Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (104)

Search Parameters:
Keywords = pvl gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 688 KiB  
Case Report
Case Report: Fatal Necrotizing Pneumonia by Exfoliative Toxin etE2-Producing Staphylococcus aureus Belonging to MLST ST152 in The Netherlands
by Wouter J. van Steen, Monika A. Fliss, Ethel Metz, Klaus Filoda, Charlotte H. S. B. van den Berg, Bhanu Sinha and Erik Bathoorn
Microorganisms 2025, 13(7), 1618; https://doi.org/10.3390/microorganisms13071618 - 9 Jul 2025
Viewed by 305
Abstract
We present a case of fatal necrotizing Staphylococcus aureus pneumonia with underlying influenza A (H3) infection. Next-generation-sequencing-based analysis revealed that the S. aureus isolate harbored the newly recognized exfoliative toxin etE2 gene. Molecular epidemiologic analysis showed that the isolate belonged to the MSSA [...] Read more.
We present a case of fatal necrotizing Staphylococcus aureus pneumonia with underlying influenza A (H3) infection. Next-generation-sequencing-based analysis revealed that the S. aureus isolate harbored the newly recognized exfoliative toxin etE2 gene. Molecular epidemiologic analysis showed that the isolate belonged to the MSSA ST152 lineage, harboring PVL genes and edinB co-located to etE2 as distinctive virulence factors. The etE2 gene is present in all isolates of this lineage co-located to the exotoxin gene edinB, both implicated in the destruction of tissue integrity. We alert as to the global emergence of this lineage causing serious infections in patients. Full article
Show Figures

Figure 1

37 pages, 1405 KiB  
Review
Staphylococcus aureus: A Review of the Pathogenesis and Virulence Mechanisms
by Rahima Touaitia, Assia Mairi, Nasir Adam Ibrahim, Nosiba S. Basher, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(5), 470; https://doi.org/10.3390/antibiotics14050470 - 6 May 2025
Cited by 2 | Viewed by 9898
Abstract
Staphylococcus aureus is a formidable human pathogen responsible for infections ranging from superficial skin lesions to life-threatening systemic diseases. This review synthesizes current knowledge on its pathogenesis, emphasizing colonization dynamics, virulence mechanisms, biofilm formation, and antibiotic resistance. By analyzing studies from PubMed, Scopus, [...] Read more.
Staphylococcus aureus is a formidable human pathogen responsible for infections ranging from superficial skin lesions to life-threatening systemic diseases. This review synthesizes current knowledge on its pathogenesis, emphasizing colonization dynamics, virulence mechanisms, biofilm formation, and antibiotic resistance. By analyzing studies from PubMed, Scopus, and Web of Science, we highlight the pathogen’s adaptability, driven by surface adhesins (e.g., ClfB, SasG), secreted toxins (e.g., PVL, TSST-1), and metabolic flexibility in iron acquisition and amino acid utilization. Nasal, skin, and oropharyngeal colonization are reservoirs for invasive infections, with biofilm persistence and horizontal gene transfer exacerbating antimicrobial resistance, particularly in methicillin-resistant S. aureus (MRSA). The review underscores the clinical challenges of multidrug-resistant strains, including vancomycin resistance and decolonization strategies’ failure to target single anatomical sites. Key discussions address host–microbiome interactions, immune evasion tactics, and the limitations of current therapies. Future directions advocate for novel anti-virulence therapies, multi-epitope vaccines, and AI-driven diagnostics to combat evolving resistance. Strengthening global surveillance and interdisciplinary collaboration is critical to mitigating the public health burden of S. aureus. Full article
Show Figures

Figure 1

14 pages, 1500 KiB  
Article
A Decade of Pediatric CA-MRSA Surveillance in Northern Taiwan: Retrospective Resistance Analysis and Recent Genotypic Characterization
by Chia-Ning Chang, Chia-Hsiang Yu and Chih-Chien Wang
Microorganisms 2025, 13(5), 1013; https://doi.org/10.3390/microorganisms13051013 - 28 Apr 2025
Cited by 1 | Viewed by 507
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of pediatric infections and has shown evolving molecular characteristics over time. This study aimed to investigate the phenotypic and genotypic features of MRSA isolates collected from pediatric patients at a tertiary medical center in northern [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of pediatric infections and has shown evolving molecular characteristics over time. This study aimed to investigate the phenotypic and genotypic features of MRSA isolates collected from pediatric patients at a tertiary medical center in northern Taiwan between 2011 and 2020. A total of 182 MRSA strains were analyzed for SCCmec types, PVL gene presence, antimicrobial susceptibility, multilocus sequence typing (MLST), and clonal relatedness using pulsed-field gel electrophoresis (PFGE). ST59/SCCmec Vt was the most prevalent genotype, followed by ST59/SCCmec IV and ST8/SCCmec IV. Most ST59/SCCmec Vt and ST8/SCCmec IV isolates clustered genetically. Clindamycin and erythromycin resistance remained high, whereas co-trimoxazole susceptibility ranged from 76% to 100%. These findings confirm ST59 as the dominant clone and highlight the emergence of ST8 and ST45 in community-associated MRSA (CA-MRSA) infections. Oral co-trimoxazole remains the most effective empirical option, while clindamycin and erythromycin should be avoided. Continuous molecular surveillance is warranted to monitor trends and guide treatment strategies in pediatric MRSA infections. Full article
(This article belongs to the Special Issue Advances in Antimicrobial Treatment)
Show Figures

Figure 1

13 pages, 784 KiB  
Article
Bacteriophage Resistance, Adhesin’s and Toxin’s Genes Profile of Staphylococcus aureus Causing Infections in Children and Adolescents
by Nikolaos Giormezis, Assimina Rechenioti, Konstantinos Doumanas, Christos Sotiropoulos, Fotini Paliogianni and Fevronia Kolonitsiou
Microorganisms 2025, 13(3), 484; https://doi.org/10.3390/microorganisms13030484 - 21 Feb 2025
Viewed by 725
Abstract
Staphylococcus aureus is a common pathogen, often recovered from children’s infections. Βiofilm formation, antimicrobial resistance and production of adhesins and toxins contribute to its virulence. As resistance to antimicrobials rises worldwide, alternative therapies like bacteriophages (among them the well-studied Bacteriophage K) can be [...] Read more.
Staphylococcus aureus is a common pathogen, often recovered from children’s infections. Βiofilm formation, antimicrobial resistance and production of adhesins and toxins contribute to its virulence. As resistance to antimicrobials rises worldwide, alternative therapies like bacteriophages (among them the well-studied Bacteriophage K) can be helpful. The aim of this study was to determine the bacteriophage and antimicrobial susceptibility and the presence of virulence genes among S. aureus from infections in children and adolescents. Eighty S. aureus isolates were tested for biofilm formation and antimicrobial susceptibility. The presence of two genes of the ica operon (icaA, icaD), adhesin’s (fnbA, fnbB, sasG) and toxin’s genes (PVL, tst, eta, etb) was tested by PCRs. Susceptibility to Bacteriophage K was determined using a spot assay. Thirteen isolates were methicillin-resistant (MRSA) and 41 were multi-resistant. Twenty-five S. aureus (31.3%) were resistant to Bacteriophage K, mostly from ocular and ear infections. Twelve S. aureus (15%) were PVL-positive, seven (8.8%) positive for tst, 18 (22.5%) were eta-positive and 46 were (57.5%) etb-positive. A total of 66 (82.5%) isolates carried fnbA, 16 (20%) fnbB and 26 (32.5%) sasG. PVL, tst and sasG carriage were more frequent in MRSA. Bacteriophage-susceptible isolates carried more frequently eta (32.7%) and etb (69.1%) compared to phage-resistant S. aureus (0% and 32%, respectively). Although mainly methicillin-sensitive, S. aureus from pediatric infections exhibited high antimicrobial resistance and carriage of virulence genes (especially for exfoliative toxins and fnbA). MRSA was associated with PVL, tst and sasG carriage, whereas Bacteriophage susceptibility was associated with eta and etb. The high level of Bacteriophage K susceptibility highlights its potential use against staphylococcal infections. Full article
(This article belongs to the Special Issue Combating Antimicrobial Resistance: Innovations and Strategies)
Show Figures

Figure 1

16 pages, 1045 KiB  
Article
Clonality, Virulence Genes, and Antimicrobial Resistance of Dairy Ruminants in Mastitic Milk-Associated Staphylococcus aureus in Sicily
by Nunziatina Russo, Nunzio Alberto Fazio, Francesca Licitra, Joanna Gajewska, Alessandro Stamilla, Rosario Salonia, Wioleta Chajęcka-Wierzchowska, Cinzia L. Randazzo, Cinzia Caggia, Francesco Antoci and Giuseppe Cascone
Antibiotics 2025, 14(2), 188; https://doi.org/10.3390/antibiotics14020188 - 12 Feb 2025
Viewed by 1296
Abstract
Background: Staphylococcus aureus is one of the most prevalent pathogens causing mastitis in dairy animals and represents a serious issue of public health concern due to its resistance against multiple antimicrobials. Objectives: This study assessed 101 S. aureus isolates obtained from [...] Read more.
Background: Staphylococcus aureus is one of the most prevalent pathogens causing mastitis in dairy animals and represents a serious issue of public health concern due to its resistance against multiple antimicrobials. Objectives: This study assessed 101 S. aureus isolates obtained from quarter milk of animals with subclinical mastitis in the Ragusa area (Sicily, Italy). Methods: Antibiotic resistance against nine antibiotics was evaluated using the Kirby–Bauer method, and the Minimum Inhibitory Concentration (MIC) values were measured for oxacillin (OXA) and vancomycin (VA). Additionally, the isolates were genetically characterized through multiplex PCR to identify the presence of spa, mecA, mecC, pvl, vanA, vanB, and vanC genes, along with pulsed-field gel electrophoresis analysis and multi-locus sequence typing (MLST). Results: The highest rates of antibiotic resistance were found against gentamicin (47.5%) and erythromycin (29.7%), with 86.1% of strains exhibiting resistance to at least two antimicrobials and 33.7% showing resistance to three antimicrobial classes. Furthermore, the results indicated that the presence of antibiotic resistance genes was not correlated with phenotypic resistance, and a phylogenetic analysis revealed varying phenotypic resistance profiles even within the same PFGE cluster. Lastly, alongside a new allelic profile ST 9471, MLST analysis identified five additional STs clustered into three CCs, with CC5 originating from human ancestral strains through human-to-animal host transfers, making it the dominant group. Conclusions: This study provided valuable insights into regional trends, allowing for the identification of significant antibiotic-resistant patterns and offering an understanding of bacterial dynamics in these environments, underscoring the importance of routine resistance surveillance in dairy farms. Full article
(This article belongs to the Special Issue Antimicrobial Resistance of Pathogens Isolated from Bovine Mastitis)
Show Figures

Graphical abstract

14 pages, 1473 KiB  
Article
Genome-Wide DNA Methylation Confirms Oral Squamous Cell Carcinomas in Proliferative Verrucous Leukoplakia as a Distinct Oral Cancer Subtype: A Case–Control Study
by Alex Proaño, Gracia Sarrion-Perez, Leticia Bagan and Jose Bagan
Cancers 2025, 17(2), 245; https://doi.org/10.3390/cancers17020245 - 13 Jan 2025
Viewed by 1311
Abstract
Background/Objectives: Oral cancers in patients with proliferative verrucous leukoplakia (PVL-OSCC) exhibit different clinical and prognostic outcomes from those seen in conventional oral squamous cell carcinomas (cOSSCs). The aim of the present study is to compare the genome-wide DNA methylation signatures in fresh frozen [...] Read more.
Background/Objectives: Oral cancers in patients with proliferative verrucous leukoplakia (PVL-OSCC) exhibit different clinical and prognostic outcomes from those seen in conventional oral squamous cell carcinomas (cOSSCs). The aim of the present study is to compare the genome-wide DNA methylation signatures in fresh frozen tissues between oral squamous cell carcinomas in patients with PVL and cOSCC using the Illumina Infinium MethylationEPIC BeadChip. Methods: This case–control study was carried out at the Stomatology and Maxillofacial Surgery Department of the General University Hospital of Valencia. For the epigenomic study, unsupervised exploratory bioinformatic analyses were performed using principal component and heatmap analysis. Supervised differential methylation analyses were conducted using a rank-based regression model and a penalized logistic regression model to identify potential prognostic biomarkers. Results: The unsupervised analyses of the global methylation profiles did not allow us to differentiate between the distinct oral cancer groups. However, the two supervised analyses confirmed the existence of two oral carcinoma phenotypes. We identified 21 differentially methylated CpGs corresponding to 14 genes. Among them, three CpGs had not been previously assigned to any known gene, and the remaining were associated with genes unrelated to oral cancer. The AGL, WRB, and ARL15 genes were identified as potential prognostic biomarkers. Conclusions: This study emphasizes the significant role of epigenetic dysregulation in OSCC, particularly in cases preceded by PVL. We have provided data on differential methylation genes that could be involved in the molecular carcinogenesis of PVL-OSCC. Full article
(This article belongs to the Special Issue Modern Approach to Oral Cancer)
Show Figures

Figure 1

13 pages, 505 KiB  
Article
Methicillin-Resistant Staphylococcus aureus: The Shifting Landscape in the United Arab Emirates
by Syrine Boucherabine, Rania Nassar, Lobna Mohamed, Maya Habous, Anju Nabi, Riyaz Amirali Husain, Mubarak Alfaresi, Seema Oommen, Hamda Hassan Khansaheb, Mouza Al Sharhan, Handan Celiloglu, Mubarak Hussain Raja, Eman Abdelkarim, Nishi Ali, Salman Tausif, Victory Olowoyeye, Nelson Cruz Soares, Mahmood Hachim, Danesh Moradigaravand, Dean Everett, Elke Mueller, Stefan Monecke, Ralf Ehricht and Abiola Senokadd Show full author list remove Hide full author list
Antibiotics 2025, 14(1), 24; https://doi.org/10.3390/antibiotics14010024 - 2 Jan 2025
Cited by 3 | Viewed by 2476
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a significant burden globally, particularly in the Arabian Gulf region. The United Arab Emirates (UAE) has experienced rising MRSA prevalence, with increasing diversity in the clonal complexes (CCs) identified. The COVID-19 pandemic, with its increased hospitalization rates [...] Read more.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a significant burden globally, particularly in the Arabian Gulf region. The United Arab Emirates (UAE) has experienced rising MRSA prevalence, with increasing diversity in the clonal complexes (CCs) identified. The COVID-19 pandemic, with its increased hospitalization rates and antibiotic use, may have further influenced MRSA’s genetic evolution and epidemiology in the country. Methods: To investigate this influence, genomic profiling of 310 MRSA clinical isolates collected between February and November 2022 was performed using a DNA microarray-based assay. Results: Isolates were assigned to 22 clonal complexes and 72 distinct strain assignments. The predominant clonal complexes were CC5, CC6, CC361, CC22, CC1, and CC8. Community-acquired MRSA lineages were dominant, with only one healthcare-associated MRSA lineage isolate identified. Upward trends of CC1153 were observed along with rare CCs, such as CC121-MRSA and CC7-MRSA, with the latter being reported for the first time in the Arabian Gulf region. The presence of pandemic strains USA300 CC8-MRSA-[IVa + ACME1] and CC8-MRSA-IV strains were also observed, including variants lacking Panton–Valentine leukocidin (pvl) genes and missing tst1 or enterotoxin genes. The PVL-negative CC772-MRSA-V/VT was identified, representing its first report in the UAE. A novel variant, CC361-MRSA-IV (tst1+/PVL+), was identified. Pvl genes were observed in 36% of the isolates, primarily from skin and soft tissue infections, while fusC (SCC-borne fusidic acid resistance) was identified in 13% of the isolates. Conclusions: The findings highlight the ongoing evolution of MRSA in the UAE, with the persistence and emergence of diverse and rare clonal complexes, driving the need for continuous genomic surveillance. Full article
(This article belongs to the Special Issue The Molecular Epidemiology and Antimicrobial Resistance of MRSA)
Show Figures

Figure 1

15 pages, 1025 KiB  
Article
BLV-CoCoMo Dual qPCR Assay Targeting LTR Region for Quantifying Bovine Leukemia Virus: Comparison with Multiplex Real-Time qPCR Assay Targeting pol Region
by Sonoko Watanuki, Aronggaowa Bao, Etsuko Saitou, Kazuyuki Shoji, Masaki Izawa, Mitsuaki Okami, Yasunobu Matsumoto and Yoko Aida
Pathogens 2024, 13(12), 1111; https://doi.org/10.3390/pathogens13121111 - 16 Dec 2024
Cited by 1 | Viewed by 1183
Abstract
The proviral load (PVL) of the bovine leukemia virus (BLV) is a useful index for estimating disease progression and transmission risk. Real-time quantitative PCR techniques are widely used for PVL quantification. We previously developed a dual-target detection method, the “Liquid Dual-CoCoMo assay”, that [...] Read more.
The proviral load (PVL) of the bovine leukemia virus (BLV) is a useful index for estimating disease progression and transmission risk. Real-time quantitative PCR techniques are widely used for PVL quantification. We previously developed a dual-target detection method, the “Liquid Dual-CoCoMo assay”, that uses the coordination of common motif (CoCoMo) degenerate primers. This method can detect two genes simultaneously using a FAM-labeled minor groove binder (MGB) probe for the BLV long terminal repeat (LTR) region and a VIC-labeled MGB probe for the BoLA-DRA gene. In this study, we evaluated the diagnostic and analytical performance of the Dual-CoCoMo assay targeting the LTR region by comparing its performance against the commercially available Takara multiplex assay targeting the pol region. The diagnostic sensitivity and specificity of the Liquid Dual-CoCoMo assay based on the diagnostic results of the ELISA or original Single-CoCoMo qPCR were higher than those of the Takara multiplex assay. Furthermore, using a BLV molecular clone, the analytical sensitivity of our assay was higher than that of the Takara multiplex assay. Our results provide the first evidence that the diagnostic and analytical performances of the Liquid Dual-CoCoMo assay are better than those of commercially available multiplex assays that target the pol region. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

9 pages, 1028 KiB  
Article
Peripheral Blood Mononuclear Cell Transcriptome of Dairy Cows Naturally Infected with Bovine Leukemia Virus
by Tanner F. Scull, Clarissa Strieder-Barboza and Oscar J. Benitez
Pathogens 2024, 13(10), 885; https://doi.org/10.3390/pathogens13100885 - 11 Oct 2024
Viewed by 1377
Abstract
The current literature has identified many abnormalities in the immune expression of cows infected with the bovine leukemia virus (BLV). These studies have focused on individual cell, gene, or protein expression, failing to provide a comprehensive understanding of the changes in immune expression [...] Read more.
The current literature has identified many abnormalities in the immune expression of cows infected with the bovine leukemia virus (BLV). These studies have focused on individual cell, gene, or protein expression, failing to provide a comprehensive understanding of the changes in immune expression in animals with BLV. To identify the overall alterations in immune expression during BLV infection, the transcriptomes of the peripheral blood mononuclear cells (PBMCs) of cows seropositive or seronegative for BLV antibodies were sequenced. Whole blood samples were collected from 20 dairy cows and screened for BLV antibodies and PCR was used to quantify the proviral load of the samples. PBMCs were separated from whole blood using density gradient centrifugation from which RNA was isolated and sequenced. Three seropositive samples (BLV+; n = 3), including one of each PVL category, low (n = 1), moderate (n = 1), and high (n = 1), and three seronegative samples (BLV−; n = 3) were sequenced for differential gene expression analysis. The results showed major differences in the transcriptome profiles of the BLV+ and BLV− PBMCs and revealed a wide variety of immunological pathways affected by BLV infection. Our results suggest that disease state and PBMC gene expression vary depending on BLV proviral load levels and that BLV causes the suppression of normal immune responses and influences B and T cell gene expression, resulting in immune dysfunction. Full article
Show Figures

Figure 1

13 pages, 10954 KiB  
Article
PLEKHG1: New Potential Candidate Gene for Periventricular White Matter Abnormalities
by Francesco Calì, Mirella Vinci, Simone Treccarichi, Carla Papa, Angelo Gloria, Antonino Musumeci, Concetta Federico, Girolamo Aurelio Vitello, Antonio Gennaro Nicotera, Gabriella Di Rosa, Luigi Vetri, Salvatore Saccone and Maurizio Elia
Genes 2024, 15(8), 1096; https://doi.org/10.3390/genes15081096 - 20 Aug 2024
Cited by 4 | Viewed by 1781
Abstract
Hypoxic-ischemic brain damage presents a significant neurological challenge, often manifesting during the perinatal period. Specifically, periventricular leukomalacia (PVL) is emerging as a notable contributor to cerebral palsy and intellectual disabilities. It compromises cerebral microcirculation, resulting in insufficient oxygen or blood flow to the [...] Read more.
Hypoxic-ischemic brain damage presents a significant neurological challenge, often manifesting during the perinatal period. Specifically, periventricular leukomalacia (PVL) is emerging as a notable contributor to cerebral palsy and intellectual disabilities. It compromises cerebral microcirculation, resulting in insufficient oxygen or blood flow to the periventricular region of the brain. As widely documented, these pathological conditions can be caused by several factors encompassing preterm birth (4–5% of the total cases), as well single cotwin abortion and genetic variants such as those associated with GTPase pathways. Whole exome sequencing (WES) analysis identified a de novo causative variant within the pleckstrin homology domain-containing family G member 1 (PLEKHG1) gene in a patient presenting with PVL. The PLEKHG1 gene is ubiquitously expressed, showing high expression patterns in brain tissues. PLEKHG1 is part of a family of Rho guanine nucleotide exchange factors, and the protein is essential for cell division control protein 42 (CDC42) activation in the GTPase pathway. CDC42 is a key small GTPase of the Rho-subfamily, regulating various cellular functions such as cell morphology, migration, endocytosis, and cell cycle progression. The molecular mechanism involving PLEKHG1 and CDC42 has an intriguing role in the reorientation of cells in the vascular endothelium, thus suggesting that disruption responses to mechanical stress in endothelial cells may be involved in the formation of white matter lesions. Significantly, CDC42 association with white matter abnormalities is underscored by its MIM phenotype number. In contrast, although PLEKHG1 has been recently associated with patients showing white matter hyperintensities, it currently lacks a MIM phenotype number. Additionally, in silico analyses classified the identified variant as pathogenic. Although the patient was born prematurely and subsequently to dichorionic gestation, during which its cotwin died, we suggest that the variant described can strongly contribute to PVL. The aim of the current study is to establish a plausible association between the PLEKHG1 gene and PVL. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Graphical abstract

13 pages, 1425 KiB  
Article
Staphylococcus spp. in Salad Vegetables: Biodiversity, Antimicrobial Resistance, and First Identification of Methicillin-Resistant Strains in the United Arab Emirates Food Supply
by Ihab Habib, Glindya Bhagya Lakshmi, Mohamed-Yousif Ibrahim Mohamed, Akela Ghazawi, Mushtaq Khan, Rami H. Al-Rifai, Afra Abdalla, Febin Anes, Mohammed Elbediwi, Hazim O. Khalifa and Abiola Senok
Foods 2024, 13(15), 2439; https://doi.org/10.3390/foods13152439 - 2 Aug 2024
Cited by 2 | Viewed by 2574
Abstract
Contamination of leafy greens with Staphylococcus spp. can occur at various supply chain stages, from farm to table. This study comprehensively analyzes the species diversity, antimicrobial resistance, and virulence factors of Staphylococci in salad vegetables from markets in the United Arab Emirates (UAE). [...] Read more.
Contamination of leafy greens with Staphylococcus spp. can occur at various supply chain stages, from farm to table. This study comprehensively analyzes the species diversity, antimicrobial resistance, and virulence factors of Staphylococci in salad vegetables from markets in the United Arab Emirates (UAE). A total of 343 salad items were sampled from three major cities in the UAE from May 2022 to February 2023 and tested for the presence of Staphylococcus spp. using standard culture-based methods. Species-level identification was achieved using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Antimicrobial susceptibility testing was conducted using the VITEK-2 system with AST-P592 cards. Additionally, whole genome sequencing (WGS) of ten selected isolates was performed to characterize antimicrobial resistance determinants and toxin-related virulence factors. Nine Staphylococcus species were identified in 37.6% (129/343) of the tested salad items, with coagulase-negative staphylococci (CoNS) dominating (87.6% [113/129]) and S. xylosus being the most prevalent (89.4% [101/113]). S. aureus was found in 4.6% (14/343) of the salad samples, averaging 1.7 log10 CFU/g. One isolate was confirmed as methicillin-resistant S. aureus, harboring the mecA gene. It belonged to multi-locus sequence type ST-672 and spa type t384 and was isolated from imported fresh dill. Among the characterized S. xylosus (n = 45), 13.3% tested positive in the cefoxitin screen test, and 6.6% were non-susceptible to oxacillin. WGS analysis revealed that the cytolysin gene (cylR2) was the only toxin-associated factor found in S. xylosus, while a methicillin-sensitive S. aureus isolate harbored the Panton-Valentine Leukocidin (LukSF/PVL) gene. This research is the first to document the presence of methicillin-resistant S. aureus in the UAE food chain. Furthermore, S. xylosus (a coagulase-negative staphylococcus not commonly screened in food) has demonstrated phenotypic resistance to clinically relevant antimicrobials. This underscores the need for vigilant monitoring of antimicrobial resistance in bacterial contaminants, whether pathogenic or commensal, at the human-food interface. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

19 pages, 2461 KiB  
Article
Development of Dry and Liquid Duplex Reagent Mix-Based Polymerase Chain Reaction Assays as Novel Tools for the Rapid and Easy Quantification of Bovine Leukemia Virus (BLV) Proviral Loads
by Sonoko Watanuki, Kazuyuki Shoji, Masaki Izawa, Mitsuaki Okami, Yingbao Ye, Aronggaowa Bao, Yulin Liu, Etsuko Saitou, Kimikazu Sugiyama, Michiru Endo, Yasunobu Matsumoto and Yoko Aida
Viruses 2024, 16(7), 1016; https://doi.org/10.3390/v16071016 - 25 Jun 2024
Cited by 1 | Viewed by 2101
Abstract
Bovine leukemia virus (BLV) is prevalent worldwide, causing serious problems in the cattle industry. The BLV proviral load (PVL) is a useful index for estimating disease progression and transmission risk. We previously developed a quantitative real-time PCR (qPCR) assay to measure the PVL [...] Read more.
Bovine leukemia virus (BLV) is prevalent worldwide, causing serious problems in the cattle industry. The BLV proviral load (PVL) is a useful index for estimating disease progression and transmission risk. We previously developed a quantitative real-time PCR (qPCR) assay to measure the PVL using the coordination of common motif (CoCoMo) degenerate primers. Here, we constructed a novel duplex BLV-CoCoMo qPCR assay that can amplify two genes simultaneously using a FAM-labeled MGB probe for the BLV LTR gene and a VIC-labeled MGB probe for the BoLA-DRA gene. This liquid duplex assay maintained its original sensitivity and reproducibility in field samples. Furthermore, we developed a dry duplex assay composed of PCR reagents necessary for the optimized liquid duplex assay. We observed a strong positive correlation between the PVLs measured using the dry and liquid duplex assays. Validation analyses showed that the sensitivity of the dry duplex assay was slightly lower than that of the other methods for the detection of a BLV molecular clone, but it showed similar sensitivity to the singleplex assay and slightly higher sensitivity than the liquid duplex assay for the PVL quantification of 82 field samples. Thus, our liquid and dry duplex assays are useful for measuring the BLV PVL in field samples, similar to the original singleplex assay. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

15 pages, 1924 KiB  
Article
Displacement of Hospital-Acquired, Methicillin-Resistant Staphylococcus aureus Clones by Heterogeneous Community Strains in Kenya over a 13-Year Period
by Justin Nyasinga, Zubair Munshi, Collins Kigen, Andrew Nyerere, Lillian Musila, Andrew Whitelaw, Wilma Ziebuhr and Gunturu Revathi
Microorganisms 2024, 12(6), 1171; https://doi.org/10.3390/microorganisms12061171 - 8 Jun 2024
Cited by 1 | Viewed by 1956
Abstract
We determined antibiotic susceptibility and employed Oxford Nanopore whole-genome sequencing to explore strain diversity, resistance, and virulence gene carriage among methicillin-resistant Staphylococcus aureus (MRSA) strains from different infection sites and timepoints in a tertiary Kenyan hospital. Ninety-six nonduplicate clinical isolates recovered between 2010 [...] Read more.
We determined antibiotic susceptibility and employed Oxford Nanopore whole-genome sequencing to explore strain diversity, resistance, and virulence gene carriage among methicillin-resistant Staphylococcus aureus (MRSA) strains from different infection sites and timepoints in a tertiary Kenyan hospital. Ninety-six nonduplicate clinical isolates recovered between 2010 and 2023, identified and tested for antibiotic susceptibility on the VITEK ID/AST platform, were sequenced. Molecular typing, antibiotic resistance, and virulence determinant screening were performed using the relevant bioinformatics tools. The strains, alongside those from previous studies, were stratified into two periods covering 2010–2017 and 2018–2023 and comparisons were made. Mirroring phenotypic profiles, aac(6)-aph(2) [aminoglycosides]; gyrA (S84L) and grlA (S80Y) [fluoroquinolones]; dfrG [anti-folates]; and tet(K) [tetracycline] resistance determinants dominated the collection. While the proportion of ST239/241-t037-SCCmec III among MRSA reduced from 37.7% to 0% over the investigated period, ST4803-t1476-SCCmec IV and ST152-t355-SCCmec IV were pre-eminent. The prevalence of Panton–Valentine leucocidin (PVL) and arginine catabolic mobile element (ACME) genes was 38% (33/87) and 6.8% (6/87), respectively. We observed the displacement of HA-MRSA ST239/241-t037-SCCmec III with the emergence of ST152-t355-SCCmec IV and a greater clonal heterogeneity. The occurrence of PVL+/ACME+ CA-MRSA in recent years warrants further investigations into their role in the CA-MRSA virulence landscape, in a setting of high PVL prevalence. Full article
(This article belongs to the Special Issue Biology and Pathogenesis of Staphylococcus Infection (2nd Edition))
Show Figures

Figure 1

16 pages, 3595 KiB  
Article
Characterisation of PVL-Positive Staphylococcus argenteus from the United Arab Emirates
by Stefan Monecke, Sindy Burgold-Voigt, Sascha D. Braun, Celia Diezel, Elisabeth M. Liebler-Tenorio, Elke Müller, Rania Nassar, Martin Reinicke, Annett Reissig, Abiola Senok and Ralf Ehricht
Antibiotics 2024, 13(5), 401; https://doi.org/10.3390/antibiotics13050401 - 27 Apr 2024
Cited by 3 | Viewed by 2566
Abstract
Staphylococcus argenteus is a recently described staphylococcal species that is related to Staphylococcus aureus but lacks the staphyloxanthin operon. It is able to acquire both resistance markers such as the SCCmec elements and mobile genetic elements carrying virulence-associated genes from S. aureus [...] Read more.
Staphylococcus argenteus is a recently described staphylococcal species that is related to Staphylococcus aureus but lacks the staphyloxanthin operon. It is able to acquire both resistance markers such as the SCCmec elements and mobile genetic elements carrying virulence-associated genes from S. aureus. This includes those encoding the Panton–Valentine leukocidin (PVL), which is associated mainly with severe and/or recurrent staphylococcal skin and soft tissue infections. Here, we describe the genome sequences of two PVL-positive, mecA-negative S. argenteus sequence type (ST) 2250 isolates from the United Arab Emirates in detail. The isolates were found in a dental clinic in the United Arab Emirates (UAE). Both were sequenced using Oxford Nanopore Technology (ONT). This demonstrated the presence of temperate bacteriophages in the staphylococcal genomes, including a PVL prophage. It was essentially identical to the published sequence of phiSa2wa_st78 (GenBank NC_055048), a PVL phage from an Australian S. aureus clonal complex (CC) 88 isolate. Besides the PVL prophage, one isolate carried another prophage and the second isolate carried two additional prophages, whereby the region between these two prophages was inverted. This “flipped” region comprised about 1,083,000 bp, or more than a third of the strain’s genome, and it included the PVL prophage. Prophages were induced by Mitomycin C treatment and subjected to transmission electron microscopy (TEM). This yielded, in accordance to the sequencing results, one or, respectively, two distinct populations of icosahedral phages. It also showed prolate phages which presumptively might be identified as the PVL phage. This observation highlights the significance bacteriophages have as agents of horizontal gene transfer as well as the need for monitoring emerging staphylococcal strains, especially in cosmopolitan settings such as the UAE. Full article
Show Figures

Figure 1

14 pages, 702 KiB  
Article
BoLA-DRB3 Polymorphism Associated with Bovine Leukemia Virus Infection and Proviral Load in Holstein Cattle in Egypt
by Rania Hamada, Samy Metwally, Ryosuke Matsuura, Liushiqi Borjigin, Chieh-Wen Lo, Alsagher O. Ali, Adel E. A. Mohamed, Satoshi Wada and Yoko Aida
Pathogens 2023, 12(12), 1451; https://doi.org/10.3390/pathogens12121451 - 14 Dec 2023
Cited by 1 | Viewed by 2849
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most prevalent neoplastic disease of cattle worldwide. The immune response to BLV and disease susceptibility and resistance in cattle are strongly correlated with the bovine leukocyte antigen (BoLA)- [...] Read more.
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most prevalent neoplastic disease of cattle worldwide. The immune response to BLV and disease susceptibility and resistance in cattle are strongly correlated with the bovine leukocyte antigen (BoLA)-DRB3 allelic polymorphism. BLV infection continues to spread in Egypt, in part because the relationships between BLV infection, proviral load in Egypt, and BoLA-DRB3 polymorphism are unknown. Here, we identified 18 previously reported alleles in 121 Holstein cows using a polymerase chain reaction sequence-based typing method. Furthermore, BoLA-DRB3 gene polymorphisms in these animals were investigated for their influence on viral infection. BoLA-DRB3*015:01 and BoLA-DRB3*010:01 were identified as susceptible and resistant alleles, respectively, for BLV infection in the tested Holsteins. In addition, BoLA-DRB3*012:01 was associated with low PVL in previous reports but high PVL in Holstein cattle in Egypt. This study is the first to demonstrate that the BoLA-DRB3 polymorphism confers resistance and susceptibility to PVL and infections of BLV in Holstein cattle in Egypt. Our results can be useful for the disease control and eradication of BLV through genetic selection. Full article
(This article belongs to the Special Issue Diagnostics of Animal Viral Infectious Diseases)
Show Figures

Figure 1

Back to TopTop