Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = pulse length monitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7214 KB  
Article
Quantitative Analysis of Phase Response Enhancement in Distributed Acoustic Sensing Systems Using Helical Fiber Winding Technology
by Yuxing Duan, Shangming Du, Tianwei Chen, Can Guo, Song Wu and Lei Liang
Sensors 2025, 25(23), 7289; https://doi.org/10.3390/s25237289 - 29 Nov 2025
Viewed by 561
Abstract
In this paper, we investigate the physical mechanics of vibration wave detection in distributed acoustic sensing (DAS) systems with the aim of enhancing the interpretation of the quantitative wavefield. We investigate the nonlinear relationship of DAS gauge length and pulse width on the [...] Read more.
In this paper, we investigate the physical mechanics of vibration wave detection in distributed acoustic sensing (DAS) systems with the aim of enhancing the interpretation of the quantitative wavefield. We investigate the nonlinear relationship of DAS gauge length and pulse width on the seismic wave response, and the result is explained by the trigonometric relationship of backscattered Rayleigh wave phases. We further demonstrate the influence of spiral winding on DAS performance and also build phase response models for P-waves and S-waves in helically wound cables. These models suggest that the winding angle controls the measurement interval spacing and the angle of wave incidence. Additionally, integration of structural reinforcement improves the amplitude response characteristics and SNR. The experimentally inspired results show, using simulations and field tests, that the same vibration sources can give helically wound cables with larger winding angles the largest phase amplitudes, which would substantially exceed that of straight cables. SNR increased significantly (approximately 10% to 30%). The efficacy of the method was also checked using experiments for different vibration amplitudes and frequencies. Such results provide evidence for the design and installation of fiber-optic cables for use in practical engineering applications involving safety monitoring. Full article
(This article belongs to the Special Issue Emerging Trends in Optical Sensing)
Show Figures

Figure 1

15 pages, 11203 KB  
Article
Designing a Femtosecond-Resolution Bunch Length Monitor Using Coherent Transition Radiation Images
by Ana Guisao-Betancur, Joseph Wolfenden, Erik Mansten, Sara Thorin, Johan Lundquist, Oliver Grimm and Carsten P. Welsch
Instruments 2025, 9(4), 29; https://doi.org/10.3390/instruments9040029 - 25 Nov 2025
Viewed by 301
Abstract
Ultrashort bunch length measurements are crucial for characterizing electron beams in short-pulse accelerators, including novel accelerators like EuPRAXIA and those used for free-electron lasers (FELs). This work provides an overview of the design process and the current status of a single-shot bunch length [...] Read more.
Ultrashort bunch length measurements are crucial for characterizing electron beams in short-pulse accelerators, including novel accelerators like EuPRAXIA and those used for free-electron lasers (FELs). This work provides an overview of the design process and the current status of a single-shot bunch length monitor prototype based on a broadband spatial imaging system for coherent transition radiation (CTR), which was recently installed at the MAX IV short-pulse facility (SPF). The THz-based imaging system was designed using optical system simulation software for full bunch simulation. CTR images were captured experimentally, followed by image analysis for comparison with reference bunch length data from the transverse deflecting cavity (TDC). This paper presents the conceptualization and design choices for the optical system of the bunch length monitor, the current experimental set-up, the installation details, and preliminary positive observations confirming the potential of this method as a novel approach to bunch length monitoring using spatial CTR images and a scalar technique, with potential for future bunch profile measurements. Full article
(This article belongs to the Special Issue Plasma Accelerator Technologies)
Show Figures

Figure 1

14 pages, 3118 KB  
Article
Reconstruction Modeling and Validation of Brown Croaker (Miichthys miiuy) Vocalizations Using Wavelet-Based Inversion and Deep Learning
by Sunhyo Kim, Jongwook Choi, Bum-Kyu Kim, Hansoo Kim, Donhyug Kang, Jee Woong Choi, Young Geul Yoon and Sungho Cho
Sensors 2025, 25(19), 6178; https://doi.org/10.3390/s25196178 - 6 Oct 2025
Cited by 1 | Viewed by 571
Abstract
Fish species’ biological vocalizations serve as essential acoustic signatures for passive acoustic monitoring (PAM) and ecological assessments. However, limited availability of high-quality acoustic recordings, particularly for region-specific species like the brown croaker (Miichthys miiuy), hampers data-driven bioacoustic methodology development. In this [...] Read more.
Fish species’ biological vocalizations serve as essential acoustic signatures for passive acoustic monitoring (PAM) and ecological assessments. However, limited availability of high-quality acoustic recordings, particularly for region-specific species like the brown croaker (Miichthys miiuy), hampers data-driven bioacoustic methodology development. In this study, we present a framework for reconstructing brown croaker vocalizations by integrating fk14 wavelet synthesis, PSO-based parameter optimization (with an objective combining correlation and normalized MSE), and deep learning-based validation. Sensitivity analysis using a normalized Bartlett processor identified delay and scale (length) as the most critical parameters, defining valid ranges that maintained waveform similarity above 98%. The reconstructed signals matched measured calls in both time and frequency domains, replicating single-pulse morphology, inter-pulse interval (IPI) distributions, and energy spectral density. Validation with a ResNet-18-based Siamese network produced near-unity cosine similarity (~0.9996) between measured and reconstructed signals. Statistical analyses (95% confidence intervals; residual errors) confirmed faithful preservation of SPL values and minor, biologically plausible IPI variations. Under noisy conditions, similarity decreased as SNR dropped, indicating that environmental noise affects reconstruction fidelity. These results demonstrate that the proposed framework can reliably generate acoustically realistic and morphologically consistent fish vocalizations, even under data-limited scenarios. The methodology holds promise for dataset augmentation, PAM applications, and species-specific call simulation. Future work will extend this framework by using reconstructed signals to train generative models (e.g., GANs, WaveNet), enabling scalable synthesis and supporting real-time adaptive modeling in field monitoring. Full article
Show Figures

Figure 1

15 pages, 330 KB  
Article
Detecting Diverse Seizure Types with Wrist-Worn Wearable Devices: A Comparison of Machine Learning Approaches
by Louis Faust, Jie Cui, Camille Knepper, Mona Nasseri, Gregory Worrell and Benjamin H. Brinkmann
Sensors 2025, 25(17), 5562; https://doi.org/10.3390/s25175562 - 6 Sep 2025
Viewed by 2345
Abstract
Objective: To evaluate the feasibility and effectiveness of wrist-worn wearable devices combined with machine learning (ML) approaches for detecting a diverse array of seizure types beyond generalized tonic–clonic (GTC), including focal, generalized, and subclinical seizures. Materials and Methods: Twenty-eight patients undergoing [...] Read more.
Objective: To evaluate the feasibility and effectiveness of wrist-worn wearable devices combined with machine learning (ML) approaches for detecting a diverse array of seizure types beyond generalized tonic–clonic (GTC), including focal, generalized, and subclinical seizures. Materials and Methods: Twenty-eight patients undergoing inpatient video-EEG monitoring at Mayo Clinic were concurrently monitored using Empatica E4 wrist-worn devices. These devices captured accelerometry, blood volume pulse, electrodermal activity, skin temperature, and heart rate. Seizures were annotated by neurologists. The data were preprocessed to experiment with various segment lengths (10 s and 60 s) and multiple feature sets. Three ML strategies, XGBoost, deep learning models (LSTM, CNN, Transformer), and ROCKET, were evaluated using leave-one-patient-out cross-validation. Performance was assessed using area under the receiver operating characteristic curve (AUROC), seizure-wise recall (SW-Recall), and false alarms per hour (FA/h). Results: Detection performance varied by seizure type and model. GTC seizures were detected most reliably (AUROC = 0.86, SW-Recall = 0.81, FA/h = 3.03). Hyperkinetic and tonic seizures showed high SW-Recall but also high FA/h. Subclinical and aware-dyscognitive seizures exhibited the lowest SW-Recall and highest FA/h. MultiROCKET and XGBoost performed best overall, though no single model was optimal for all seizure types. Longer segments (60 s) generally reduced FA/h. Feature set effectiveness varied, with multi-biosignal sets improving performance across seizure types. Conclusions: Wrist-worn wearables combined with ML can extend seizure detection beyond GTC seizures, though performance remains limited for non-motor types. Optimizing model selection, feature sets, and segment lengths, and minimizing false alarms, are key to clinical utility and real-world adoption. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

13 pages, 1756 KB  
Article
A Study of HiPIMS Process Characteristics in SiO2 Deposition
by Marcell Gajdics, Dániel Olasz, György Sáfrán and Miklós Serényi
Coatings 2025, 15(9), 1023; https://doi.org/10.3390/coatings15091023 - 2 Sep 2025
Viewed by 3724
Abstract
In this study, SiO2 thin films were sputtered from a Si target using reactive HiPIMS (high-power impulse magnetron sputtering) in an argon–oxygen process gas. In order to understand the behavior of HiPIMS, the deposition process was studied by systematically varying the sputtering [...] Read more.
In this study, SiO2 thin films were sputtered from a Si target using reactive HiPIMS (high-power impulse magnetron sputtering) in an argon–oxygen process gas. In order to understand the behavior of HiPIMS, the deposition process was studied by systematically varying the sputtering parameters and monitoring the current waveforms. A decaying transient was observed at the leading edge of the pulse, caused by the L-C term of the HiPIMS generator, the cable, and the target. To investigate the periodic transient, we used, to the best of our knowledge, for the first time, a standing wave ratio meter (SWR). In order to be able to deposit films with the desired properties, the target voltage and its associated current characteristics were also investigated. The formation of a distinct step-like shape in the current–voltage characteristics is observed during reactive sputtering. A simple physical model was used to determine the position and length of the plateau. The appearance of hysteresis, which is typical of reactive sputtering, was also observed. These findings may help us to better understand the mechanism of reactive HiPIMS deposition of SiO2. Full article
(This article belongs to the Section Thin Films)
Show Figures

Graphical abstract

30 pages, 3568 KB  
Article
Long-Term Corrosion Behavior of Reinforced Concrete: Impact of Supplementary Cementitious Materials and Reservoir Size Under Accelerated Chloride Ingress
by Kazi Naimul Hoque and Francisco Presuel-Moreno
Constr. Mater. 2025, 5(2), 33; https://doi.org/10.3390/constrmater5020033 - 24 May 2025
Viewed by 1082
Abstract
This study investigates the long-term corrosion behavior of reinforced concrete (RC) under accelerated chloride exposure for about 1600 days, using electrochemical methods like galvanostatic pulse (GP) testing. Two concrete mixes (T1 and T2), incorporating distinct supplementary cementitious materials (SCMs), were evaluated to determine [...] Read more.
This study investigates the long-term corrosion behavior of reinforced concrete (RC) under accelerated chloride exposure for about 1600 days, using electrochemical methods like galvanostatic pulse (GP) testing. Two concrete mixes (T1 and T2), incorporating distinct supplementary cementitious materials (SCMs), were evaluated to determine their performance in aggressive environments. Specimens with varying reservoir lengths were exposed to a 10% NaCl solution (by weight), with electromigration applied to accelerate chloride transport. Electrochemical assessments, including measurements of rebar potential, concrete solution resistance, concrete polarization resistance, corrosion current, and mass loss, were conducted to monitor the degradation of embedded steel. The findings revealed that smaller reservoirs (2.5 cm) significantly restricted chloride and moisture penetration, reducing corrosion, while larger reservoirs (10 cm) resulted in greater exposure and higher corrosion activity. Additionally, T1 mixes (partial cement replacement with 20% fly ash and 50% slag) showed higher corrosion currents and mass loss, whereas T2 mixes (partial cement replacement with 20% fly ash and 8% silica fume) demonstrated enhanced matrix densification, reduced permeability, and superior durability. These results underscore the importance of mix design and exposure conditions in mitigating corrosion, providing critical insights for improving the longevity of RC structures in aggressive environments. Full article
Show Figures

Figure 1

15 pages, 1261 KB  
Article
Validation of the Use of a Smart Band in Recording Spatiotemporal Gait Parameters in the 6-Minute Walk Test
by Rosa María Ortiz-Gutiérrez, José Javier López-Marcos, José Luis Maté-Muñoz, Paloma Moreta-de-Esteban and Patricia Martín-Casas
Sensors 2025, 25(8), 2621; https://doi.org/10.3390/s25082621 - 21 Apr 2025
Cited by 1 | Viewed by 3593
Abstract
Wearable monitoring devices, such as smart bands, have emerged as accessible and non-invasive tools for assessing physiological and spatiotemporal gait parameters in various clinical tests. This study aimed to validate the use of the Xiaomi Mi Band 6 for recording gait parameters during [...] Read more.
Wearable monitoring devices, such as smart bands, have emerged as accessible and non-invasive tools for assessing physiological and spatiotemporal gait parameters in various clinical tests. This study aimed to validate the use of the Xiaomi Mi Band 6 for recording gait parameters during the six-minute walk test (6MWT). Seventy participants without gait impairments were recruited, and the measurements obtained with the smart band were compared to reference methods (evaluator, pedometer, and pulse oximeter). The physiological parameter results showed that the smart band demonstrated good accuracy in heart rate monitoring but lower agreement in oxygen saturation measurements. Gait parameters indicated excellent agreement in step count (ICC > 0.9) and step frequency (ICC > 0.75), whereas step length and distance estimations showed higher variability. These findings suggest that the Xiaomi Mi Band 6 is a viable alternative for measuring specific gait parameters, though with limitations in certain aspects of accuracy. Full article
Show Figures

Figure 1

12 pages, 3145 KB  
Article
Multi-Channel Sparse-Frequency-Scanning White-Light Interferometry with Adaptive Mode Locking for Pulse Wave Velocity Measurement
by Yifei Xu, Laiben Gao, Cheng Qian, Yiping Wang, Wenyan Liu, Xiaoyan Cai and Qiang Liu
Photonics 2025, 12(4), 316; https://doi.org/10.3390/photonics12040316 - 28 Mar 2025
Cited by 1 | Viewed by 936
Abstract
Fiber-optic Fabry–Pérot (F–P) sensors offer significant potential for non-invasive hemodynamic monitoring, but existing sensing systems face limitations in multi-channel measurement capabilities and dynamic demodulation accuracy. This study introduces a sparse-frequency-scanning white-light interferometry (SFS-WLI) system with an adaptive mode-locked cross-correlation (MLCC) algorithm to address [...] Read more.
Fiber-optic Fabry–Pérot (F–P) sensors offer significant potential for non-invasive hemodynamic monitoring, but existing sensing systems face limitations in multi-channel measurement capabilities and dynamic demodulation accuracy. This study introduces a sparse-frequency-scanning white-light interferometry (SFS-WLI) system with an adaptive mode-locked cross-correlation (MLCC) algorithm to address these challenges. The system leverages telecom-grade semiconductor lasers (191.2–196.15 THz sweep range, 50 GHz step) and a Fibonacci-optimized MLCC algorithm to achieve real-time cavity length demodulation at 5 kHz. Compared to normal MLCC algorithm, the Fibonacci-optimized algorithm reduces the number of computational iterations by 57 times while maintaining sub-nanometer resolution under dynamic perturbations. Experimental validation demonstrated a carotid–radial pulse wave velocity of 5.12 m/s in a healthy male volunteer. This work provides a scalable and cost-effective solution for cardiovascular monitoring with potential applications in point-of-care testing (POCT) and telemedicine. Full article
Show Figures

Figure 1

15 pages, 28548 KB  
Article
Non-Contact Laser Ultrasound Detection of Internal Gas Defects in Lithium-Ion Batteries
by Dongxia Tang, Chenguang Xu, Guidong Xu, Sen Cui and Sai Zhang
Sensors 2025, 25(7), 2033; https://doi.org/10.3390/s25072033 - 25 Mar 2025
Cited by 2 | Viewed by 2363
Abstract
Non-contact laser ultrasonic detection technology provides an innovative solution for evaluating the internal conditions of lithium-ion batteries (LIBs), offering significant advantages in gas defect assessment and structural defect identification. This study proposes a method for evaluating internal gas defects in LIBs based on [...] Read more.
Non-contact laser ultrasonic detection technology provides an innovative solution for evaluating the internal conditions of lithium-ion batteries (LIBs), offering significant advantages in gas defect assessment and structural defect identification. This study proposes a method for evaluating internal gas defects in LIBs based on a non-contact laser ultrasonic system. The system uses a pulsed laser to generate ultrasonic waves, with a full-optical probe receiving the signals, enabling high-resolution imaging of the internal features of the battery. The study analyzes key ultrasonic characteristics under different laser parameters (energy, pulse width, and focal length) and their correlation with defective regions. Through both time-domain and frequency-domain analysis of the ultrasonic features, the results demonstrate that the signal amplitude attenuation characteristics of ultrasound in media with acoustic impedance mismatches can be used for precise detection and quantitative characterization of gas defect regions within the battery. This non-contact technology offers a promising method for real-time, non-destructive monitoring of the internal condition of lithium-ion batteries, significantly enhancing battery safety and reliability. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 3rd Edition)
Show Figures

Figure 1

1247 KB  
Proceeding Paper
Designing Novel MEMS Cantilevers for Marine Sensing Robots Using COMSOL Modeling and Different Piezoelectric Materials
by Basit Abdul, Abdul Qadeer and Abdul Rab Asary
Eng. Proc. 2024, 82(1), 116; https://doi.org/10.3390/ecsa-11-20496 - 26 Nov 2024
Viewed by 526
Abstract
The present work presents an innovative marine sensing robotics device based on piezoelectric cantilever-integrated micro-electro-mechanical systems (MEMSs) modeled on fish lateral lines. The device comprises 12 cantilevers of different shapes and sizes in a cross-shaped configuration, embedded between molybdenum (Mo) electrodes in a [...] Read more.
The present work presents an innovative marine sensing robotics device based on piezoelectric cantilever-integrated micro-electro-mechanical systems (MEMSs) modeled on fish lateral lines. The device comprises 12 cantilevers of different shapes and sizes in a cross-shaped configuration, embedded between molybdenum (Mo) electrodes in a piezoelectric thin film (PbTiO3, GaPO4). It has the advantage of a directional response due to the unique design of the circular cantilevers. In COMSOL software 5.5, we designed, modeled, and simulated a piezoelectric device based on a comparative study of these piezoelectric materials. Simulations were performed on cantilever microstructures ranging in length from 100 µm to 500 µm. These materials perform best when lead titanate (PbTiO3) is used. A maximum voltage of 4.9 mV was obtained with the PbTiO3-material cantilever with a displacement of 37 µm. A laser Doppler vibrometer was used to measure the resonance frequency mode and displacement. Our simulations and experiments were in good agreement. Its performance and compactness allow us to envision its employment in underwater acoustics for monitoring marine cetaceans and ultrasound communications. In conclusion, MEMS piezoelectric transducers can be used as hydrophones to sense underwater acoustic pulses. Full article
Show Figures

Figure 1

11 pages, 6594 KB  
Article
Simultaneous Structural Monitoring over Optical Ground Wire and Optical Phase Conductor via Chirped-Pulse Phase-Sensitive Optical Time-Domain Reflectometry
by Jorge Canudo, Pascual Sevillano, Andrea Iranzo, Sacha Kwik, Javier Preciado-Garbayo and Jesús Subías
Sensors 2024, 24(22), 7388; https://doi.org/10.3390/s24227388 - 20 Nov 2024
Cited by 3 | Viewed by 2477
Abstract
Optimizing the use of existing high-voltage transmission lines demands real-time condition monitoring to ensure structural integrity and continuous service. Operating these lines at the current capacity is limited by safety margins based on worst-case weather scenarios, as exceeding these margins risks bringing conductors [...] Read more.
Optimizing the use of existing high-voltage transmission lines demands real-time condition monitoring to ensure structural integrity and continuous service. Operating these lines at the current capacity is limited by safety margins based on worst-case weather scenarios, as exceeding these margins risks bringing conductors dangerously close to the ground. The integration of optical fibers within modern transmission lines enables the use of Distributed Fiber Optic Sensing (DFOS) technology, with Chirped-Pulse Phase-Sensitive Optical Time-Domain Reflectometry (CP-ΦOTDR) proving especially effective for this purpose. CP-ΦOTDR measures wind-induced vibrations along the conductor, allowing for an analysis of frequency-domain vibration modes that correlate with conductor length and sag across spans. This monitoring system, capable of covering distances up to 40 km from a single endpoint, enables dynamic capacity adjustments for optimized line efficiency. Beyond sag monitoring, CP-ΦOTDR provides robust detection of external threats, including environmental interference and mechanical intrusions, which could compromise cable stability. By simultaneously monitoring the Optical Phase Conductor (OPPC) and Optical Ground Wire (OPGW), this study offers the first comprehensive, real-time evaluation of both structural integrity and potential external aggressions on overhead transmission lines. The findings demonstrate that high-frequency data offer valuable insights for classifying mechanical intrusions and environmental interferences based on spectral content, while low-frequency data reveal the diurnal temperature-induced sag evolution, with distinct amplitude responses for each cable. These results affirm CP-ΦOTDR’s unique capacity to enhance line safety, operational efficiency, and proactive maintenance by delivering precise, real-time assessments of both structural integrity and external threats. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 4621 KB  
Article
Development of a Miniaturized 2-Joule Pulsed Plasma Source Based on Plasma Focus Technology: Applications in Extreme Condition Materials and Nanosatellite Orientation
by Leopoldo Soto, Cristian Pavez, José Pedreros, Jalaj Jain, José Moreno, Patricio San Martín, Fermín Castillo, Daniel Zanelli and Luis Altamirano
Micromachines 2024, 15(9), 1123; https://doi.org/10.3390/mi15091123 - 1 Sep 2024
Viewed by 2860
Abstract
Plasma focus devices represent a class of hot and dense plasma sources that serve a dual role in fundamental plasma research and practical applications. These devices allow the observation of various phenomena, including the z-pinch effect, nuclear fusion reactions, plasma filaments, bursts, shocks, [...] Read more.
Plasma focus devices represent a class of hot and dense plasma sources that serve a dual role in fundamental plasma research and practical applications. These devices allow the observation of various phenomena, including the z-pinch effect, nuclear fusion reactions, plasma filaments, bursts, shocks, jets, X-rays, neutron pulses, ions, and electron beams. In recent years, considerable efforts have been directed toward miniaturizing plasma focus devices, driven by the pursuit of both basic studies and technological advancements. In this paper, we present the design and construction of a compact, portable pulsed plasma source based on plasma focus technology, operating at the ~2–4 Joule energy range for versatile applications (PF-2J: 120 nF capacitance, 6–9 kV charging voltage, 40 nH inductance, 2.16–4.86 J stored energy, and 10–15 kA maximum current at short circuit). The components of the device, including capacitors, spark gaps, discharge chambers, and power supplies, are transportable within hand luggage. The electrical characteristics of the discharge were thoroughly characterized using voltage and current derivative monitoring techniques. A peak current of 15 kiloamperes was achieved within 110 nanoseconds in a short-circuit configuration at a 9 kV charging voltage. Plasma dynamics were captured through optical refractive diagnostics employing a pulsed Nd-YAG laser with a 170-picosecond pulse duration. Clear evidence of the z-pinch effect was observed during discharges in a deuterium atmosphere at 4 millibars and 6 kilovolts. The measured pinch length and radius were approximately 0.8 mm and less than 100 μm, respectively. Additionally, we explore the potential applications of this compact pulsed plasma source. These include its use as a plasma shock irradiation device for analyzing materials intended for the first wall of nuclear fusion reactors, its capability in material film deposition, and its utility as an educational tool in experimental plasma physics. We also show its potential as a pulsed plasma thruster for nanosatellites, showcasing the advantages of miniaturized plasma focus technology. Full article
(This article belongs to the Special Issue Microreactors and Their Applications)
Show Figures

Figure 1

20 pages, 35686 KB  
Article
Exploring the Relationship between Mechanical Properties and Electrical Impedance in Cement-Based Composites Incorporating Gold Nanoparticles
by Daniel A. Triana-Camacho, David A. Miranda and Jorge H. Quintero-Orozco
Materials 2024, 17(16), 3972; https://doi.org/10.3390/ma17163972 - 9 Aug 2024
Cited by 2 | Viewed by 2328
Abstract
Structural health monitoring applications have gained significant attention in recent research, particularly in the study of the mechanical–electrical properties of materials such as cement-based composites. While most researchers have focused on the piezoresistive properties of cement-based composites under compressive stress, exploring the electrical [...] Read more.
Structural health monitoring applications have gained significant attention in recent research, particularly in the study of the mechanical–electrical properties of materials such as cement-based composites. While most researchers have focused on the piezoresistive properties of cement-based composites under compressive stress, exploring the electrical impedance of such materials can provide valuable insights into the relationship between their mechanical and electrical characteristics. In this study, we investigated the connection between the mechanical properties and electrical impedance of cement-based composites modified with Au nanoparticles. Cylindrical samples with dimensions of 3 cm in diameter and 6 cm in length were prepared with a ratio of w/c = 0.47. The Au nanoparticles (Au NPs) were synthesized using pulsed laser ablation in liquids, and their size distribution was analyzed through dynamical light scattering. Mechanical properties were evaluated by analyzing the Young modulus derived from strain–stress curves obtained at various force rates. Electrical properties were measured by means of electrical impedance spectroscopy. The experimental results revealed a notable reduction of 91% in the mechanical properties of Au NPs-cement compounds, while their electrical properties demonstrated a significant improvement of 65%. Interestingly, the decrease in mechanical properties resulting from the inclusion of gold nanoparticles in cementitious materials was found to be comparable to that resulting from variations in the water/cement ratios or the hydration reaction. Full article
Show Figures

Figure 1

27 pages, 1079 KB  
Article
A PLL-Based Doppler Method Using an SDR-Receiver for Investigation of Seismogenic and Man-Made Disturbances in the Ionosphere
by Nazyf Salikhov, Alexander Shepetov, Galina Pak, Vladimir Saveliev, Serik Nurakynov, Vladimir Ryabov and Valery Zhukov
Geosciences 2024, 14(7), 192; https://doi.org/10.3390/geosciences14070192 - 16 Jul 2024
Cited by 4 | Viewed by 1744
Abstract
The article describes in detail the equipment and method for measuring the Doppler frequency shift (DFS) on an inclined radio path, based on the principle of the phase-locked loop using an SDR receiver for the investigation of seismogenic and man-made disturbances in the [...] Read more.
The article describes in detail the equipment and method for measuring the Doppler frequency shift (DFS) on an inclined radio path, based on the principle of the phase-locked loop using an SDR receiver for the investigation of seismogenic and man-made disturbances in the ionosphere. During the two M7.8 earthquakes in Nepal (25 April 2015) and Turkey (6 February 2023), a Doppler ionosonde detected co-seismic and pre-seismic effects in the ionosphere, the appearances of which are connected with the various propagation mechanisms of seismogenic disturbance from the lithosphere up to the ionosphere. One day before the earthquake in Nepal and 90 min prior to the main shock, an increase in the intensity of Doppler bursts was detected, which reflected the disturbance of the ionosphere. A channel of geophysical interaction in the system of lithosphere–atmosphere–ionosphere coupling was traced based on the comprehensive monitoring of the DFS of the ionospheric signal, as well as of the flux of gamma rays in subsoil layers of rocks and in the ground-level atmosphere. The concept of lithosphere–atmosphere–ionosphere coupling, where the key role is assigned to ionization of the atmospheric boundary layer, was confirmed by a retrospective analysis of the DFS records of an ionospheric signal made during underground nuclear explosions at the Semipalatinsk test site. A simple formula for reconstructing the velocity profile of the acoustic pulse from a Dopplerogram was obtained, which depends on only two parameters, one of which is the dimension of length and the other the dimension of time. The reconstructed profiles of the acoustic pulses from the two underground nuclear explosions, which reached the height of the reflection point of the sounding radio wave, are presented. Full article
Show Figures

Figure 1

18 pages, 5728 KB  
Article
Simultaneous Two- and Three-Photon Deep Imaging of Autofluorescence in Bacterial Communities
by Alma Fernández, Anton Classen, Nityakalyani Josyula, James T. Florence, Alexei V. Sokolov, Marlan O. Scully, Paul Straight and Aart J. Verhoef
Sensors 2024, 24(2), 667; https://doi.org/10.3390/s24020667 - 20 Jan 2024
Cited by 4 | Viewed by 3138
Abstract
The intrinsic fluorescence of bacterial samples has a proven potential for label-free bacterial characterization, monitoring bacterial metabolic functions, and as a mechanism for tracking the transport of relevant components through vesicles. The reduced scattering and axial confinement of the excitation offered by multiphoton [...] Read more.
The intrinsic fluorescence of bacterial samples has a proven potential for label-free bacterial characterization, monitoring bacterial metabolic functions, and as a mechanism for tracking the transport of relevant components through vesicles. The reduced scattering and axial confinement of the excitation offered by multiphoton imaging can be used to overcome some of the limitations of single-photon excitation (e.g., scattering and out-of-plane photobleaching) to the imaging of bacterial communities. In this work, we demonstrate in vivo multi-photon microscopy imaging of Streptomyces bacterial communities, based on the excitation of blue endogenous fluorophores, using an ultrafast Yb-fiber laser amplifier. Its parameters, such as the pulse energy, duration, wavelength, and repetition rate, enable in vivo multicolor imaging with a single source through the simultaneous two- and three-photon excitation of different fluorophores. Three-photon excitation at 1040 nm allows fluorophores with blue and green emission spectra to be addressed (and their corresponding ultraviolet and blue single-photon excitation wavelengths, respectively), and two-photon excitation at the same wavelength allows fluorophores with yellow, orange, or red emission spectra to be addressed (and their corresponding green, yellow, and orange single-photon excitation wavelengths). We demonstrate that three-photon excitation allows imaging over a depth range of more than 6 effective attenuation lengths to take place, corresponding to an 800 micrometer depth of imaging, in samples with a high density of fluorescent structures. Full article
(This article belongs to the Special Issue Recent Advances in Biophotonics Sensors)
Show Figures

Figure 1

Back to TopTop