Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = publish/subscribe protocols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2319 KB  
Article
Research on the Development of a Building Model Management System Integrating MQTT Sensing
by Ziang Wang, Han Xiao, Changsheng Guan, Liming Zhou and Daiguang Fu
Sensors 2025, 25(19), 6069; https://doi.org/10.3390/s25196069 - 2 Oct 2025
Viewed by 569
Abstract
Existing building management systems face critical limitations in real-time data integration, primarily relying on static models that lack dynamic updates from IoT sensors. To address this gap, this study proposes a novel system integrating MQTT over WebSocket with Three.js visualization, enabling real-time sensor-data [...] Read more.
Existing building management systems face critical limitations in real-time data integration, primarily relying on static models that lack dynamic updates from IoT sensors. To address this gap, this study proposes a novel system integrating MQTT over WebSocket with Three.js visualization, enabling real-time sensor-data binding to Building Information Models (BIM). The architecture leverages MQTT’s lightweight publish-subscribe protocol for efficient communication and employs a TCP-based retransmission mechanism to ensure 99.5% data reliability in unstable networks. A dynamic topic-matching algorithm is introduced to automate sensor-BIM associations, reducing manual configuration time by 60%. The system’s frontend, powered by Three.js, achieves browser-based 3D visualization with sub-second updates (280–550 ms latency), while the backend utilizes SpringBoot for scalable service orchestration. Experimental evaluations across diverse environments—including high-rise offices, industrial plants, and residential complexes—demonstrate the system’s robustness: Real-time monitoring: Fire alarms triggered within 2.1 s (22% faster than legacy systems). Network resilience: 98.2% availability under 30% packet loss. User efficiency: 4.6/5 satisfaction score from facility managers. This work advances intelligent building management by bridging IoT data with interactive 3D models, offering a scalable solution for emergency response, energy optimization, and predictive maintenance in smart cities. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

23 pages, 2954 KB  
Article
Exploring MQTT Broker-Based, End-to-End Models for Security and Efficiency
by Hung-Yu Chien, An-Tong Shih and Yuh-Ming Huang
Sensors 2025, 25(17), 5308; https://doi.org/10.3390/s25175308 - 26 Aug 2025
Viewed by 1118
Abstract
MQTT is a publisher–broker–subscriber architecture in which a broker forwards the messages to interested subscribers, which facilitates the broker’s capacity to peek at the message contents; therefore, both academia and industry design and develop end-to-end (E2E) channels to protect the privacy against a [...] Read more.
MQTT is a publisher–broker–subscriber architecture in which a broker forwards the messages to interested subscribers, which facilitates the broker’s capacity to peek at the message contents; therefore, both academia and industry design and develop end-to-end (E2E) channels to protect the privacy against a curious broker which honestly follows the protocols but would peek at the contents for its benefits. However, we notice that the double-encryption issue of the conventional MQTT broker-based E2E models and the heavy broker-decrypt-re-encrypt overhead undermine MQTT efficiency strengths. In this study, we highlight the weaknesses, propose several solutions, implement the schemes, and experiment with them in the simulated scenarios. Security analysis and formal security proofs are verified to ensure the security goals. The analysis and the evaluations on the implementations confirm both the group key-based approach and the client–broker-channel, integrity-only approach could improve the efficiency performance while preserving security strengths. Full article
Show Figures

Figure 1

10 pages, 2169 KB  
Proceeding Paper
Comparative Performance Analysis of Data Transmission Protocols for Sensor-to-Cloud Applications: An Experimental Evaluation
by Filip Tsvetanov and Martin Pandurski
Eng. Proc. 2025, 104(1), 35; https://doi.org/10.3390/engproc2025104035 - 25 Aug 2025
Viewed by 470
Abstract
This paper examines some of the most popular protocols for transmitting sensor data to cloud structures from publish/subscribe and request/response IoT models. The selection of a highly efficient message transmission protocol is essential, as it depends on the specific characteristics and purpose of [...] Read more.
This paper examines some of the most popular protocols for transmitting sensor data to cloud structures from publish/subscribe and request/response IoT models. The selection of a highly efficient message transmission protocol is essential, as it depends on the specific characteristics and purpose of the developed IoT system, which includes communication requirements, message size and format, energy efficiency, reliability, and cloud specifications. No standardized protocol can cover all the diverse application scenarios; therefore, for each developed project, the most appropriate protocol must be selected that meets the project’s specific requirements. This work focuses on finding the most appropriate protocol for integrating sensor data into a suitable open-source IoT platform, ThingsBoard. First, we conduct a comparative analysis of the studied protocols. Then, we propose a project that represents an experiment for transmitting data from a stationary XBee sensor network to the ThingsBoard cloud via HTTP, MQTT-SN, and CoAP protocols. We observe the parameters’ influence on the delayed transmission of packets and their load on the CPU and RAM. The results of the experimental studies for stationary sensor networks collecting environmental data give an advantage to the MQTT-SN protocol. This protocol is preferable to the other two protocols due to the lower delay and load on the processor and memory, which leads to higher energy efficiency and longer life of the sensors and sensor networks. These results can help users make operational judgments for their IoT applications. Full article
Show Figures

Figure 1

24 pages, 2001 KB  
Article
Reliable Low-Latency Multicasting in MANET: A DTN7-Driven Pub/Sub Framework Optimizing Delivery Rate and Throughput
by Xinwei Liu and Satoshi Fujita
Information 2025, 16(6), 508; https://doi.org/10.3390/info16060508 - 18 Jun 2025
Viewed by 1154
Abstract
This paper addresses the challenges of multicasting in Mobile Ad Hoc Networks (MANETs), where communication relies exclusively on direct interactions between mobile nodes without the support of fixed infrastructure. In such networks, efficient information dissemination is critical, particularly in scenarios where an event [...] Read more.
This paper addresses the challenges of multicasting in Mobile Ad Hoc Networks (MANETs), where communication relies exclusively on direct interactions between mobile nodes without the support of fixed infrastructure. In such networks, efficient information dissemination is critical, particularly in scenarios where an event detected by one node must be reliably communicated to a designated subset of nodes. The highly dynamic nature of MANET, characterized by frequent topology changes and unpredictable connectivity, poses significant challenges to stable and efficient multicasting. To address these issues, we adopt a Publish/Subscribe (Pub/Sub) model that utilizes brokers as intermediaries for information dissemination. However, ensuring the robustness of broker-based multicasting in a highly mobile environment requires novel strategies to mitigate the effects of frequent disconnections and mobility-induced disruptions. To this end, we propose a framework based on three key principles: (1) leveraging the Disruption-Tolerant Networking Implementations of the Bundle Protocol 7 (DTN7) at the network layer to sustain message delivery even in the presence of intermittent connectivity and high node mobility; (2) dynamically generating broker replicas to ensure that broker functionality persists despite sudden node failures or disconnections; and (3) enabling brokers and their replicas to periodically broadcast advertisement packets to maintain communication paths and facilitate efficient data forwarding, drawing inspiration from Named Data Networking (NDN) techniques. To evaluate the effectiveness of our approach, we conduct extensive simulations using ns-3, examining its impact on message delivery reliability, latency, and overall network throughput. The results demonstrate that our method significantly reduces message delivery delays while improving delivery rates, particularly in high-mobility scenarios. Additionally, the integration of DTN7 at the bundle layer proves effective in mitigating performance degradation in environments where nodes frequently change their positions. Our findings highlight the potential of our approach in enhancing the resilience and efficiency of broker-assisted multicasting in MANET, making it a promising solution for real-world applications such as disaster response, military operations, and decentralized IoT networks. Full article
(This article belongs to the Special Issue Wireless IoT Network Protocols, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 1556 KB  
Article
Latency Analysis of Push–Pull and Publish–Subscribe Communication Protocols in U-Space Systems
by Neno Ruseno, Fabio Suim Chagas, Miguel-Ángel Fas-Millán and Aurilla Aurelie Arntzen Bechina
Electronics 2025, 14(12), 2453; https://doi.org/10.3390/electronics14122453 - 16 Jun 2025
Viewed by 1082
Abstract
In the U-Space environment, seamless communication between key stakeholders—such as U-Space Service Providers (USSP), Common Information Service Providers (CISP), and drone operators—is very important for the safe and efficient management of Unmanned Aerial Vehicle (UAV) operations. A major challenge in this context is [...] Read more.
In the U-Space environment, seamless communication between key stakeholders—such as U-Space Service Providers (USSP), Common Information Service Providers (CISP), and drone operators—is very important for the safe and efficient management of Unmanned Aerial Vehicle (UAV) operations. A major challenge in this context is minimizing communication latency, which directly affects the performance of time-sensitive services. This study investigates latency issues by evaluating two communication protocols: push–pull (using REST-API and ZeroMQ) and publish–subscribe (using AMQP and MQTT). Through a case study focused on drone detection, the research examines latency across critical operational activities, including conformance monitoring, flight plan confirmation, and the transmission of alerts via the USSP system under varying message intervals and payload sizes. The results indicate that while message interval has a significant influence on latency, message size has a minimal effect. Furthermore, the push–pull protocols consistently deliver lower and more stable latency compared to publish–subscribe protocols under the tested conditions. Both approaches, however, achieve latency levels that align with EASA’s operational requirements for U-Space systems. Full article
(This article belongs to the Special Issue Innovative Technologies and Services for Unmanned Aerial Vehicles)
Show Figures

Figure 1

17 pages, 1231 KB  
Article
The REGALE Library: A DDS Interoperability Layer for the HPC PowerStack
by Giacomo Madella, Federico Tesser, Lluis Alonso, Julita Corbalan, Daniele Cesarini and Andrea Bartolini
J. Low Power Electron. Appl. 2025, 15(1), 10; https://doi.org/10.3390/jlpea15010010 - 12 Feb 2025
Viewed by 1087
Abstract
Large-scale computing clusters have been the basis of scientific progress for several decades and have now become a commodity fuelling the AI revolution. Dark Silicon, energy efficiency, power consumption, and hot spots are no longer looming threats of an Information and Communication Technologies [...] Read more.
Large-scale computing clusters have been the basis of scientific progress for several decades and have now become a commodity fuelling the AI revolution. Dark Silicon, energy efficiency, power consumption, and hot spots are no longer looming threats of an Information and Communication Technologies (ICT) niche but are today the limiting factor of the capability of the entire human society and a contributor to global carbon emissions. However, from the end user, system administrators, and system integrator perspective, handling and optimising the system for these constraints is not straightforward due to the elevated degree of fragmentation in the software tools and interfaces which handles the power management in high-performance computing (HPC) clusters. In this paper, we present the REGALE Library. It is the result of a collaborative effort in the EU EuroHPC JU REGALE project, which aims to effectively materialize the HPC PowerStack initiative, providing a single layer of communication among different power management tools, libraries, and software. The proposed framework is based on the data distribution service (DDS) and real-time publish–subscribe (RTPS) protocols and FastDDS as their implementation. This enables the various actors in the ecosystem to communicate and exchange messages without any further modification inside their implementation. In this paper, we present the blueprint, functionality tests, and performance and scalability evaluation of the DDS implementation currently used in the REGALE Library in the HPC context. Full article
Show Figures

Figure 1

18 pages, 3424 KB  
Article
Architecture for Enhancing Communication Security with RBAC IoT Protocol-Based Microgrids
by SooHyun Shin, MyungJoo Park, TaeWan Kim and HyoSik Yang
Sensors 2024, 24(18), 6000; https://doi.org/10.3390/s24186000 - 16 Sep 2024
Cited by 5 | Viewed by 1934
Abstract
In traditional power grids, the unidirectional flow of energy and information has led to a decrease in efficiency. To address this issue, the concept of microgrids with bidirectional flow and independent power sources has been introduced. The components of a microgrid utilize various [...] Read more.
In traditional power grids, the unidirectional flow of energy and information has led to a decrease in efficiency. To address this issue, the concept of microgrids with bidirectional flow and independent power sources has been introduced. The components of a microgrid utilize various IoT protocols such as OPC-UA, MQTT, and DDS to implement bidirectional communication, enabling seamless network communication among different elements within the microgrid. Technological innovation, however, has simultaneously given rise to security issues in the communication system of microgrids. The use of IoT protocols creates vulnerabilities that malicious hackers may exploit to eavesdrop on data or attempt unauthorized control of microgrid devices. Therefore, monitoring and controlling security vulnerabilities is essential to prevent intrusion threats and enhance cyber resilience in the stable and efficient operation of microgrid systems. In this study, we propose an RBAC-based security approach on top of DDS protocols in microgrid systems. The proposed approach allocates roles to users or devices and grants various permissions for access control. DDS subscribers request access to topics and publishers request access to evaluations from the role repository using XACML. The overall implementation model is designed for the publisher to receive XACML transmitted from the repository and perform policy decision making and enforcement. By applying these methods, security vulnerabilities in communication between IoT devices can be reduced, and cyber resilience can be enhanced. Full article
(This article belongs to the Special Issue IoT Cybersecurity)
Show Figures

Figure 1

24 pages, 1024 KB  
Article
A Reliable Publish–Subscribe Mechanism for Internet of Things-Enabled Smart Greenhouses
by Behnaz Motamedi and Balázs Villányi
Appl. Sci. 2024, 14(15), 6407; https://doi.org/10.3390/app14156407 - 23 Jul 2024
Cited by 1 | Viewed by 2514
Abstract
Messaging protocols for the Internet of Things (IoT) play a crucial role in facilitating efficient product creation and waste reduction, and in enhancing agricultural process efficiency within the realm of smart greenhouses. Publish–subscribe (pub-sub) systems improve communication between IoT devices and cloud platforms. [...] Read more.
Messaging protocols for the Internet of Things (IoT) play a crucial role in facilitating efficient product creation and waste reduction, and in enhancing agricultural process efficiency within the realm of smart greenhouses. Publish–subscribe (pub-sub) systems improve communication between IoT devices and cloud platforms. Nevertheless, IoT technology is required to effectively handle a considerable volume of subscriptions or topic adjustments from several clients concurrently. In addition, subscription throughput is an essential factor of the pub-sub mechanism, as it directly influences the speed at which messages may be sent to subscribers. The primary focus of this paper pertains to a performance assessment of the proposed message categorization architecture for the Message Queue Telemetry Transport (MQTT) broker. This architecture aims to establish a standardized approach to pub-sub topics and generate new topics with various performance characteristics. We also standardize the form of MQTT protocol broker topic categorization and payload based on greenhouse specifications. The establishment of topic classification enhances the operational effectiveness of the broker, reduces data volume, and concurrently augments the number of messages and events transmitted from the greenhouse environment to the central server on a per-second basis. Our proposed architecture is validated across multiple MQTT brokers, including Mosquitto, ActiveMQ, Bevywise, and EMQ X, showing enhanced flexibility, extensibility, and simplicity while maintaining full compatibility with greenhouse environments. Key findings demonstrate significant improvements in performance metrics. The message processing time for the proposed Active MQ broker was increased approximately five-fold across all QoS levels compared to the original. Subscription throughput for the Bevywise MQTT Route 2.0 broker at QoS0 reached 1453.053, compared to 290.610 for the original broker. The number of messages in the Active MQ broker at QoS0 surged from 394.79 to 1973.95. These improvements demonstrate the architecture’s potential for broader IoT applications in pub-sub systems. Full article
(This article belongs to the Special Issue Advances in Security, Trust and Privacy in Internet of Things)
Show Figures

Figure 1

24 pages, 16679 KB  
Article
Achieving Accountability and Data Integrity in Message Queuing Telemetry Transport Using Blockchain and Interplanetary File System
by Sara Lazzaro and Francesco Buccafurri
Future Internet 2024, 16(7), 246; https://doi.org/10.3390/fi16070246 - 13 Jul 2024
Cited by 3 | Viewed by 1322
Abstract
Ensuring accountability and integrity in MQTT communications is important for enabling several IoT applications. This paper presents a novel approach that combines blockchain technology and the interplanetary file system (IPFS) to achieve non-repudiation and data integrity in the MQTT protocol. Our solution operates [...] Read more.
Ensuring accountability and integrity in MQTT communications is important for enabling several IoT applications. This paper presents a novel approach that combines blockchain technology and the interplanetary file system (IPFS) to achieve non-repudiation and data integrity in the MQTT protocol. Our solution operates in discrete temporal rounds, during which the broker constructs a Merkle hash tree (MHT) from the messages received. Then the broker publishes the root on the blockchain and the MHT itself on IPFS. This mechanism guarantees that both publishers and subscribers can verify the integrity of the message exchanged. Furthermore, the interactions with the blockchain made by the publishers and the broker ensure they cannot deny having sent the exchanged messages. We provide a detailed security analysis, showing that under standard assumptions, the proposed solution achieves both data integrity and accountability. Additionally, we provided an experimental campaign to study the scalability and the throughput of the system. Our results show that our solution scales well with the number of clients. Furthermore, from our results, it emerges that the throughput reduction depends on the integrity check operations. However, since the frequency of these checks can be freely chosen, we can set it so that the throughput reduction is negligible. Finally, we provided a detailed analysis of the costs of our solution showing that, overall, the execution costs are relatively low, especially given the critical security and accountability benefits it guarantees. Furthermore, our analysis shows that the higher the number of subscribers in the system, the lower the costs per client in our solution. Again, this confirms that our solution does not present any scalability issues. Full article
Show Figures

Figure 1

9 pages, 1537 KB  
Proceeding Paper
Towards Comprehensive Home Automation: Leveraging the IoT, Node-RED, and Wireless Sensor Networks for Enhanced Control and Connectivity
by Likewin Thomas, Manoj Kumar MV, Shiva Darshan SL and Prashanth BS
Eng. Proc. 2023, 59(1), 173; https://doi.org/10.3390/engproc2023059173 - 16 Jan 2024
Cited by 7 | Viewed by 4976
Abstract
Automation seems widespread today, yet it is not implemented in daily life. However, most home automation systems are expensive, object-dependent, and lacking in crucial features. The Internet of Things was enabled by this paper’s low-cost home automation system. For development of the IoT, [...] Read more.
Automation seems widespread today, yet it is not implemented in daily life. However, most home automation systems are expensive, object-dependent, and lacking in crucial features. The Internet of Things was enabled by this paper’s low-cost home automation system. For development of the IoT, the system used Node-RED, an open-source platform that uses nodes to visualize tasks. This innovation could operate home devices, including plugs, from anywhere. Wireless sensor network (WSN) technology would record and upload data to the web server from each room. Using the publish-and-subscribe Message Queuing Telemetry Transport (MQTT) protocol, these WSN technologies would communicate. The third feature can modify notifications. In situations of doubt, the house member would be notified by email. This proposal promotes home automation through the IoT. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

13 pages, 20072 KB  
Article
An IoT System for Air Pollution Monitoring with Safe Data Transmission
by Janusz Bobulski, Sabina Szymoniak and Kamila Pasternak
Sensors 2024, 24(2), 445; https://doi.org/10.3390/s24020445 - 11 Jan 2024
Cited by 17 | Viewed by 15802
Abstract
Air pollution has become a global issue due to rapid urbanization and industrialization. Bad air quality is Europe’s most significant environmental health risk, causing serious health problems. External air pollution is not the only issue; internal air pollution is just as severe and [...] Read more.
Air pollution has become a global issue due to rapid urbanization and industrialization. Bad air quality is Europe’s most significant environmental health risk, causing serious health problems. External air pollution is not the only issue; internal air pollution is just as severe and can also lead to adverse health outcomes. IoT is a practical approach for monitoring and publishing real-time air quality information. Numerous IoT-based air quality monitoring systems have been proposed using micro-sensors for data collection. These systems are designed for outdoor air quality monitoring. They use sensors to measure air quality parameters such as CO2, CO, PM10, NO2, temperature, and humidity. The data are acquired with a set of sensors placed on an electric car. They are then sent to the server. Users can subscribe to the list and receive information about local pollution. This system allows real-time localized air quality monitoring and sending data to customers. The work additionally presents a secure data transmission protocol ensuring system security. This protocol provides system-wide attack resiliency and interception, which is what existing solutions do not offer. Full article
Show Figures

Figure 1

16 pages, 459 KB  
Article
End-to-End Encrypted Message Distribution System for the Internet of Things Based on Conditional Proxy Re-Encryption
by Shi Lin, Li Cui and Niu Ke
Sensors 2024, 24(2), 438; https://doi.org/10.3390/s24020438 - 10 Jan 2024
Cited by 8 | Viewed by 4033
Abstract
In light of the existing security vulnerabilities within IoT publish–subscribe systems, our study introduces an improved end-to-end encryption approach using conditional proxy re-encryption. This method not only overcomes limitations associated with the reliance on a trusted authority and the challenge of reliably revoking [...] Read more.
In light of the existing security vulnerabilities within IoT publish–subscribe systems, our study introduces an improved end-to-end encryption approach using conditional proxy re-encryption. This method not only overcomes limitations associated with the reliance on a trusted authority and the challenge of reliably revoking users in previous proxy re-encryption frameworks, but also strengthens data privacy against potential collusion between the broker and subscribers. Through our innovative encryption protocol, unauthorized re-encryption by brokers is effectively prevented, enhancing secure communication between publisher and subscriber. Implemented on HiveMQ, an open-source MQTT platform, our prototype system demonstrates significant enhancements. Comparison to the state-of-the-art end-to-end encryption work, encryption overhead of our scheme is comparable to it, and the decryption cost is approximately half of it. Moreover, our solution significantly improves overall security without compromising the asynchronous communication and decentralized authorization foundational to the publish–subscribe model. Full article
(This article belongs to the Special Issue IoT Network Security)
Show Figures

Figure 1

22 pages, 1828 KB  
Article
A Comparative Study of Post-Quantum Cryptographic Algorithm Implementations for Secure and Efficient Energy Systems Monitoring
by Gandeva Bayu Satrya, Yosafat Marselino Agus and Adel Ben Mnaouer
Electronics 2023, 12(18), 3824; https://doi.org/10.3390/electronics12183824 - 10 Sep 2023
Cited by 7 | Viewed by 4175
Abstract
The Internet of Things (IoT) has assumed a pivotal role in the advancement of communication technology and in our daily lives. However, an IoT system such as a smart grid with poorly designed topology and weak security protocols might be vulnerable to cybercrimes. [...] Read more.
The Internet of Things (IoT) has assumed a pivotal role in the advancement of communication technology and in our daily lives. However, an IoT system such as a smart grid with poorly designed topology and weak security protocols might be vulnerable to cybercrimes. Exploits may arise from sensor data interception en route to the intended consumer within an IoT system. The increasing integration of electronic devices interconnected via the internet has galvanized the acceptance of this technology. Nonetheless, as the number of users of this technology surges, there must be an aligned concern to ensure that security measures are diligently enforced within IoT communication systems, such as in smart homes, smart cities, smart factories, smart hospitals, and smart grids. This research addresses security lacunae in the topology and configuration of IoT energy monitoring systems using post-quantum cryptographic techniques. We propose tailored implementations of the Rivest–Shamir–Adleman (RSA), N-th degree Truncated Polynomial Ring Units (NTRU), and a suite of cryptographic primitives based on Module Learning With Rounding (Saber) as post-quantum cryptographic candidate algorithms for IoT devices. These aim to secure publisher–subscriber end-to-end communication in energy system monitoring. Additionally, we offer a comparative analysis of these tailored implementations on low-resource devices, such as the Raspberry Pi, during data transmission using the Message Queuing Telemetry Transport (MQTT) protocol. Results indicate that the customized implementation of NTRU outperforms both SABER and RSA in terms of CPU and memory usage, while Light SABER emerges as the front-runner when considering encryption and decryption delays. Full article
(This article belongs to the Special Issue Protocols and Mechanisms for Emerging Network Technologies)
Show Figures

Figure 1

19 pages, 16645 KB  
Article
Multimodal Interaction for Cobot Using MQTT
by José Rouillard and Jean-Marc Vannobel
Multimodal Technol. Interact. 2023, 7(8), 78; https://doi.org/10.3390/mti7080078 - 3 Aug 2023
Cited by 8 | Viewed by 3736
Abstract
For greater efficiency, human–machine and human–robot interactions must be designed with the idea of multimodality in mind. To allow the use of several interaction modalities, such as the use of voice, touch, gaze tracking, on several different devices (computer, smartphone, tablets, etc.) and [...] Read more.
For greater efficiency, human–machine and human–robot interactions must be designed with the idea of multimodality in mind. To allow the use of several interaction modalities, such as the use of voice, touch, gaze tracking, on several different devices (computer, smartphone, tablets, etc.) and to integrate possible connected objects, it is necessary to have an effective and secure means of communication between the different parts of the system. This is even more important with the use of a collaborative robot (cobot) sharing the same space and very close to the human during their tasks. This study present research work in the field of multimodal interaction for a cobot using the MQTT protocol, in virtual (Webots) and real worlds (ESP microcontrollers, Arduino, IOT2040). We show how MQTT can be used efficiently, with a common publish/subscribe mechanism for several entities of the system, in order to interact with connected objects (like LEDs and conveyor belts), robotic arms (like the Ned Niryo), or mobile robots. We compare the use of MQTT with that of the Firebase Realtime Database used in several of our previous research works. We show how a “pick–wait–choose–and place” task can be carried out jointly by a cobot and a human, and what this implies in terms of communication and ergonomic rules, via health or industrial concerns (people with disabilities, and teleoperation). Full article
Show Figures

Figure 1

19 pages, 1456 KB  
Article
Post-Quantum Authentication in the MQTT Protocol
by Juliet Samandari and Clémentine Gritti
J. Cybersecur. Priv. 2023, 3(3), 416-434; https://doi.org/10.3390/jcp3030021 - 31 Jul 2023
Cited by 12 | Viewed by 4011
Abstract
Message Queue Telemetry Transport (MQTT) is a common communication protocol used in the Internet of Things (IoT). MQTT is a simple, lightweight messaging protocol used to establish communication between multiple devices relying on the publish–subscribe model. However, the protocol does not provide authentication, [...] Read more.
Message Queue Telemetry Transport (MQTT) is a common communication protocol used in the Internet of Things (IoT). MQTT is a simple, lightweight messaging protocol used to establish communication between multiple devices relying on the publish–subscribe model. However, the protocol does not provide authentication, and most proposals to incorporate it lose their lightweight feature and do not consider the future risk of quantum attacks. IoT devices are generally resource-constrained, and postquantum cryptography is often more computationally resource-intensive compared to current cryptographic standards, adding to the complexity of the transition. In this paper, we use the postquantum digital signature scheme CRYSTALS-Dilithium to provide authentication for MQTT and determine what the CPU, memory and disk usage are when doing so. We further investigate another possibility to provide authentication when using MQTT, namely a key encapsulation mechanism (KEM) trick proposed in 2020 for transport level security (TLS). Such a trick is claimed to save up to 90% in CPU cycles. We use the postquantum KEM scheme CRYSTALS-KYBER and compare the resulting CPU, memory and disk usages with traditional authentication. We found that the use of KEM for authentication resulted in a speed increase of 25 ms, a saving of 71%. There were some extra costs for memory but this is minimal enough to be acceptable for most IoT devices. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

Back to TopTop