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Abstract: Near-infrared (NIR) imaging with indocyanine green (ICG) has proven to be useful in general,
visceral, and transplant surgery. However, most studies have performed only qualitative assessments.
Therefore, a systematic overview of all studies performing quantitative indocyanine green evaluation in
general, visceral, and transplant surgeries should be conducted. Free term and medical subject heading
(MeSH) term searches were performed in the Medline and Cochrane databases until October 2022.
The main categories of ICG quantification were esophageal surgery (24.6%), reconstructive surgery
(24.6%), and colorectal surgery (21.3%). Concordantly, anastomotic leak (41%) was the main endpoint,
followed by the assessment of flap perfusion (23%) and the identification of structures and organs
(14.8%). Most studies examined open surgery (67.6%) or laparoscopic surgery (23.1%). The analysis
was mainly carried out using manufacturer software (44.3%) and open-source software (15.6%). The
most frequently analyzed parameter was intensity over time for blood flow assessment, followed by
intensity alone or intensity-to-background ratios for structure and organ identification. Intraoperative
ICG quantification could become more important with the increasing impact of robotic surgery and
machine learning algorithms for image and video analysis.

Keywords: indocyanine green (ICG); near-infrared (NIR) imaging; quantitative evaluation; intraoperative
imaging; image-guided surgery; fluorescence imaging

1. Introduction

Pushing the boundaries of intraoperative imaging, ICG is a well-established agent
for various surgical fields including general, visceral, and transplant surgery [1]. After
intravenous administration, it binds to plasma proteins and is extracted from the liver [2].
Allergic reactions are the most reported but rare side effect, occurring in 0.05–0.07% of all
administrations [3]. Many studies on esophageal [4,5] and colorectal surgery [6] recommend
the use of ICG imaging to study intestinal perfusion prior to anastomosis. For instance,
Zehetner et al., assessed the perfusion of the gastric conduit using ICG and NIR imaging
during esophagectomy [5]. When anastomosis was performed in an area of poor perfusion,
the incidence of anastomotic leak was significantly higher than that in a well-perfused area.

Furthermore, NIR imaging with ICG in reconstructive surgery was recommended for
perfusion assessment of locoregional and free flaps [7].

Similar to the assessment of cutaneous and intestinal blood flow, the blood flow of kidney
or liver transplants can be visualized immediately after intravenous administration [8,9] and
a correlation with postoperative graft function was shown.

In hepatobiliary surgery, ICG fluorescence imaging has proven to be a sensitive tool for
liver segment staining, identification of the biliary system, and liver tumors [10]. For visual-
ization of liver segments, positive staining can be performed intraoperatively by segmental
portal vein or artery puncture [11] or negative staining with clamping of the segmental
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pedicle and intravenous application [12]. Staining of liver segments has been used during
liver resection [13,14] as well as for living liver donor transplantation [15]. If administered
preoperatively, cholangiography can be performed. Thus, several studies of laparoscopic
cholecystectomy indicate the superiority of ICG and NIR imaging for the identification of
the biliary tree compared to wide-light visualization alone [12,16]. In liver tumors, biliary
excretion is locally disrupted and can be used to visualize the tumor [17]. The authors
specify a depth of 8 mm as a limitation of this application. Therefore, NIR imaging should
be used in addition to intraoperative ultrasound for tumor visualization [12].

Furthermore, Kim et al., highlighted the role of intraoperative ICG imaging in thy-
roidectomy and parathyroidectomy to preserve parathyroid function [18], and Gálvez-
Pastor et al. [19] developed a scoring system for parathyroid vascularization that was
significantly associated with postoperative hypocalcemia.

However, most studies, reviews and meta-analysis have described a qualitative and
surgeon-dependent interpretation of the fluorescence signal that is affected by inter-user
variability [20,21]. Consequently, the impact of NIR imaging with ICG on intraoperative
decision-making and the comparability of existing studies is impaired. Therefore, for
the first time, this review aims to summarize the published studies that quantitatively
measured intraoperative ICG fluorescence signal. Additionally, an overview of the current
ICG analysis techniques is provided, and various indications as well as future directions
for ICG imaging are discussed.

2. Materials and Methods

A systematic literature search was carried out on studies with intraoperative mea-
surement of ICG fluorescence according to the rules of the preferred reporting items
for systematic reviews and meta-analyses (PRISMA) guidelines [22]. The Medline and
Cochrane databases were searched by two independent reviewers using the free terms
‘surgery’ and ‘indocyanine green’ and the MeSH terms ‘green, indocyanine’ and ‘evaluation,
quantitative’ and ‘surgery’. The results were last updated on 31 October 2022. All clinical
studies with quantitative analysis of intraoperative ICG imaging in general, visceral, and
transplantation surgeries with more than 10 participants were included. Studies from
other surgical disciplines, as well as experimental, animal, and cadaveric studies, were
excluded. The study was not included if the number of participants was fewer than 10 or if
the abstract contained a purely qualitative ICG assessment. Next, duplicates were removed.
Found reports were retrieved. Finally, the articles were then checked for eligibility using a
full-text search (Figure 1).

This study was registered with the registration number 412003 at the Prospero regis-
tration website. The risk of bias was assessed using the ROBIS tool.

The included studies were compared using predefined criteria. The ICG amount, time
of ICG administration, NIR camera system, and quantification software were analyzed in
all studies. Subsequently, the type of operation and intraoperatively monitored organs or
structures were examined. Next, the studies were categorized into surgical fields. Finally,
the measured parameters and endpoints of the studies were summarized.
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Figure 1. PRISMA diagram of study selection.

3. Results
3.1. Systematic Search

The free term and MeSH term searches identified 8430 studies with 7980 and
450 results, respectively. After the screening, 61 studies were included in this review
(Figure 1). All variables are shown in Supplementary Materials Table S1. The risk of bias
was considered low. However, using the ROBIS tool, the heterogeneity of the included
studies was identified as a weak point of this review, impairing the synthesis of the studies.

3.2. Characteristics of Included Studies

Reconstructive (n = 15), esophageal (n = 15) and colorectal (n = 13) surgery were the
main categories in which quantitative analysis was performed. Reconstructive surgery
was solely performed as open surgery. In esophageal surgery most studies used an open
approach as well (n = 10 of 15), while colorectal surgery was mostly performed laparo-
scopically. Six studies reported intraoperative ICG quantification in hepatobiliary and
pancreatic surgery. Except for laparoscopic cholecystectomy, all operations were performed
openly. Overall, only one study of fully robotic esophageal resection [23] and one study
which utilizes intraoperative ICG imaging in robotic adrenalectomy [24] reported a robotic
operation technique (Figure 2).

The two main approaches for ICG quantification were organ and structure identifica-
tion and quantification of the perfusion as a functional assessment of the tissue or organ of
interest. The latter can be done by plotting the intraoperative recorded ICG fluorescence
intensity over time. Afterwards the maximum intensity (Fmax), time to reach maximum
intensity (Tmax), and halved values with Fmax(1/2) or Tmax(1/2) can be determined.
Another frequently mentioned coefficient is the slope of the ICG curve, which is defined as
Fmax/Tmax. Furthermore, the ingress as an inflow parameter and the egress describing
the outflow of ICG were calculated in several studies with the SPY-Q Software [25,26].
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In esophageal surgery, perfusion assessment of the gastric conduit or the jejunal graft
has been reported most frequently to predict the occurrence of anastomotic leak (Figure 3).
For example, Lin et al. [27] measured the perfusion in a free jejunal graft for esophageal
reconstruction and was able to predict a high-risk for anastomotic leak. In their study a
Tmax(1/2) value greater than 5.35 s was correlated with the development of anastomotic
leak. Recently, de Groot et al. [23] assessed the perfusion of a gastric conduit for full robotic
esophageal resection and reconstruction with a gastric pull-up. Although not significant, a
higher Tmax value was associated with anastomotic leak. In addition, Ishikawa et al. [28]
evaluated ICG fluorescence at the tip and 5 cm from the tip of the gastric conduit and
showed a significant correlation between delayed ingress time between the two points and
anastomotic leak.
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Koyanagi et al. [29] focused on perfusion speed and its relationship with anastomotic
leak by measuring the length of the gastric conduit from the pylorus to the tip. Next, a
subjective assessment of the time from the start of perfusion at the pylorus to the tip of
the gastric conduit was performed, and the speed with length/time was calculated. The
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speed of the vascular arcade supplying the gastric conduit and the serosal ICG speed of the
gastric conduit were compared. A delay in serosal perfusion compared with the vascular
arcade was significantly associated with the occurrence of an anastomotic leak [29].

Similar to esophageal surgery, the primary goal of intraoperative ICG quantification in
colorectal surgery was the perfusion assessment of the intestinal anastomosis to predict the
occurrence of an anastomotic leak. In the study by Wada et al. [30] and Amagai et al. [31],
a higher Tmax value was significantly associated with the occurrence of an anastomotic
leak, whereas Gomez-Rosado et al. [32] highlighted the slope as a predictive parameter
for anastomotic leak. In addition, a delay in the parameter T0, which describes the time
from administration to the first detected increase in ICG fluorescence, was indicative of an
anastomotic leak in the studies by Hayami et al. and Iwamoto et al. [33,34].

Perfusion assessment of locoregional or free flaps is also crucial for reconstructive
surgery. Possible complications of an inadequate blood supply include necrosis of the
skin at the margin of the locoregional or free flap, wound infections, prolonged healing,
or complete loss of the transplanted graft. The use of intraoperative ICG quantification in
breast reconstruction has been reported most frequently (n = 11 of 15 studies). For example,
Girard et al. [35] described different ingress values in the deep inferior epigastric perforator
(DIEP) flap depending on the distance to the perforator. However, no association with
clinical complications was found. In head and neck reconstruction using autologous free
flaps, Schöpper et al. [36] identified the Fmax/min value, defined as the Fmax divided by
the background ratio, as a predictor of flap necrosis.

In kidney transplantation, Gerken et al. [26] demonstrated a significant correlation
between a delayed reperfusion ingress of the graft and the development of delayed graft
function, as previously suggested [9,37–39]. Similar results were reported by Dousse et al. [8]
in liver transplantation. In their study, they were able to show a significant correlation between
delayed graft reperfusion and the primary nonfunction of the liver transplant.

Structure or organ identification represents the second, central approach of intraop-
erative ICG quantification. In general, this goal can be achieved by measuring maximum
intensity values or calculating maximum intensity-to-background ratios.

For instance, in laparoscopic cholecystectomy, the common biliary duct as an important
structure was identified by calculating the intensity of the common biliary duct to liver
parenchyma ratio in the studies of Pujol-Cano et al. [40] and Chen et al. [41].

In addition, differentiate liver regions with venous occlusion [42] or ischemia [13]
were identified based on intensity-to-background ratios. Furthermore, identification of
demarcation and resection lines [13,14] were facilitated during open liver resection by an
intensity-to-background measurement. Similar to hepatobiliary surgery, two studies of liver
transplantation performed living-donor hepatectomy and described the use of quantitative
ICG assessment to identify regions of venous occlusion [43] or the line of demarcation [15].

Furthermore, Shirata et al. [44] described the use of intraoperative ICG quantification
in open pancreatic surgery to identify and differentiate pancreatic lesions by calculating a
pancreatic lesion to surrounding pancreatic parenchyma ratio. In contrast, the identification
of liver tumors as reported by Wakabayashi et al. [10] could not be included in this review,
because solely qualitative identification has been reported up to 31 October 2022.

Finally, quantitative ICG imaging and the calculation of intensity-to-background ratios
for structure and organ identification has also been described in endocrine surgery. For ex-
ample, Iritani et al. [45] assessed the perfusion of the parathyroid gland after thyroidectomy.
In their study, the maximum intensity of the parathyroid gland was determined before
and after the administration of ICG and a ratio was calculated. Concordantly, a lower
ratio was associated with the development of a postoperative hypoparathyroidism. For the
detection of parathyroid adenomas in hyperparathyroidism, Le Cui et al. [46] administered
ICG one hour prior to surgery and were able to identify the adenoma utilizing a modified
intensity-to-background ratio. However, most studies identifying the parathyroid gland
took advantage of the higher autofluorescence of this organ in NIR imaging [47] without
administration of ICG.
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Overall, ICG intensity over time with the described parameters was examined most
frequently (n = 36 of 61 studies), especially in perfusion assessment before anastomosis in
esophageal and colorectal surgery as well as for skin and flap assessment in reconstructive
surgery. Maximum intensity and intensity-to-background ratios were also frequently
reported (n = 20 of 61 studies), mainly when a structure or organ was identified, for
example, in hepatobiliary or endocrine surgery.

3.3. Administered ICG Dosages for Perfusion Assessment and Structure Identifictation

The administered ICG dose was mentioned in 50 of 61 reports, with more studies using an
absolute ICG dose (24 studies) than a weight-dependent dose. The greatest lack of information
on ICG dosages was found in hepatobiliary and pancreatic surgery (n = 2 of 6), followed by
reconstructive surgery (n = 4 of 15), such as in the study by Mazdeyasna et al. [48].

For a comparison of reported absolute ICG dosages and weight-dependent ICG
dosages, the absolute ICG dosages were converted to a relative ICG dose using a body
weight of 80 kg. Furthermore, dosages were organized with respect to the application in
perfusion assessment with intensity over time curves or organ/structure identification
utilizing intensity alone or intensity-to-background ratio.

Figure 4 illustrates the administered ICG doses ranging from <0.05 mg/kg to 0.5 mg/kg
in the included articles of perfusion assessment as well as for structure and organ identifi-
cation. Overall, studies with an absolute ICG dose tended to administer a lower ICG dose
than studies with a weight-dependent ICG dose. In summary, mostly lower ICG dosages
with <0.05 mg/kg and 0.05–0.09 mg/kg were reported.
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ICG dosages (estimated bodyweight: 80 kg).

For perfusion assessment in esophageal and colorectal surgery, a wide range of ICG
amounts from 0.06–0.25 mg/kg have been used. In reconstructive surgery, the adminis-
tered ICG dosages varied from 0.06–0.13 mg/kg. For imaging of the graft in transplant
surgery, ICG dosages of 0.02–0.31 mg/kg were administered. In hepatobiliary surgery, a
liver volume-dependent dose was used by Kawaguchi et al. [13,42] instead of a weight-
dependent dose. When cholangiography was performed, such as during laparoscopic
cholecystectomy, ICG was administered prior to surgery. Additionally, to visualize the
parathyroid gland, Le Cui et al. [46] recommended an ICG dose of 0.5 mg/kg one hour
before the operation. In contrast, the parathyroid glands were imaged immediately after
ICG administration in the study of Noltes et al. [49]; see Table 1.
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Table 1. ICG dosages and time of administration.

Method Surgery Number of
Articles ICG in mg/kg Time of

Administration

Perfusion
Assessment

Laparoscopic or robotic
colon resection 12 0.06–0.25

Intraoperative
Open colon resection 1 0.06

Open esophagectomy with
jejunal interposition 2 0.01 Intraoperative

Minimally invasive or open
Mc Keown or Ivor–Lewis

esophagectomy
13 0.02–0.3 Intraoperative

Flap perfusion
assessment in head and

neck surgery
2 0.06–0.13

Intraoperative
Flap perfusion
assessment in

reconstructive breast surgery
9 0.06–0.13

Assessment of the graft in
kidney transplantation 4 0.02–0.31 Intraoperative

Assessment of the graft in
liver transplantation 1 0.01 Intraoperative

Structure/
Organ

Identification

Robotic adrenalectomy 1 0.06
Intraoperative

Open thyroidectomy 2 0.03–0.06

Open parathyroidectomy 1 0.5 One hour prior
to surgery

Open liver resection 3 0.03 or liver volume
calculated Intraoperative

Open pancreatic surgery 1 0.03

Laparoscopic
cholecystectomy 2 0.003–0.125

Anesthetic induction to
10–12 h prior

to imaging

Living donor hepatectomy in
liver transplantation 2 0.02–0.1 Intraoperative

3.4. NIR Camera System and Software for ICG Quantification

The included studies showed the use of various camera systems. Stryker (Kalamazoo,
MI, USA) was used in 24 studies and developed the SPY Elite system specifically for
open surgery [9,26,28,39,49–51] and the PINPOINT camera system for minimally invasive
surgery [15,33,44,52]. PINPOINT, with the developing manufacturer Novadaq (Seattle,
WA, USA), was independent until 2017; therefore, Novadaq instead of Stryker can be
found in reports up to 2017. In addition, Karl Storz (Tuttlingen, Germany) and Olympus
(Tokyo, Japan) developed NIR camera systems mainly for minimally invasive surgery with
IMAGE S1 [34,37,53–55] and Viscera Elite II, respectively. The photodynamic eye (PDE)
camera system from Hamatsu Photonics (Shizuoka, Japan), the VisionSense (VS) iridium
camera from Medtronic (Minneapolis, MN, USA), and the HyperEye Medical System
(HEMS) from Mizuho Medical (Tokyo, Japan) are designed for open surgery. Of these, the
PDE camera system was most frequently used in open surgery studies (n = 9). Robotic
surgery was performed using the da Vinci surgical system with a Firefly NIR camera. Other
manufacturers of the included NIR camera systems were OptoMedic Technology (Foshan,
China), Fluoptics (Grenoble, France), Pulsion Medical Systems (Feldkirchen, Germany),
and Beijing Aisery Medical (Bejing, China) (Figure 5).
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Intraoperative ICG fluorescence of the recorded videos and selected frames were
analyzed using the manufacturer software in 27 studies (Figure 5). The ROI Software of
Hamatsu Photonics [56,57] measures the ICG inflow as fluorescence intensity over time
in one or more predefined regions of interest (ROI). Using the Spy-Q Software [26,58] by
Stryker, the ingress of ICG fluorescence describing the inflow of ICG in the ROI and the
egress as outflow were measured, as previously mentioned.

The most frequently used open-source software was Fiji, which allows the manual
measurement of pixel intensity values. This function is used to calculate the intensity-
to-background ratio of an illuminated structure or organ, such as the thoracic duct [52],
parathyroid glands [46], or adrenal tumors [24]. When different frames are examined,
intensity over time curves can be created, and the depicted values (Tmax, Fmax, etc.) can
be calculated as described by de Groot et al. [23]. Commonly used paid programs with
the ability to measure pixel intensities and calculate an intensity-to-background ratio were
Adobe Photoshop and Image-Pro Plus. For instance, they have been used to identify the
common hepatic duct in contrast to the liver parenchyma [40,41].

Some studies (n = 4 out of 46 studies) focused on the development of custom software
for ICG fluorescence quantification. In a recent study on anastomotic leakage in colorectal
surgery, Park et al. [59] developed a machine learning algorithm based on unsupervised
learning with self-organizing map (SOM) clustering of ICG fluorescence over time curves.
Unlike supervised learning approaches, learning does not require ground truth from a
specialist. With a fixed number of clusters, the learning process is performed on a training
data set without human annotation. After clustering, the high-risk clusters for anastomotic
leak were identified and an ICG curve classification model was trained depending on the
clinical outcome. Once the SOM clustering and ICG curve classification models have been
trained, prediction based on the newly recorded ICG fluorescence curves was possible.
This machine learning approach achieved a higher F1-Score, which represents an average
score of recall and precision for the occurrence of an anastomotic leak versus the time ratio
(Tmax(1/2)/Tmax) and slope of the median ICG curve.

4. Discussion

There is a large body of literature suggesting that intraoperative NIR imaging with
ICG is helpful for various indications in general, visceral and transplant surgery. However,
recent findings describe an inter-user variability that limits the subjective assessment
of fluorescence imaging, thus impairing intraoperative decision-making [20,21]. In a
retrospective randomized study by Larsen et al. [20], intraoperative NIR imaging with ICG
during low-anterior rectum resection was recorded and videos were exchanged between
the performing surgeons of the participating centers. Subjective assessment showed a wide
inter-observer variation unrelated to anastomotic leak, while quantitative assessment using
fluorescence over time curves with differences in the slope was significantly associated
with the development of anastomotic leak.
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Although studies performing quantitative assessment still represent the minority of all
reports of NIR imaging with ICG, the existing literature emphasizes development towards
objective assessment, quantification, and evaluation. Therefore, for the first time, this
systematic review aimed to summarize all studies that performed a quantitative analysis of
intraoperative ICG NIR imaging in general, visceral, and transplantation surgery.

After identification, screening, and assessment for eligibility, 61 studies were included in
this review. Although the PRISMA guidelines were followed, the reproducibility of results is
limited by the steady increase of new articles in the emerging field of ICG imaging in general,
visceral, and transplant surgery. Our results were last updated on 31 October 2022.

Starting with the amount of ICG used, we observed a differentiation in a weight-
dependent, weight-independent, and organ-specific administration. It must be mentioned
that some papers did not specify an ICG dosage. The majority of studies reported an
absolute ICG count. Interestingly, these studies tended to use smaller dosages when
converted to a mean body weight of 80 kg. As stated above, the mean body weight was
based on current epidemiologic data for industrial states, and the authors are aware of this
source of error. In addition, hepatobiliary studies by Kawaguchi et al. [13,42] reported a
liver volume-dependent ICG dose that was appropriate given the biliary hepatic excretion
of ICG. However, this method requires radiological image data or intraoperative volume
estimation, which can complicate its clinical implementation. Overall, we recommend that
the ICG amount should be reported in the material and methods part and be administered
depending on the body weight to ensure comparability.

Regarding the time of administration, NIR imaging was mostly performed intraoper-
atively immediately after ICG administration to visualize the blood flow in the organ or
structure of interest. Only in hepatobiliary surgery, due to the biliary excretion of ICG [10]
and one study to identify the parathyroid glands [46], was NIR imaging performed several
hours after application.

The camera systems Hamatsu Photonics (Shizuoka, Japan) (PDE), Stryker (Kalamazoo,
MI, USA) (SPY Elite), and Medtronic (Minneapolis, MN, USA) (VisionSense VS Iridium)
are commonly used in open surgery, while Olympus (Tokyo, Japan) (Viscera Elite II),
Karl Storz (Tuttlingen, Germany) (IMAGE S1), and Stryker (PINPOINT) have developed
camera systems for minimally invasive surgery. Most of the commercialized systems are
in auto-settings, limiting the possibility of comparing intra-patient and inter-patient data.
Furthermore, several studies have suggested that fluorescence intensity changes with the
distance of the camera from the structure or organ of interest [60,61]. For example, Serra-
Aracil et al. [60] showed a significant correlation between the distance from the desired
anatomy with the measured fluorescence intensity in a prospective study of colorectal
surgery. Therefore, finding the optimal distance remains complex and depends not only on
the bioavailability of ICG, but also on technical modalities like the NIR imaging system with
the variability of excitation light sources, emission filters, lens optical properties, sensitivity
of fluorescence signal detectors, and processing software that make standardization difficult.
In future studies, the selected NIR imaging system and recommended distance from the
organ of interest might be standardized using ex vivo ICG imaging phantoms or calibration
with standardized fluorescent samples similar to white balance in white light laparoscopy.

In future research, robotic approaches could increase [62,63] and the rate of open
surgeries will decrease accordingly. Therefore, as the main manufacturer, the intuitive
Firefly camera could be more widely used in future research.

In addition to the heterogeneity of the camera systems, heterogeneity in the software
used and the reported parameters was also observed. Many studies have performed
fluorescence measurements using manufacturer software such as ROI (PDE) and SPY-Q
(Stryker). While only ICG inflow parameters were determined by the ROI software, SPY-Q
measures the inflow as ingress and the outflow as egress. Parameters determined from
intensity over time curves, such as Fmax1/2, Tmax1/2, and ingress, correlated significantly
with anastomotic leak. Furthermore, they have a large impact on perfusion assessment in
reconstructive surgery as well as for the graft function in kidney and liver transplantation.
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In summary, inflow parameters seem to be crucial for graft survival as well as for cutaneous
and intestinal blood flow. For structure or organ identification, the intensity or the intensity-
to-background ratio can be recommended.

In a recent study, Park et al. [59] developed a custom-made machine learning approach
that clusters and analyzes intensity over time curves in relation to the risk of anastomotic
leak and showed a superiority of his self-organizing map clustering over the most com-
monly reported calculated parameters. While Park et al., worked with unsupervised,
self-organizing map clustering, especially for image and video analysis, there are several
machine learning approaches allowing pattern recognition and quantification [64] that have
not been tested for intraoperative NIR imaging. Additionally, efforts in various medical
fields, particularly radiology [65], indicate the increasing importance of machine learning
in medical image analysis. Subsequently, intraoperative ICG imaging could be further
developed in future studies with the help of machine learning.

Apart from the included literature, some indications were not reported because of
the lack of quantitative assessment. For example, a large body of literature suggests the
possibility of ICG-guided lymphadenectomy during gastrectomy [66,67]. The study by
Okubo et al. [68] indicates a difference in the intensity-to-background ratio between sentinel
lymph nodes and non-sentinel lymph nodes in early gastric cancer and recommended
intraoperative, quantitative measurement in future studies. In this study, ICG was applied
to the tumor side, and the removed lymph nodes were examined ex vivo.

Furthermore, in a pilot study on cytoreductive surgery, peritoneal carcinosis due to
colorectal cancer was observed using NIR after ICG administration [69]. As initial results,
the authors showed the benefit of NIR with ICG compared to white light alone in the
detection of non-mucinous peritoneal metastases. This resulted in a change in the surgical
plan in 30% of the surgeries. To distinguish between fibrosis or other benign lesions and
metastases, objective evaluation might be helpful in future studies.

Moreover, tumor visualization in hepatobiliary surgery has been described in several
studies, and the optimal timing of administration and dosage of ICG have already been
discussed by Wakabayashi et al. [10]. However, NIR imaging of liver tumors has not
yet been quantified, and the identification of liver lesions is still performed subjectively
by surgeons. This could be due to the different fluorescent types of liver lesions [17,70]
complicating a simple intensity or intensity-to-background ratio approach used mainly in
structure or organ identification. Fluorescence imaging is also limited due to differences
in liver function and ICG extraction capacity, particularly in patients with impaired liver
function. Furthermore, regenerate nodes in cirrhotic livers also appeared to be fluorescent
in the study by Tanaka et al. [71], which made tumor identification more difficult. However,
these problems may be solved by developing sophisticated machine learning and pattern
recognition approaches in future studies.

In summary, the results of this review show that quantitative intraoperative ICG
assessment is widely used in general, visceral, and transplant surgery and could gain
importance with developments in robotic surgery and machine learning. Further indica-
tions for quantitative ICG evaluation may arise in future studies. Currently, intraoperative
ICG imaging is limited by heterogeneity in reported ICG dosages, different NIR camera
systems, and variability in the examined parameters, as well as different software for
quantification. Therefore, future research should focus on standardization of ICG dosage,
time of administration, imaging modalities, and quantification [49].
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