oncology, its employment in this area is limited to lymph node mapping or to laparoscopic surgery, [...] Read more.
Indocyanine green (ICG) is a near infrared fluorescent tracer used in image-guided surgery to assist surgeons during resection. Despite appearing as a very promising tool for surgical oncology, its employment in this area is limited to lymph node mapping or to laparoscopic surgery, as it lacks tumor targeting specificity. Recently, a nanoformulation of this dye has been proposed with the aim toward tumor targeting specificity in order to expand its employment in surgical oncology. This nanosystem is constituted by 24 monomers of H-Ferritin (HFn), which self-assemble into a spherical cage structure enclosing the indocyanine green fluorescent tracer. These HFn nanocages were demonstrated to display tumor homing due to the specific interaction between the HFn nanocage and transferrin receptor 1, which is overexpressed in most tumor tissues. Here, we provide an ex vivo detailed comparison between the biodistribution of this nanotracer and free ICG, combining the results obtained with the Karl Storz endoscope that is currently used in clinical practice and the quantification of the ICG signal derived from the fluorescence imaging system IVIS Lumina II. These insights demonstrate the suitability of this novel HFn-based nanosystem in fluorescence-guided oncological surgery. Full article
(This article belongs to the Special Issue Self-Assembled Polymer Nanoparticles for Tumor Imaging and Therapy)
Show Figures

Figure 1

8 pages, 1768 KB  
Article
A Classic Near-Infrared Probe Indocyanine Green for Detecting Singlet Oxygen
by Cheng-Yi Tang, Feng-Yao Wu, Min-Kai Yang, Yu-Min Guo, Gui-Hua Lu and Yong-Hua Yang
Int. J. Mol. Sci. 2016, 17(2), 219; https://doi.org/10.3390/ijms17020219 - 6 Feb 2016
Cited by 55 | Viewed by 10232
Abstract
The revelation of mechanisms of photodynamic therapy (PDT) at the cellular level as well as singlet oxygen (1O2) as a second messengers requires the quantification of intracellular 1O2. To detect singlet oxygen, directly measuring the phosphorescence [...] Read more.
The revelation of mechanisms of photodynamic therapy (PDT) at the cellular level as well as singlet oxygen (1O2) as a second messengers requires the quantification of intracellular 1O2. To detect singlet oxygen, directly measuring the phosphorescence emitted from 1O2 at 1270 nm is simple but limited for the low quantum yield and intrinsic efficiency of 1O2 emission. Another method is chemically trapping 1O2 and measuring fluorescence, absorption and Electron Spin Resonance (ESR). In this paper, we used indocyanine green (ICG), the only near-infrared (NIR) probe approved by the Food and Drug Administration (FDA), to detect 1O2 in vitro. Once it reacts with 1O2, ICG is decomposed and its UV absorption at 780 nm decreases with the laser irradiation. Our data demonstrated that ICG could be more sensitive and accurate than Singlet Oxygen Sensor Green reagent® (SOSG, a commercialized fluorescence probe) in vitro, moreover, ICG functioned with Eosin Y while SOSG failed. Thus, ICG would reasonably provide the possibility to sense 1O2 in vitro, with high sensitivity, selectivity and suitability to most photosensitizers. Full article
(This article belongs to the Special Issue Advances in Photodynamic Therapy)
Show Figures

Graphical abstract

Back to TopTop