Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = protonic ceramic electrolysis cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3665 KiB  
Review
Role of Sintering Aids in Electrical and Material Properties of Yttrium- and Cerium-Doped Barium Zirconate Electrolytes
by Shivesh Loganathan, Saheli Biswas, Gurpreet Kaur and Sarbjit Giddey
Processes 2024, 12(10), 2278; https://doi.org/10.3390/pr12102278 - 18 Oct 2024
Cited by 4 | Viewed by 2237
Abstract
Ceramic proton conductors have the potential to lower the operating temperature of solid oxide cells (SOCs) to the intermediate temperature range of 400–600 °C. This is attributed to their superior ionic conductivity compared to oxide ion conductors under these conditions. However, prominent proton-conducting [...] Read more.
Ceramic proton conductors have the potential to lower the operating temperature of solid oxide cells (SOCs) to the intermediate temperature range of 400–600 °C. This is attributed to their superior ionic conductivity compared to oxide ion conductors under these conditions. However, prominent proton-conducting materials, such as yttrium-doped barium cerates and zirconates with specified compositions like BaCe1−xYxO3−δ (BCY), BaZr1−xYxO3−δ (BZY), and Ba(Ce,Zr)1−yYyO3−δ (BCZY), face significant challenges in achieving dense electrolyte membranes. It is suggested that the incorporation of transition and alkali metal oxides as sintering additives can induce liquid phase sintering (LPS), offering an efficient method to facilitate the densification of these proton-conducting ceramics. However, current research underscores that incorporating these sintering additives may lead to adverse secondary effects on the ionic transport properties of these materials since the concentration and mobility of protonic defects in a perovskite are highly sensitive to symmetry change. Such a drop in ionic conductivity, specifically proton transference, can adversely affect the overall performance of cells. The extent of variation in the proton conductivity of the perovskite BCZY depends on the type and concentration of the sintering aid, the nature of the sintering aid precursors used, the incorporation technique, and the sintering profile. This review provides a synopsis of various potential sintering techniques, explores the influence of diverse sintering additives, and evaluates their effects on the densification, ionic transport, and electrochemical properties of BCZY. We also report the performance of most of these combinations in an actual test environment (fuel cell or electrolysis mode) and comparison with BCZY. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

27 pages, 8110 KiB  
Review
A Review on Low-Temperature Protonic Conductors: Principles and Chemical Sensing Applications
by Sofia R. Mendes, Georgenes M. G. da Silva, Evando S. Araújo and Pedro M. Faia
Chemosensors 2024, 12(6), 96; https://doi.org/10.3390/chemosensors12060096 - 2 Jun 2024
Cited by 5 | Viewed by 2459
Abstract
Proton conductors are ceramic materials with a crystalline or amorphous structure, which allow the passage of an electrical current through them exclusively by the movement of protons: H+. Recent developments in proton-conducting ceramics present considerable promise for obtaining economic and sustainable [...] Read more.
Proton conductors are ceramic materials with a crystalline or amorphous structure, which allow the passage of an electrical current through them exclusively by the movement of protons: H+. Recent developments in proton-conducting ceramics present considerable promise for obtaining economic and sustainable energy conversion and storage devices, electrolysis cells, gas purification, and sensing applications. So, proton-conducting ceramics that combine sensitivity, stability, and the ability to operate at low temperatures are particularly attractive. In this article, the authors start by presenting a brief historical resume of proton conductors and by exploring their properties, such as structure and microstructure, and their correlation with conductivity. A perspective regarding applications of these materials on low-temperature energy-related devices, electrochemical and moisture sensors, is presented. Finally, the authors’ efforts on the usage of a proton-conducting ceramic, polyantimonic acid (PAA), to develop humidity sensors, are looked into. Full article
(This article belongs to the Section Applied Chemical Sensors)
Show Figures

Figure 1

14 pages, 2056 KiB  
Review
Electrochemical Synthesis of Ammonia via Nitrogen Reduction and Oxygen Evolution Reactions—A Comprehensive Review on Electrolyte-Supported Cells
by Hizkia Manuel Vieri, Moo-Chang Kim, Arash Badakhsh and Sun Hee Choi
Energies 2024, 17(2), 441; https://doi.org/10.3390/en17020441 - 16 Jan 2024
Cited by 6 | Viewed by 4184
Abstract
The application of protonic ceramic electrolysis cells (PCECs) for ammonia (NH3) synthesis has been evaluated over the past 14 years. While nitrogen (N2) is the conventional fuel on the cathode side, various fuels such as methane (CH4), [...] Read more.
The application of protonic ceramic electrolysis cells (PCECs) for ammonia (NH3) synthesis has been evaluated over the past 14 years. While nitrogen (N2) is the conventional fuel on the cathode side, various fuels such as methane (CH4), hydrogen (H2), and steam (H2O) have been investigated for the oxygen evolution reaction (OER) on the anode side. Because H2 is predominantly produced through CO2-emitting methane reforming, H2O has been the conventional carbon-free option thus far. Although the potential of utilizing H2O and N2 as fuels is considerable, studies exploring this specific combination remain limited. PCEC fabrication technologies are being developed extensively, thus necessitating a comprehensive review. Several strategies for electrode fabrication, deposition, and electrolyte design are discussed herein. The progress in electrode development for PCECs has also been delineated. Finally, the existing challenges and prospective outlook of PCEC for NH3 synthesis are analyzed and discussed. The most significant finding is the lack of past research involving PCEC with H2O and N2 as fuel configurations and the diversity of nitrogen reduction reaction catalysts. This review indicates that the maximum NH3 synthesis rate is 14 × 10−9 mol cm−2 s−1, and the maximum current density for the OER catalyst is 1.241 A cm−2. Moreover, the pellet electrolyte thickness must be maintained at approximately 0.8–1.5 mm, and the stability of thin-film electrolytes must be improved. Full article
(This article belongs to the Special Issue Unconventional Hydrogen Applications and Systems)
Show Figures

Figure 1

24 pages, 4860 KiB  
Review
Proton-Conducting Ceramic Membranes for the Production of Hydrogen via Decarbonized Heat: Overview and Prospects
by Maria Giovanna Buonomenna
Hydrogen 2023, 4(4), 807-830; https://doi.org/10.3390/hydrogen4040050 - 13 Oct 2023
Cited by 9 | Viewed by 4509
Abstract
Proton-conducting ceramic membranes show high hydrogen ion conductivity in the temperature range of 300–700 °C. They are attracting significant attention due to their relevant characteristics compared to both higher-temperature oxygen ion-conducting ceramic membranes and lower-temperature proton-conducting polymers. The aim of this review is [...] Read more.
Proton-conducting ceramic membranes show high hydrogen ion conductivity in the temperature range of 300–700 °C. They are attracting significant attention due to their relevant characteristics compared to both higher-temperature oxygen ion-conducting ceramic membranes and lower-temperature proton-conducting polymers. The aim of this review is to integrate the fundamentals of proton-conducting ceramic membranes with two of their relevant applications, i.e., membrane reactors (PCMRs) for methane steam reforming (SMR) and electrolysis (PCEC). Both applications facilitate the production of pure H2 in the logic of process intensification via decarbonized heat. Firstly, an overview of various types of hydrogen production is given. The fundamentals of proton-conducting ceramic membranes and their applications in PCMRs for SMR and reversible PCEC (RePCEC), respectively, are given. In particular, RePCECs are of particular interest when renewable power generation exceeds demand because the excess electrical energy is converted to chemical energy in the electrolysis cell mode, therefore representing an appealing solution for energy conversion and grid-scale storage. Full article
(This article belongs to the Topic Hydrogen Production Processes)
Show Figures

Figure 1

12 pages, 3973 KiB  
Article
Effect of Lu-Doping on Electrical Properties of Strontium Zirconate
by Anastasiya Pavlovich, Alexander Pankratov and Liliya Dunyushkina
Membranes 2023, 13(7), 663; https://doi.org/10.3390/membranes13070663 - 12 Jul 2023
Cited by 2 | Viewed by 1692
Abstract
SrZrO3-based perovskites are promising proton-conducting membranes for use in fuel and electrolysis cells, sensors, hydrogen separators, etc., because they combine good proton conductivity with excellent chemical stability. In the present research, the effect of Lu-doping on microstructure, phase composition, and electrical [...] Read more.
SrZrO3-based perovskites are promising proton-conducting membranes for use in fuel and electrolysis cells, sensors, hydrogen separators, etc., because they combine good proton conductivity with excellent chemical stability. In the present research, the effect of Lu-doping on microstructure, phase composition, and electrical conductivity of SrZr1−xLuxO3−δ (x = 0–0.10) was investigated via X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and impedance spectroscopy. Dense ceramic samples were obtained by the solution combustion synthesis and possessed an orthorhombic perovskite-type structure. The solubility limit of Lu was revealed to lie between x = 0.03 and 0.05. The conductivity of SrZr1−xLuxO3−δ increases strongly with the addition of Lu at x < 0.05 and just slightly changes at x > 0.05. The rise of the water vapor partial pressure results in an increase in the conductivity of SrZr1−xLuxO3−δ ceramics, which confirms their hydration ability and significant contribution of protonic defects to the charge transfer. The highest conductivity was achieved at x = 0.10 (10 mS cm–1 at 700 °C, wet air, pH2O = 0.61 kPa). The conductivity behavior was discussed in terms of the defect formation model, taking into account the improvement in ceramic sintering at high lutetium concentrations. Full article
(This article belongs to the Special Issue Membrane Technology for Solid Oxide Fuel Cells)
Show Figures

Figure 1

13 pages, 2930 KiB  
Article
Performance of Fuel Electrode-Supported Tubular Protonic Ceramic Cells Prepared through Slip Casting and Dip-Coating Methods
by Youcheng Xiao, Mengjiao Wang, Di Bao, Zhen Wang, Fangjun Jin, Yaowen Wang and Tianmin He
Catalysts 2023, 13(1), 182; https://doi.org/10.3390/catal13010182 - 12 Jan 2023
Cited by 7 | Viewed by 2999
Abstract
Fuel electrode-supported tubular protonic ceramic cells (FETPCCs) based on the BaZr0.4Ce0.4Y0.15Zn0.05O3−δ (BZCYZ) membrane electrolyte was fabricated through a two-step method, in which the polyporous electrode-support tube was prepared with a traditional slip casting technique [...] Read more.
Fuel electrode-supported tubular protonic ceramic cells (FETPCCs) based on the BaZr0.4Ce0.4Y0.15Zn0.05O3−δ (BZCYZ) membrane electrolyte was fabricated through a two-step method, in which the polyporous electrode-support tube was prepared with a traditional slip casting technique in a plaster mold, and the BZCYZ membrane was produced by a dip-coating process on the outside surface of the electrode-support tube. The dense thin-film electrolyte of BZCYZ with a thickness of ~25 μm was achieved by cofiring the fuel electrode support and electrolyte membrane at 1450 °C for 6 h. The electrochemical performances of the FETPCCs were tested under different solid oxide cell modes. In protonic ceramic fuel cell (PCFC) mode, the peak power densities of the cell reached 151–191 mW·cm−2 at 550–700 °C and exhibited relatively stable performance during continuous operation over 100 h at 650 °C. It was found that the major influence on the performance of tubular PCFC was the resistance and cathode current collectors. Additionally, in protonic ceramic electrolysis cell (PCEC) mode, the current densities of 418–654 mA·cm−2 were obtained at 600–700 °C with the applied voltage of 2.0 V when exposed to 20% CO2–80% H2 and 3% H2O/air. Using distribution of relaxation time analysis, the electrolytic rate-limiting step of the PCEC model was determined as the adsorption and dissociation of the gas on the electrode surface. Full article
(This article belongs to the Special Issue Advanced Catalysts for Electrochemical Energy Storage and Conversion)
Show Figures

Figure 1

14 pages, 3077 KiB  
Review
Layered Perovskites BaLnnInnO3n+1 (n = 1, 2) for Electrochemical Applications: A Mini Review
by Nataliia Tarasova
Membranes 2023, 13(1), 34; https://doi.org/10.3390/membranes13010034 - 28 Dec 2022
Cited by 8 | Viewed by 3448
Abstract
Modern humanity is facing many challenges, such as declining reserves of fossil energy resources and their increasing prices, climate change and an increase in the number of respiratory diseases including COVID-19. This causes an urgent need to create advanced energy materials and technologies [...] Read more.
Modern humanity is facing many challenges, such as declining reserves of fossil energy resources and their increasing prices, climate change and an increase in the number of respiratory diseases including COVID-19. This causes an urgent need to create advanced energy materials and technologies to support the sustainable development of renewable energy systems including hydrogen energy. Layered perovskites have many attractions due to their physical and chemical properties. The structure of such compounds contains perovskite layers divided by layers with different frameworks, which provide their properties’ features. Proton-conduction layered perovskites open up a novel structural class of protonic conductors, potentially suitable for application in such hydrogen energy devices as protonic ceramic electrolysis cells and protonic ceramic fuel cells. In this mini review, the special features of proton transport in the novel class of proton conductors BaLnnInnO3n+1 (n = 1, 2) with a layered perovskite structure are observed and general regularities are discussed. Full article
(This article belongs to the Special Issue Membrane Technology for Sustainable Future—Solid Oxide Fuel Cells)
Show Figures

Figure 1

18 pages, 5628 KiB  
Article
Processing Ceramic Proton Conductor Membranes for Use in Steam Electrolysis
by Kwati Leonard, Wendelin Deibert, Mariya E. Ivanova, Wilhelm A. Meulenberg, Tatsumi Ishihara and Hiroshige Matsumoto
Membranes 2020, 10(11), 339; https://doi.org/10.3390/membranes10110339 - 12 Nov 2020
Cited by 25 | Viewed by 4918
Abstract
Steam electrolysis constitutes a prospective technology for industrial-scale hydrogen production. The use of ceramic proton-conducting electrolytes is a beneficial option for lowering the operating temperature. However, a significant challenge with this type of electrolyte has been upscaling robust planar type devices. The fabrication [...] Read more.
Steam electrolysis constitutes a prospective technology for industrial-scale hydrogen production. The use of ceramic proton-conducting electrolytes is a beneficial option for lowering the operating temperature. However, a significant challenge with this type of electrolyte has been upscaling robust planar type devices. The fabrication of such multi-layered devices, usually via a tape casting process, requires careful control of individual layers’ shrinkages to prevent warping and cracks during sintering. The present work highlights the successful processing of 50 × 50 mm2 planar electrode-supported barium cerium yttrium zirconate BaZr0.44Ce0.36Y0.2O2.9 (BZCY(54)8/92) half cells via a sequential tape casting approach. The sintering parameters of the half-cells were analyzed and adjusted to obtain defect-free half-cells with diminished warping. Suitably dense and gas-tight electrolyte layers are obtained after co-sintering at 1350 °C for 5 h. We then assembled an electrolysis cell using Ba0.5La0.5CoO3−δ as the steam electrode, screen printed on the electrolyte layer, and fired at 800 °C. A typical Ba0.5La0.5CoO3−δ|BaZr0.44Ce0.36Y0.2O3−δ(15 μm)|NiO-SrZr0.5Ce0.4Y0.1O3−δ cell at 600 °C with 80% steam in the anode compartment reached reproducible terminal voltages of 1.4 V @ 500 mA·cm−2, achieving ~84% Faradaic efficiency. Besides electrochemical characterization, the morphology and microstructure of the layered half-cells were analyzed by a combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy. Our results also provide a feasible approach for realizing the low-cost fabrication of large-sized protonic ceramic conducting electrolysis cells (PCECs). Full article
(This article belongs to the Special Issue Ceramic Membranes for Fuel Cell Applications and Hydrogen Production)
Show Figures

Graphical abstract

17 pages, 5452 KiB  
Article
A Novel Laser 3D Printing Method for the Advanced Manufacturing of Protonic Ceramics
by Shenglong Mu, Yuzhe Hong, Hua Huang, Akihiro Ishii, Jincheng Lei, Yang Song, Yanjun Li, Kyle S. Brinkman, Fei Peng, Hai Xiao and Jianhua Tong
Membranes 2020, 10(5), 98; https://doi.org/10.3390/membranes10050098 - 12 May 2020
Cited by 32 | Viewed by 5847
Abstract
Protonic ceramics (PCs) with high proton conductivity at intermediate temperatures (300–600 °C) have attracted many applications in energy conversion and storage devices such as PC fuel/electrolysis cells, PC membrane reactors, hydrogen pump, hydrogen or water-permeable membranes, and gas sensors. One of the essential [...] Read more.
Protonic ceramics (PCs) with high proton conductivity at intermediate temperatures (300–600 °C) have attracted many applications in energy conversion and storage devices such as PC fuel/electrolysis cells, PC membrane reactors, hydrogen pump, hydrogen or water-permeable membranes, and gas sensors. One of the essential steps for fulfilling the practical utilization of these intermediate-temperature PC energy devices is the successful development of advanced manufacturing methods for cost-effectively and rapidly fabricating them with high energy density and efficiency in a customized demand. In this work, we developed a new laser 3D printing (L3DP) technique by integrating digital microextrusion-based 3D printing and precise and rapid laser processing (sintering, drying, cutting, and polishing), which showed the capability of manufacturing PCs with desired complex geometries, crystal structures, and microstructures. The L3DP method allowed the fabrication of PC parts such as pellets, cylinders, cones, films, straight/lobed tubes with sealed endings, microchannel membranes, and half cells for assembling PC energy devices. The preliminary measurement of the L3DP electrolyte film showed a high proton conductivity of ≈7 × 10−3 S/cm. This L3DP technique not only demonstrated the potential to bring the PCs into practical use but also made it possible for the rapid direct digital manufacturing of ceramic-based devices. Full article
(This article belongs to the Special Issue Ceramic Membranes for Fuel Cell Applications and Hydrogen Production)
Show Figures

Graphical abstract

21 pages, 7343 KiB  
Article
A Reversible Protonic Ceramic Cell with Symmetrically Designed Pr2NiO4+δ-Based Electrodes: Fabrication and Electrochemical Features
by Artem Tarutin, Julia Lyagaeva, Andrey Farlenkov, Sergey Plaksin, Gennady Vdovin, Anatoly Demin and Dmitry Medvedev
Materials 2019, 12(1), 118; https://doi.org/10.3390/ma12010118 - 31 Dec 2018
Cited by 45 | Viewed by 6542
Abstract
Reversible protonic ceramic cells (rPCCs) combine two different operation regimes, fuel cell and electrolysis cell modes, which allow reversible chemical-to-electrical energy conversion at reduced temperatures with high efficiency and performance. Here we present novel technological and materials science approaches, enabling a rPCC with [...] Read more.
Reversible protonic ceramic cells (rPCCs) combine two different operation regimes, fuel cell and electrolysis cell modes, which allow reversible chemical-to-electrical energy conversion at reduced temperatures with high efficiency and performance. Here we present novel technological and materials science approaches, enabling a rPCC with symmetrical functional electrodes to be prepared using a single sintering step. The response of the cell fabricated on the basis of P–N–BCZD|BCZD|PBN–BCZD (where BCZD = BaCe0.5Zr0.3Dy0.2O3−δ, PBN = Pr1.9Ba0.1NiO4+δ, P = Pr2O3, N = Ni) is studied at different temperatures and water vapor partial pressures (pH2O) by means of volt-ampere measurements, electrochemical impedance spectroscopy and distribution of relaxation times analyses. The obtained results demonstrate that symmetrical electrodes exhibit classical mixed-ionic/electronic conducting behavior with no hydration capability at 750 °C; therefore, increasing the pH2O values in both reducing and oxidizing atmospheres leads to some deterioration of their electrochemical activity. At the same time, the electrolytic properties of the BCZD membrane are improved, positively affecting the rPCC’s efficiency. The electrolysis cell mode of the rPCC is found to be more appropriate than the fuel cell mode under highly humidified atmospheres, since its improved performance is determined by the ohmic resistance, which decreases with pH2O increasing. Full article
Show Figures

Graphical abstract

Back to TopTop