A Review on Low-Temperature Protonic Conductors: Principles and Chemical Sensing Applications
Abstract
:1. Introduction
2. Proton Conductors
2.1. Origin
2.2. Further Impulses
2.2.1. Hydrogen Bonding
2.2.2. Ceramic Oxides
2.2.3. Proton Exchangers Membranes
2.2.4. Mixed Conductors
2.3. Protonic Conduction
2.3.1. Conduction Mechanisms
2.3.2. Interfacial Conduction Mechanism
2.3.3. Structure Influence
2.4. Proton Conductors Applications
2.4.1. Energy-Related Devices
2.4.2. Sensor Devices
2.4.3. Protonic Humidity Sensors (Including Authors’ Recent Efforts)
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fabbri, E.; Pergolesi, D.; Traversa, E. Materials Challenges toward Proton-Conducting Oxide Fuel Cells: A Critical Review. Chem. Soc. Rev. 2010, 39, 4355. [Google Scholar] [CrossRef]
- Norby, T. Proton Conduction in Solids: Bulk and Interfaces. MRS Bull. 2009, 34, 923–928. [Google Scholar] [CrossRef]
- Sharma, S.; Pathak, D.; Dhiman, N.; Kumar, R.; Prashar, K.K.; Kahol, M.; Arora, N.; Sharma, V. Conductivity Study on Proton-Conducting Nanocomposite Plasticized Polymer Electrolytes: A Review. Curr. Mater. Sci. 2022, 15, 229–250. [Google Scholar] [CrossRef]
- Gao, J.; Meng, Y.; Duffy, J.H.; Brinkman, K.S. Low-Temperature Protonic Ceramic Fuel Cells through Interfacial Engineering of Nanocrystalline BaCe0.7Zr0.1Y0.1Yb0.1O3−δ Electrolytes. Adv. Energy Sustain. Res. 2021, 2, 2100098. [Google Scholar] [CrossRef]
- Park, H.J.; Roh, J.W. Protonic Conduction of Nanostructured Y-Doped BaZrO3. J. Nanomater. 2016, 2016, 8757305. [Google Scholar] [CrossRef]
- Miyoshi, S.; Akao, Y.; Kuwata, N.; Kawamura, J.; Oyama, Y.; Yagi, T.; Yamaguchi, S. Low-Temperature Protonic Conduction Based on Surface Protonics: An Example of Nanostructured Yttria-Doped Zirconia. Chem. Mater. 2014, 26, 5194–5200. [Google Scholar] [CrossRef]
- Gregori, G.; Shirpour, M.; Maier, J. Proton Conduction in Dense and Porous Nanocrystalline Ceria Thin Films. Adv. Funct. Mater. 2013, 23, 5861–5867. [Google Scholar] [CrossRef]
- Takamura, H.; Takahashi, N. Electrical Conductivity of Dense Nanocrystalline Ceria under Humidified Atmosphere. Solid State Ion. 2010, 181, 100–103. [Google Scholar] [CrossRef]
- Maglia, F.; Tredici, I.G.; Spinolo, G.; Anselmi-Tamburini, U. Low Temperature Proton Conduction in Bulk Nanometric TiO2 Prepared by High-Pressure Field Assisted Sintering. J. Mater. Res. 2012, 27, 1975–1981. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, L.A.; Chen, Y.; Yang, P.; Liu, M. Promising Proton Conductor for Intermediate-Temperature Fuel Cells: Li13.9Sr0.1Zn(GeO4)4. Chem. Mater. 2017, 29, 1490–1495. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, X.; Zhou, H.; Ramadoss, K.; Adam, S.; Liu, H.; Lee, S.; Shi, J.; Tsuchiya, M.; Fong, D.D.; et al. Strongly Correlated Perovskite Fuel Cells. Nature 2016, 534, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Gao, J.; Zhao, Z.; Amoroso, J.; Tong, J.; Brinkman, K.S. Review: Recent Progress in Low-Temperature Proton-Conducting Ceramics. J. Mater. Sci. 2019, 54, 9291–9312. [Google Scholar] [CrossRef]
- Huang, Z.; Deng, J.; Wang, H.; Zhang, Y.; Duan, J.; Tang, Z.; Cao, Z.; Qi, J.; He, D.; Lu, T. Fast Low-Temperature Densification of Translucent Bulk Nanograin Gd2Zr2O7 Ceramics with Average Grain Size below 10 Nm. J. Alloys Compd. 2020, 830, 154617. [Google Scholar] [CrossRef]
- Bures, R.; Faberova, M.; Bircakova, Z.; Bednarcik, J.; Milyutin, V.; Petryshynets, I.; Kollar, P.; Füzer, J.; Dilyova-Hatrakova, M. High Pressure Compaction of Soft Magnetic Iron Powder. Powder Technol. 2023, 421, 118434. [Google Scholar] [CrossRef]
- Choi, E.-Y.; Strathmann, H.; Park, J.-M.; Moon, S.-H. Characterization of Non-Uniformly Charged Ion-Exchange Membranes Prepared by Plasma-Induced Graft Polymerization. J. Memb. Sci. 2006, 268, 165–174. [Google Scholar] [CrossRef]
- Syvertsen, G.E.; Estournès, C.; Fjeld, H.; Haugsrud, R.; Einarsrud, M.; Grande, T. Spark Plasma Sintering and Hot Pressing of Hetero-Doped LaNbO4. J. Am. Ceram. Soc. 2012, 95, 1563–1571. [Google Scholar] [CrossRef]
- Kasyanova, A.V.; Zvonareva, I.A.; Tarasova, N.A.; Bi, L.; Medvedev, D.A.; Shao, Z. Electrolyte Materials for Protonic Ceramic Electrochemical Cells: Main Limitations and Potential Solutions. Mater. Rep. Energy 2022, 2, 100158. [Google Scholar] [CrossRef]
- Kjølseth, C.; Fjeld, H.; Prytz, Ø.; Dahl, P.I.; Estournès, C.; Haugsrud, R.; Norby, T. Space–Charge Theory Applied to the Grain Boundary Impedance of Proton Conducting BaZr0.9Y0.1O3−δ. Solid. State Ion. 2010, 181, 268–275. [Google Scholar] [CrossRef]
- Luo, J. Interfacial Engineering of Solid Electrolytes. J. Mater. 2015, 1, 22–32. [Google Scholar] [CrossRef]
- Dzieciuch, M.A.; Weber, N. Dispositif Convertisseur d’énergie et Nouvel Électrolyte Solide Pour Ce Dispositif 1967, patent: FR1491673. Available online: https://worldwide.espacenet.com/patent/search/family/027424861/publication/FR1491673A?q=FR1491673 (accessed on 31 March 2024).
- Yao, Y.-F.Y.; Kummer, J.T. Ion Exchange Properties of and Rates of Ionic Diffusion in Beta-Alumina. J. Inorg. Nucl. Chem. 1967, 29, 2453–2475. [Google Scholar] [CrossRef]
- Bruinink, J. Proton Migration in Solids. J. Appl. Electrochem. 1972, 2, 239–249. [Google Scholar] [CrossRef]
- Glasser, L. Proton Conduction and Injection in Solids. Chem. Rev. 1975, 75, 21–65. [Google Scholar] [CrossRef]
- Funke, K. Solid State Ionics: From Michael Faraday to Green Energy—The European Dimension. Sci. Technol. Adv. Mater. 2013, 14, 043502. [Google Scholar] [CrossRef]
- Van Gool, W. Fast ion transport in solids, solid state batteries and devices. In Proceedings of the NATO Sponsored Advanced Study Institute on Fast Ion Transport in Solids, Solid State Batteries and Devices, Belgirate, Italy, 5–15 September 1972; van Gool, W., North Atlantic Treaty Organization, Scientific Affairs Division, Eds.; North Holland Pub. Co.: Amsterdam, The Netherlands; American Elsevier Pub. Co.: New York, NY, USA, 1973; ISBN 0444104321. [Google Scholar]
- Farrington, G.C.; Briant, J.L.; Breiter, M.W.; Roth, W.L. Ionic Conductivity in H3O+ Beta Alumina. J. Solid. State Chem. 1978, 24, 311–319. [Google Scholar] [CrossRef]
- Colomban, P.; Boilot, J.-P.; Kahn, A.; Lucazeau, G. Structural Investigation of Protonic Conductor NH4+ Beta Alumina and Stoichiometric H3O+ Beta Alumina. Nouv. J. Chim. 1977, 2, 21–32. [Google Scholar]
- Baffier, N.; Badot, J.; Colomban, P. Conductivity of Β″ and Ion Rich β Alumina. I. H.+(H2O)n Compounds. Solid State Ion 1981, 2, 107–113. [Google Scholar] [CrossRef]
- Baffier, N.; Badot, J.; Colomban, P. Protonic Conductivity of Β″ and Ion-Rich β-Alumina. II: Ammonium Compounds. Solid State Ion 1984, 13, 233–236. [Google Scholar] [CrossRef]
- Lenfant, P.; Plas, D.; Ruffo, M.; Colomban, P.; Boilot, J.P. Ceramiques d’alumine β et de Ferrite β Pour Sonde a Protons. Mater. Res. Bull. 1980, 15, 1817–1827. [Google Scholar] [CrossRef]
- Lundsgaard, J.S.; Brook, R.J. Mixed Conductivity of β-Alumina Electrolyte in Aqueous Concentration Cells. J. Mater. Sci. 1973, 8, 1519–1521. [Google Scholar] [CrossRef]
- Lundsgaard, J.S.; Brook, R.J. The Use of β-Alumina Electrolyte in Gaseous Concentration Cells. J. Mater. Sci. 1974, 9, 2061–2062. [Google Scholar] [CrossRef]
- Van Gool, W.; Huggins, R.A.; Roth, W.L.; Haven, Y.; Funke, K.; Whittingham, M.S.; Silbernagel, B.G.; Bacquet, G.; Dugas, J.; Powers, R.W.; et al. Solid Electrolytes General Principles, Characterization, Materials, Applications; Hagenmuller, P., van Gool, W., Eds.; Academic Press, Inc.: New York, NY, USA, 1978; ISBN 978-0-12-313360-1. [Google Scholar]
- Stephen, P.; Howe, A. Proton Conductivity and Phase Relationship in Solid KOH between 248 and 406 °C. Solid State Ion 1980, 1, 461–471. [Google Scholar] [CrossRef]
- Saalfeld, H.; Matthies, H.; Datta, S.K. Ein Neues Aluminiumoxidhydrat Mit β-Alumina Struktur. Berichte Der Dtsch. Keram. Ges. 1968, 45, 212–215. [Google Scholar]
- Colomban, P.; Lucazeau, G.; Mercier, R.; Novak, A. Vibrational Spectra and Structure of H+(H2O)n Β-alumina. J. Chem. Phys. 1977, 67, 5244–5251. [Google Scholar] [CrossRef]
- Collongues, R.; Gourier, D.; Kahn, A.; Boilot, J.P.; Colomban, P.; Wicker, A. β Alumina, a Typical Solid Electrolyte: Latest Developments in Fundamental Approach and in Battery Utilization. J. Phys. Chem. Solids 1984, 45, 981–1013. [Google Scholar] [CrossRef]
- Grubb, W.T., Jr. Fuel Cell 1959, patent: US 2913511. Available online: https://patents.google.com/patent/US2913511A/en (accessed on 31 March 2024).
- Grubb, W.T.; Niedrach, L.W. Batteries with Solid Ion-Exchange Membrane Electrolytes: II. Low-Temperature Hydrogen-Oxygen Fuel Cells. J. Electrochem. Soc. 1960, 107, 131–135. [Google Scholar] [CrossRef]
- Forrat, F.; Dauge, G.; Trévoux, P.; Danner, G.; Christen, M. Électrolyte Solide à Base de AlLaO3. Application Aux Piles à Combustible. C. R. Hebd. Seances Acad. Sci. 1964, 259, 2813–2816. [Google Scholar]
- Antonucci, P.L.; Aricò, A.S.; Cretì, P.; Ramunni, E.; Antonucci, V. Investigation of a Direct Methanol Fuel Cell Based on a Composite Nafion®-Silica Electrolyte for High Temperature Operation. Solid State Ion 1999, 125, 431–437. [Google Scholar] [CrossRef]
- Perry, M.L.; Fuller, T.F. A Historical Perspective of Fuel Cell Technology in the 20th Century. J. Electrochem. Soc. 2002, 149, S59–S67. [Google Scholar] [CrossRef]
- Takahashi, T.; Iwahara, H. Solid-State Ionics: Protonic Conduction in Perovskite Type Oxide Solid Solutions. Rev. De Chim. Miner. 1980, 17, 243–253. [Google Scholar]
- Gavach, C.; Pourcelly, G. Applications of Perfluorinated Proton Conductors (Nafions). In Proton Conductors Solids, Membranes and Gels—Materials and Devices; Colomban, P., Ed.; Cambridge University Press: Cambridge, UK, 1992; pp. 487–498. [Google Scholar]
- Lee, J.; D’Agostino, V.; Fried, R.; Diebold, E. Synthesis of Perfluorinated Ionomer Membranes for Electrochemical Cells. In Proceedings of the Symposium on Diaphragms, Separators, and Ion-Exchange Membranes; Van Zee, J.W., White, R.E., Kinoshita, K., Burney, H.S., Eds.; The Electrochemical Society Inc.: Pennington, South Africa, 1986; pp. 102–119. [Google Scholar]
- Gruger, A.; Régis, A.; Schmatko, T.; Colomban, P. Nanostructure of Nafion® Membranes at Different States of Hydration: An IR and Raman Study. Vib. Spectrosc. 2001, 26, 215–225. [Google Scholar] [CrossRef]
- Wolfe, W.R., Jr. Fuel Cell and Fuel Cell Electrode Comprising a Sulfurated Compound of Tungsten and Oxygen. 1968, patent: US 3615840. Available online: https://patents.google.com/patent/US3615840A/en?oq=US3615840A (accessed on 31 March 2024).
- Di Vona, M.L.; Knauth, P.; Ghobarkar, H.; Schäf, O.; Sgreccia, E.; Tosto, S.; Hempelmann, R.; Di Noto, V.; Giffin, G.A.; Vezzù, K.; et al. Solid State Proton Conductors: Properties and Applications in Fuel Cells, 1st ed.; Knauth, P., Di Vona, M.L., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2012; ISBN 9780470669372. [Google Scholar]
- Colomban, P. Proton Conductors and Their Applications: A Tentative Historical Overview of the Early Researches. Solid State Ion 2019, 334, 125–144. [Google Scholar] [CrossRef]
- Cao, J.; Ji, Y.; Shao, Z. Perovskites for Protonic Ceramic Fuel Cells: A Review. Energy Environ. Sci. 2022, 15, 2200–2232. [Google Scholar] [CrossRef]
- Potier, A.; Jones, D.J.; Rozière, J.; Colomban, P.; Novak, A.; Thomas, J.O.; Svare, I.; Dickens, P.G.; Chippindale, A.M.; Iwahara, H.; et al. Proton Conductors: Solids, Membranes and Gels—Materials and Devices; Colomban, P., Ed.; Cambridge University Press: Cambridge, UK, 1992; ISBN 9780521383172. [Google Scholar]
- Hadži, D. Proton Transfers in Biological Mechanisms. J. Mol. Struct. 1988, 177, 1–21. [Google Scholar] [CrossRef]
- Nagle, J.F.; Tristram-Nagle, S. Hydrogen Bonded Chain Mechanisms for Proton Conduction and Proton Pumping. J. Membr. Biol. 1983, 74, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, M.A.; Roberts, B.D.; Clearfield, A. On the Proton Conductor (H3O)Zr2(PO4)3. Mater. Res. Bull. 1984, 19, 1471–1478. [Google Scholar] [CrossRef]
- Kreuer, K. Fast Proton Transport in Solids. J. Mol. Struct. 1988, 177, 265–276. [Google Scholar] [CrossRef]
- Colomban, P.; Novak, A. Proton Transfer and Superionic Conductivity in Solids and Gels. J. Mol. Struct. 1988, 177, 277–308. [Google Scholar] [CrossRef]
- Jaimez, E.; Hix, G.B.; Slade, R.C.T. A Phosphate–Phosphonate of Titanium(IV) Prepared from Phosphonomethyliminodiacetic Acid: Characterisation, n-Alkylamine Intercalation and Proton Conductivity. Solid State Ion 1997, 97, 195–201. [Google Scholar] [CrossRef]
- Kreuer, K.-D. Proton Conductivity: Materials and Applications. Chem. Mater. 1996, 8, 610–641. [Google Scholar] [CrossRef]
- Kreuer, K.D.; Münch, W.; Traub, U.; Maier, J. On Proton Transport in Perovskite-type Oxides and Plastic Hydroxides. Berichte Bunsenges. Phys. Chem. 1998, 102, 552–559. [Google Scholar] [CrossRef]
- Asakura, Y.; Karasawa, H.; Sakagami, M.; Uchida, S. Relationships Between Corrosion Behavior of AISI 304 Stainless Steel in High-Temperature Pure Water and Its Oxide Film Structures. Corrosion 1989, 45, 119–124. [Google Scholar] [CrossRef]
- Ramasubramanian, N.; Perovic, V.; Leger, M. Hydrogen Transport in the Oxide and Hydrogen Pickup by the Metal During Out- and In-Reactor Corrosion of Zr-2.5Nb Pressure Tube Material. In Zirconium in the Nuclear Industry: Twelfth International Symposium; Sabol, G.P., Moan, G.D., Eds.; ASTM International: West Conshohocken, PA, USA, 2000; pp. 853–876. [Google Scholar]
- Scanu, T.; Guglielmi, J.; Colomban, P. Ion Exchange and Hot Corrosion of Ceramic Composites Matrices: A Vibrational and Microstructural Study. Solid State Ion 1994, 70–71, 109–120. [Google Scholar] [CrossRef]
- Norby, T. Protonic Defects in Oxides and Their Possible Role in High Temperature Oxidation. J. Phys. IV 1993, 03, 99–106. [Google Scholar] [CrossRef]
- Colomban, P. The Corrosion of Ceramic-Matrix Composites*. Mater. Sci. Forum 1997, 251–254, 833–844. [Google Scholar] [CrossRef]
- Colomban, P. Proton and Protonic Species: The Hidden Face of Solid State Chemistry. How to Measure H-Content in Materials? Fuel Cells 2013, 13, 6–18. [Google Scholar] [CrossRef]
- Karlsson, M. Perspectives of Neutron Scattering on Proton Conducting Oxides. Dalton Trans. 2013, 42, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Kobzar, Y.; Oulyadi, H.; Marais, S.; Fatyeyeva, K. Advances in Nuclear Magnetic Resonance Spectroscopy: Case of Proton Conductive Materials. J. Mater. Chem. A Mater. 2023, 11, 6064–6089. [Google Scholar] [CrossRef]
- Sakai, T.; Matsushita, S.; Hyodo, J.; Okuyama, Y.; Matsuka, M.; Ishihara, T.; Matsumoto, H. Effect of Doped Ceria Interlayer on Cathode Performance of the Electrochemical Cell Using Proton Conducting Oxide. Electrochim. Acta 2012, 75, 179–184. [Google Scholar] [CrossRef]
- Oishi, M.; Akoshima, S.; Yashiro, K.; Sato, K.; Kawada, T.; Mizusaki, J. Defect Structure Analysis of Proton-Oxide Ion Mixed Conductor BaCe0.9Nd0.1O3−δ. Solid State Ion 2010, 181, 1336–1343. [Google Scholar] [CrossRef]
- Tournié, A.; Ricciardi, P.; Colomban, P. Glass Corrosion Mechanisms: A Multiscale Analysis. Solid State Ion 2008, 179, 2142–2154. [Google Scholar] [CrossRef]
- Jiang, S.P.; Li, Q. Protonic Ceramic Oxide Fuel Cells, Microbial Fuel Cells, and Biofuel Cells. In Introduction to Fuel Cells—Electrochemistry and Materials; Springer Nature Singapore Pte. Ltd.: Singapore, 2022; pp. 695–721. ISBN 978-981-10-7626-8. [Google Scholar]
- Yan, S.; Yim, C.-H.; Pankov, V.; Bauer, M.; Baranova, E.; Weck, A.; Merati, A.; Abu-Lebdeh, Y. Perovskite Solid-State Electrolytes for Lithium Metal Batteries. Batteries 2021, 7, 75. [Google Scholar] [CrossRef]
- Bouwmeester, H.J.M. Mixed Ionic-Electronic Conducting Membranes: Fundamentals and Challenges. In Proceedings of the ECerS2017—15th Conference & Exhibition of the European Ceramic Society, AKCongress, Budapest, Hungary, 9 July 2017; p. 406. [Google Scholar]
- Zhang, W.; Hu, Y.H. Progress in Proton-conducting Oxides as Electrolytes for Low-temperature Solid Oxide Fuel Cells: From Materials to Devices. Energy Sci. Eng. 2021, 9, 984–1011. [Google Scholar] [CrossRef]
- Naveen, M.V.; Soundarya, T.L.; Ravikiran, Y.T.; Krishnamurthy, G.; Anitha; Nagaraju, G. Facile Green Synthesis of Ni/NiO/MoO3 Nanocomposite for Photocatalytic, Chromium (VI) Reduction, Electrochemical Dopamine (DA) and Humidity Sensor Applications. Inorg. Chem. Commun. 2024, 160, 111846. [Google Scholar] [CrossRef]
- Shaheen, K.; Shah, Z.; Gulab, H.; Hanif, M.B.; Faisal, S.; Suo, H. Metal Oxide Nanocomposites as Anode and Cathode for Low Temperature Solid Oxide Fuel Cell. Solid State Sci. 2020, 102, 106162. [Google Scholar] [CrossRef]
- Androš, L.; Jurić, M.; Popović, J.; Šantić, A.; Lazić, P.; Benčina, M.; Valant, M.; Brničević, N.; Planinić, P. Ba4Ta2O9 Oxide Prepared from an Oxalate-Based Molecular Precursor—Characterization and Properties. Inorg. Chem. 2013, 52, 14299–14308. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, X.; Wu, Y. The Interfacial Ionic Transport of Two-Dimensional ZnAl-Mixed Metal Oxides Nanocomposite. J. Alloys Compd. 2022, 921, 166118. [Google Scholar] [CrossRef]
- Sun, S.; Tang, Q.; Zhang, K.; Wen, Y.; Billings, A.; Huang, K. A Focused Review on Structures and Ionic Conduction Mechanisms in Inorganic Solid-State Proton and Hydride Anion Conductors. Mater. Adv. 2023, 4, 389–407. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Z.; Akbar, M.; Gao, C.; Dong, W.; Meng, Y.; Jin, X.; Xia, C.; Wang, B.; Zhu, B.; et al. Efficiently Enhance the Proton Conductivity of YSZ-Based Electrolyte for Low Temperature Solid Oxide Fuel Cell. Ceram. Int. 2023, 49, 5637–5645. [Google Scholar] [CrossRef]
- Tanabe, E.Y.; Assaf, E.M. Óxidos Do Tipo Perovskita Para Reação de Redução de NO Com CO. Quim. Nova 2009, 32, 1129–1133. [Google Scholar] [CrossRef]
- Li, G.; Monroe, C.W. Transport of Secondary Carriers in a Solid Lithium-Ion Conductor. Electrochim. Acta 2021, 389, 138563. [Google Scholar] [CrossRef]
- Yang, H.; Wang, C.-A.; Dong, Y. Energy Ceramic Design for Robust Battery Cathodes and Solid Electrolytes. Adv. Powder Mater. 2024, 3, 100185. [Google Scholar] [CrossRef]
- Babar, Z.U.D.; Hanif, M.B.; Gao, J.-T.; Li, C.-J.; Li, C.-X. Sintering Behavior of BaCe0.7Zr0.1Y0.2O3−δ Electrolyte at 1150 °C with the Utilization of CuO and Bi2O3 as Sintering Aids and Its Electrical Performance. Int. J. Hydrogen Energy 2022, 47, 7403–7414. [Google Scholar] [CrossRef]
- Yu, M.; Feng, Q.; Liu, Z.; Zhang, P.; Zhu, X.; Mu, S. Recent Novel Fabrication Techniques for Proton-Conducting Solid Oxide Fuel Cells. Crystals 2024, 14, 225. [Google Scholar] [CrossRef]
- Cheng, P.-C.; Lee, S.-W.; Lee, K.-R.; Setiawan, N.; Bhavanari, M.; Shen, C.-T.; Osman, N.; Tseng, C.-J. Carbon Resistant Ni1-XCux-BCZY Anode for Methane-Fed Protonic Ceramic Fuel Cell. Int. J. Hydrogen Energy 2023, 48, 11455–11462. [Google Scholar] [CrossRef]
- Lu, Y.; Shah, M.A.K.Y.; Mushtaq, N.; Yousaf, M.; Akbar, N.; Arshad, N.; Irshad, S. An Innovative Perovskite Oxide Enabling Improved Efficiency for Low-Temperature Ceramic Electrochemical Cells. Fuel 2024, 367, 131558. [Google Scholar] [CrossRef]
- Duan, C.; Kee, R.; Zhu, H.; Sullivan, N.; Zhu, L.; Bian, L.; Jennings, D.; O’Hayre, R. Highly Efficient Reversible Protonic Ceramic Electrochemical Cells for Power Generation and Fuel Production. Nat. Energy 2019, 4, 230–240. [Google Scholar] [CrossRef]
- An, H.; Lee, H.-W.; Kim, B.-K.; Son, J.-W.; Yoon, K.J.; Kim, H.; Shin, D.; Ji, H.-I.; Lee, J.-H. A 5 × 5 Cm2 Protonic Ceramic Fuel Cell with a Power Density of 1.3 W Cm–2 at 600 °C. Nat. Energy 2018, 3, 870–875. [Google Scholar] [CrossRef]
- Le, L.Q.; Hernandez, C.H.; Zhu, L.; Ding, H.; Chmura, C.; Sullivan, N.P. Characterizing Stack Degradation in Proton-Conducting Ceramic Fuel Cells and Electrolyzers. ECS Meet. Abstr. 2020, MA2020-01, 1614. [Google Scholar] [CrossRef]
- Coetzee, C.J. Inorganic Ion Exchangers for Ion-Selective Electrodes. In Inorganic Ion Exchangers in Chemical Analysis; Qureshi, M., Varshney, K.G., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 143–175. [Google Scholar]
- Silbernagel, R.; Martin, C.H.; Clearfield, A. Zirconium(IV) Phosphonate–Phosphates as Efficient Ion-Exchange Materials. Inorg. Chem. 2016, 55, 1651–1656. [Google Scholar] [CrossRef]
- Colodrero, R.M.P.; Olivera-Pastor, P.; Cabeza, A.; Bazaga-García, M. Properties and Applications of Metal Phosphates and Pyrophosphates as Proton Conductors. Materials 2022, 15, 1292. [Google Scholar] [CrossRef]
- Huang, W.; Komarneni, S.; Noh, Y.D.; Ma, J.; Chen, K.; Xue, D.; Xue, X.; Jiang, B. Novel Inorganic Tin Phosphate Gel: Multifunctional Material. Chem. Commun. 2018, 54, 2682–2685. [Google Scholar] [CrossRef] [PubMed]
- Boilot, J.P.; Colomban, P.H.; Blanchard, N. Formation of Superionic Gels and Glasses by Low Temperature Chemical Polymerization. Solid State Ion 1983, 9–10, 639–643. [Google Scholar] [CrossRef]
- Aoki, Y.; Harada, A.; Nakao, A.; Kunitake, T.; Habazaki, H. Percolative Proton Conductivity of Sol–Gel Derived Amorphous Aluminosilicate Thin Films. Phys. Chem. Chem. Phys. 2012, 14, 2735–2742. [Google Scholar] [CrossRef] [PubMed]
- Comite, A. Preparation of Silica Membranes by Sol-Gel Method. In Current Trends and Future Developments on (Bio-)Membranes; Basile, A., Ghasemzadeh, A., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2017; pp. 3–23. ISBN 9780444638670. [Google Scholar]
- Fuhrhop, J.-H.; Blauer, G.; Weakley, T.J.R.; Novak, A. Large Molecules. In Structure and Bonding; Dunitz, J.D., Hemmerich, P., Holm, R.H., Ibers, J.A., Jørgensen, C.K., Neilands, J.B., Rinen, D., Williams, R.J.P., Eds.; Springer: Berlin/Heidelberg, Germany, 1974; Volume 18. [Google Scholar]
- Thi, M.P. Microprobe Study of Enhanced Raman Scattering Effect on WO3/Ag Thin Films. Chem. Phys. Lett. 1985, 115, 130–133. [Google Scholar]
- Zhong, Q.; Colbow, K. Hydrogen and Lithium Intercalation in Csx WO3. Thin Solid Films 1991, 196, 305–313. [Google Scholar] [CrossRef]
- Slade, R.C.T.; Hirst, P.R.; West, B.C. Ammonium-Ion Motions in the Hexagonal Tungsten Trioxide Framework. A Neutron Scattering Study of the Bronze (NH4)0.22WO3 and of [(NH4)2O]0.085WO3. J. Mater. Chem. 1991, 1, 281–288. [Google Scholar] [CrossRef]
- Genin, C.; Driouiche, A.; Gérand, B.; Figlarz, M. Hydrogen Bronzes of New Oxides of the WO3-MoO3 System with Hexagonal, Pyrochlore and ReO3-Type Structures. Solid State Ion 1992, 53–56, 315–323. [Google Scholar] [CrossRef]
- Dupont, L.; Larcher, D.; Portemer, F.; Figlarz, M. Synthesis and Characterization of New Oxide Hydrates Hx(VxMo1−x)O3·0.3H2O and H0.27(V0.27W0.73)O3·1/3H2O. J. Solid State Chem. 1996, 121, 339–349. [Google Scholar] [CrossRef]
- Whittingham, M.S. Hydrogen Motion in Oxides: From Insulators to Bronzes. Solid State Ion 2004, 168, 255–263. [Google Scholar] [CrossRef]
- Huo, L.; Zhao, H.; Mauvy, F.; Fourcade, S.; Labrugere, C.; Pouchard, M.; Grenier, J.C. Synthesis and Mixed Conductivity of Ammonium Tungsten Bronze with Tunneling Structures. Solid State Sci. 2004, 6, 679–688. [Google Scholar] [CrossRef]
- Upasen, S.; Batocchi, P.; Mauvy, F.; Slodczyk, A.; Colomban, P. Chemical and Structural Stability of La0.6Sr0.4Co0.2Fe0.8O3−δ Ceramic vs. Medium/High Water Vapor Pressure. Ceram. Int. 2015, 41, 14137–14147. [Google Scholar] [CrossRef]
- Upasen, S.; Batocchi, P.; Mauvy, F.; Slodczyk, A.; Colomban, P. Protonation and Structural/Chemical Stability of Ln2NiO4+δ Ceramics vs. H2O/CO2: High Temperature/Water Pressure Ageing Tests. J. Alloys Compd. 2015, 622, 1074–1085. [Google Scholar] [CrossRef]
- MacDiarmid, A.G.; Chiang, J.C.; Richter, A.F.; Somasiri, N.L.D.; Epstein, A.J. Polyaniline: Synthesis and Characterization of the Emeraldine Oxidation State by Elemental Analysis. In Conducting Polymers, Special Applications; Alcácer, L., Ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1987; pp. 105–120. ISBN 978-94-009-3907-3. [Google Scholar]
- Cao, Y.; Smith, P.; Heeger, A.J. Counter-Ion Induced Processibility of Conducting Polyaniline and of Conducting Polyblends of Polyaniline in Bulk Polymers. Synth. Met. 1992, 48, 91–97. [Google Scholar] [CrossRef]
- Hinrichs, R.; Régis, A.; Gruger, A.; Colomban, P. Pressure—Temperature-Induced Conductivity in Polyaniline Base and Salts. Synth. Met. 1996, 81, 227–231. [Google Scholar] [CrossRef]
- Hatchett, D.W.; Josowicz, M.; Janata, J. Acid Doping of Polyaniline: Spectroscopic and Electrochemical Studies. J. Phys. Chem. B 1999, 103, 10992–10998. [Google Scholar] [CrossRef]
- El Khalki, A.; Gruger, A.; Colomban, P. Bulk–Surface Nanostructure and Defects in Polyaniline Films and Fibres. Synth. Met. 2003, 139, 215–220. [Google Scholar] [CrossRef]
- Folch, S.; Gruger, A.; Régis, A.; Colomban, P. Optical and Vibrational Spectra of Sols/Solutions of Polyaniline: Water as Secondary Dopant. Synth. Met. 1996, 81, 221–225. [Google Scholar] [CrossRef]
- Gao, H.; Lian, K. Proton Conducting Heteropoly Acid Based Electrolyte for High Rate Solid Electrochemical Capacitors. J. Electrochem. Soc. 2011, 158, A1371–A1378. [Google Scholar] [CrossRef]
- Oesten, R.; Huggins, R.A. Proton Conduction in Oxides: A Review. Ionics 1995, 1, 427–437. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H.-N.; Song, S.-Y.; Zhang, H.-J. Proton-Conducting Crystalline Porous Materials. Chem. Soc. Rev. 2017, 46, 464–480. [Google Scholar] [CrossRef]
- Chiodelli, G.; Maglia, F.; Anselmi-Tamburini, U.; Munir, Z.A. Characterization of Low Temperature Protonic Conductivity in Bulk Nanocrystalline Fully Stabilized Zirconia. Solid State Ion 2009, 180, 297–301. [Google Scholar] [CrossRef]
- De Grotthuss, C.J.T. Sur La Décomposition de l’eau et Des Corps Qu’elle Tient En Dissolution à l’aide de l’électricité Galvanique. Ann. Chim. 1806, 58, 54–74. [Google Scholar]
- Bhagat, M.S.; Mungray, A.K.; Mungray, A.A. Recent Advances in Osmotic Microbial Fuel Cell Technology: A Review. J. Indian Chem. Soc. 2022, 99, 100552. [Google Scholar] [CrossRef]
- Park, H.J.; Kwak, C.; Lee, K.H.; Lee, S.M.; Lee, E.S. Interfacial Protonic Conduction in Ceramics. J. Eur. Ceram. Soc. 2009, 29, 2429–2437. [Google Scholar] [CrossRef]
- Avila-Paredes, H.J.; Barrera-Calva, E.; Anderson, H.U.; De Souza, R.A.; Martin, M.; Munir, Z.A.; Kim, S. Room-Temperature Protonic Conduction in Nanocrystalline Films of Yttria-Stabilized Zirconia. J. Mater. Chem. 2010, 20, 6235. [Google Scholar] [CrossRef]
- Guo, X. On the Degradation of Zirconia Ceramics during Low-Temperature Annealing in Water or Water Vapor. J. Phys. Chem. Solids 1999, 60, 539–546. [Google Scholar] [CrossRef]
- Kurapova, O.Y.; Faia, P.M.; Zaripov, A.A.; Pazheltsev, V.V.; Glukharev, A.A.; Konakov, V.G. Electrochemical Characterization of Novel Polyantimonic-Acid-Based Proton Conductors for Low- and Intermediate-Temperature Fuel Cells. Appl. Sci. 2021, 11, 11877. [Google Scholar] [CrossRef]
- Miyoshi, S.; Akao, Y.; Kuwata, N.; Kawamura, J.; Oyama, Y.; Yagi, T.; Yamaguchi, S. Water Uptake and Conduction Property of Nano-Grained Yttria-Doped Zirconia Fabricated by Ultra-High Pressure Compaction at Room Temperature. Solid State Ion 2012, 207, 21–28. [Google Scholar] [CrossRef]
- Jing, Y.; Matsumoto, H.; Aluru, N.R. Mechanistic Insights into Hydration of Solid Oxides. Chem. Mater. 2018, 30, 138–144. [Google Scholar] [CrossRef]
- Raz, S.; Sasaki, K.; Maier, J.; Riess, I. Characterization of Adsorbed Water Layers on Y2O3-Doped ZrO2. Solid State Ion 2001, 143, 181–204. [Google Scholar] [CrossRef]
- Contescu, C.; Contescu, A.; Schwarz, J.A. Thermodynamics of Proton Binding at the Alumina/Aqueous Solution Interface. A Phenomenological Approach. J. Phys. Chem. 1994, 98, 4327–4335. [Google Scholar] [CrossRef]
- Morimoto, T.; Nagao, M.; Tokuda, F. Relation between the Amounts of Chemisorbed and Physisorbed Water on Metal Oxides. J. Phys. Chem. 1969, 73, 243–248. [Google Scholar] [CrossRef]
- Anderson, J.H.; Parks, G.A. Electrical Conductivity of Silica Gel in the Presence of Adsorbed Water. J. Phys. Chem. 1968, 72, 3662–3668. [Google Scholar] [CrossRef]
- Malavasi, L.; Fisher, C.A.J.; Islam, M.S. Oxide-Ion and Proton Conducting Electrolyte Materials for Clean Energy Applications: Structural and Mechanistic Features. Chem. Soc. Rev. 2010, 39, 4370. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Wei, M.; Honma, I.; Zhou, H. One-Dimensional Proton Conductor under High Vapor Pressure Condition Employing Titanate Nanotube. Electrochem. Commun. 2006, 8, 1549–1552. [Google Scholar] [CrossRef]
- Haile, S.M.; West, D.L.; Campbell, J. The Role of Microstructure and Processing on the Proton Conducting Properties of Gadolinium-Doped Barium Cerate. J. Mater. Res. 1998, 13, 1576–1595. [Google Scholar] [CrossRef]
- Kim, S.; Avila-Paredes, H.J.; Wang, S.; Chen, C.-T.; De Souza, R.A.; Martin, M.; Munir, Z.A. On the Conduction Pathway for Protons in Nanocrystalline Yttria-Stabilized Zirconia. Phys. Chem. Chem. Phys. 2009, 11, 3035. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, R.W.T.; Mateen, A. The Spectroscopic Study of Oxonium Lons in Mineral. Am. Miner. 1974, 59, 811–819. [Google Scholar]
- Lippert, E.; Schuster, P.; Janoschek, R.; Brickmann, J.; Weidemann, E.; Hofacker, G.L.; Marechal, Y.; Ratner, M.; Perram, J.W.; Jonsson, P.-G.; et al. The Hydrogen Bond: Dynamics, Thermodynamics and Special Systems, 1st ed.; Sandorfy, C., Zundel, G., Schuster, P., Eds.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Bauer, B.; Jones, D.J.; Rozière, J.; Tchicaya, L.; Alberti, G.; Casciola, M.; Massinelli, L.; Peraio, A.; Besse, S.; Ramunni, E. Electrochemical Characterisation of Sulfonated Polyetherketone Membranes. J. New Mater. Electrochem. Syst. 2000, 3, 93–98. [Google Scholar]
- Savadogo, O. Emerging Membranes for Electrochemical Systems: (I) Solid Polymer Electrolyte Membranes for Fuel Cell Systems. J. New Mater. Electrochem. Syst. 1998, 1, 47–66. [Google Scholar] [CrossRef]
- Kobayashi, T.; Rikukawa, M.; Sanui, K.; Ogata, N. Proton-Conducting Polymers Derived from Poly(Ether-Etherketone) and Poly(4-Phenoxybenzoyl-1,4-Phenylene). Solid State Ion 1998, 106, 219–225. [Google Scholar] [CrossRef]
- Kerres, J.; Ullrich, A.; Haring, T. New Ionomer Membranes and Their Fuel Cell Application 1. Preparation and Characterization. In Proceedings of the 3rd International Symposium on New Materials for Electrochemical Systems, Montreal, QC, Canada, 4–8 July 1999; p. 230. [Google Scholar]
- Alberti, G.; Casciola, M.; Palombari, R.; Peraio, A. Protonic Conductivity of Layered Zirconium Phosphonates Containing -SO3H Groups. II. Ac Conductivity of Zirconium Alkyl-Sulphophenyl Phosphonates in the Range 100–200°C, in the Presence or Absence of Water Vapour. Solid State Ion 1992, 58, 339–344. [Google Scholar] [CrossRef]
- Alberti, G.; Boccali, L.; Casciola, M.; Massinelli, L.; Montoneri, E. Protonic Conductivity of Layered Zirconium Phosphonates Containing—SO3H Groups. III. Preparation and Characterization of γ-Zirconium Sulfoaryl Phosphonates. Solid State Ion 1996, 84, 97–104. [Google Scholar] [CrossRef]
- Yaroshenko, F.; Lupitskaya, Y.; Ulyanov, M.; Burmistrov, V.; Filonenko, E.; Galimov, D.; Uchaev, D.; Rubtsova, E. Synthesis, Microstructure, and Electrophysical Properties of Surface-Modified Polyantimonic Acid Nanoparticles. J. Electrochem. Sci. Eng. 2023, 13, 911–921. [Google Scholar] [CrossRef]
- Yaroshenko, F.A.; Burmistrov, V.A. Proton Conductivity of Polyantimonic Acid Studied by Impedance Spectroscopy in the Temperature Range 370–480 K. Inorg. Mater. 2015, 51, 783–787. [Google Scholar] [CrossRef]
- Alberti, G.; Costantino, U.; Casciola, M.; Ferroni, S.; Massinelli, L.; Staiti, P. Preparation, Characterization and Proton Conductivity of Titanium Phosphate Sulfophenylphosphonate. Solid State Ion 2001, 145, 249–255. [Google Scholar] [CrossRef]
- Debbarma, L.; Panwar, V.; Khanduri, P.; Panwar, L.S. Development of Flexible PVDF/PAMPS Polyelectrolyte Proton Conductive Membrane. Mater. Today Proc. 2020, 26, 1776–1779. [Google Scholar] [CrossRef]
- ul Imaan, D.; Mir, F.Q.; Ahmad, B. In-Situ Preparation of PSSA Functionalized ZWP/Sulfonated PVDF Composite Electrolyte as Proton Exchange Membrane for DMFC Applications. Int. J. Hydrogen Energy 2022, 47, 41347–41358. [Google Scholar] [CrossRef]
- Jensen, S.H.; Graves, C.; Mogensen, M.; Wendel, C.; Braun, R.; Hughes, G.; Gao, Z.; Barnett, S.A. Large-Scale Electricity Storage Utilizing Reversible Solid Oxide Cells Combined with Underground Storage of CO2 and CH4. Energy Environ. Sci. 2015, 8, 2471–2479. [Google Scholar] [CrossRef]
- Tarasova, N.; Bedarkova, A. Advanced Proton-Conducting Ceramics Based on Layered Perovskite BaLaInO4 for Energy Conversion Technologies and Devices. Materials 2022, 15, 6841. [Google Scholar] [CrossRef]
- Xing, Y.; Zhu, B.; Hong, L.; Xia, C.; Wang, B.; Wu, Y.; Cai, H.; Rauf, S.; Huang, J.; Asghar, M.I.; et al. Designing High Interfacial Conduction beyond Bulk via Engineering the Semiconductor–Ionic Heterostructure CeO2−δ/BaZr0.8Y0.2O3 for Superior Proton Conductive Fuel Cell and Water Electrolysis Applications. ACS Appl. Energy Mater. 2022, 5, 15373–15384. [Google Scholar] [CrossRef] [PubMed]
- Tarasova, N.; Bedarkova, A.; Animitsa, I. Novel Pr-Doped BaLaInO4 Ceramic Material with Layered Structure for Proton-Conducting Electrochemical Devices. Appl. Sci. 2023, 13, 1328. [Google Scholar] [CrossRef]
- Tarasova, N.; Bedarkova, A.; Animitsa, I. Proton Transport in the Gadolinium-Doped Layered Perovskite BaLaInO4. Materials 2022, 15, 7351. [Google Scholar] [CrossRef] [PubMed]
- Alberti, G.; Palombari, R. All Solid State Hydrogen Sensors Based on Pellicular α-Zirconium Phosphate as a Protonic Conductor. Solid State Ion 1989, 35, 153–156. [Google Scholar] [CrossRef]
- Alberti, G.; Casciola, M.; Chieli, S.; Palombari, R. Use of Solid State Protonic Conductors for Oxygen Potentiometric Sensor at Room Temperature. Solid State Ion 1991, 46, 183–186. [Google Scholar] [CrossRef]
- Alberti, G.; Casciola, M.; Palombari, R. Amperometric Sensor for Carbon Monoxide Based on Solid State Protonic Conduction. Solid State Ion 1993, 61, 241–244. [Google Scholar] [CrossRef]
- Alberti, G.; Cherubini, F.; Palombari, R. Amperometric Solid-State Sensor for NO and NO2 Based on Protonic Conduction. Sens. Actuators B Chem. 1996, 37, 131–134. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, L.; Lin, X.; Dai, J.; Liu, S.; Fei, T.; Zhang, T. Proton-Conductive Gas Sensor: A New Way to Realize Highly Selective Ammonia Detection for Analysis of Exhaled Human Breath. ACS Sens. 2020, 5, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Qi, R.; Tu, J.; Zhao, H.; Liu, S.; Fei, T.; Zhang, T. Humidity Sensor Preparation by In Situ Click Polymerization. IEEE Electron. Device Lett. 2018, 39, 1234–1237. [Google Scholar] [CrossRef]
- Liang, X.; Li, B.; Wang, M.; Wang, J.; Liu, R.; Li, G. Effective Approach to Promoting the Proton Conductivity of Metal–Organic Frameworks by Exposure to Aqua–Ammonia Vapor. ACS Appl. Mater. Interfaces 2017, 9, 25082–25086. [Google Scholar] [CrossRef]
- Iwahara, H.; Uchida, H.; Ogaki, K.; Nagato, H. Nernstian Hydrogen Sensor Using BaCeO3-Based, Proton-Conducting Ceramics Operative at 200°–900 °C. J. Electrochem. Soc. 1991, 138, 295–299. [Google Scholar] [CrossRef]
- Okuyama, Y.; Nagamine, S.; Nakajima, A.; Sakai, G.; Matsunaga, N.; Takahashi, F.; Kimata, K.; Oshima, T.; Tsuneyoshi, K. Proton-Conducting Oxide with Redox Protonation and Its Application to a Hydrogen Sensor with a Self-Standard Electrode. RSC Adv. 2016, 6, 34019–34026. [Google Scholar] [CrossRef]
- Luo, J.; Dziubla, T.; Eitel, R. A Low Temperature Co-Fired Ceramic Based Microfluidic Clark-Type Oxygen Sensor for Real-Time Oxygen Sensing. Sens. Actuators B Chem. 2017, 240, 392–397. [Google Scholar] [CrossRef]
- Wang, X.; Qin, T.; Bao, S.-S.; Zhang, Y.-C.; Shen, X.; Zheng, L.-M.; Zhu, D. Facile Synthesis of a Water Stable 3D Eu-MOF Showing High Proton Conductivity and Its Application as a Sensitive Luminescent Sensor for Cu2+ Ions. J. Mater. Chem. A Mater. 2016, 4, 16484–16489. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, W.; Wu, X.; Wan, C.; Wen, C.; Feng, L.; Zhang, F.; Qu, F. A Dual-Functional Cuprum Coordination Framework for High Proton Conduction and Electrochemical Dopamine Detection. Microchim. Acta 2024, 191, 67. [Google Scholar] [CrossRef]
- Zhou, F.; Lim, H.N.; Ibrahim, I.; Endot, N.A.; Malek, E.A.; Gowthaman, N.S.K. Simultaneous Electrochemical Detection of Dopamine and Uric Acid via Au@Cu-Metal Organic Framework. Chempluschem 2024, 89, e202300686. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Shrivastava, A.; Sircar, A.; Dhorajiya, P.; Muniya, A.; Bhattacharyay, R.P. Development and Performance Evaluation of Sr2CeO4—SrCe0.85Y0.15O3−ᴓ Based Electrochemical Hydrogen Isotopes Sensor. Fusion Eng. Des. 2024, 200, 114189. [Google Scholar] [CrossRef]
- Rahman, M.H.; Rashed, M.A.; Nayem, N.I.; Rahaman, M.A.; Ahmed, J.; Faisal, M.; Jalalah, M.; Harraz, F.A. Nanogold-Decorated Reduced Graphene Oxide/Chitosan Composite for Electrochemical Sensing of N-Acetyl-4-Aminophenol. Mater. Chem. Phys. 2024, 314, 128915. [Google Scholar] [CrossRef]
- Abid, K.; Iannazzo, D.; Celesti, C.; Khaskhoussi, A.; Foti, A.; Maalej, R.; Gucciardi, P.G.; Neri, G. A Novel 2D-GO@WS2 Electrochemical Platform for the Determination of Thiram Fungicide. J. Environ. Sci. 2024, 136, 226–236. [Google Scholar] [CrossRef]
- Iwahara, H.; Uchida, H.; Kondo, J. Galvanic Cell-Type Humidity Sensor Using High Temperature-Type Proton Conductive Solid Electrolyte. J. Appl. Electrochem. 1983, 13, 365–370. [Google Scholar] [CrossRef]
- Katahira, K.; Matsumoto, H.; Iwahara, H.; Koide, K.; Iwamoto, T. A Solid Electrolyte Steam Sensor with an Electrochemically Supplied Hydrogen Standard Using Proton-Conducting Oxides. Sens. Actuators B Chem. 2000, 67, 189–193. [Google Scholar] [CrossRef]
- Cobb, L.J.; Kumar, R.V.; Fray, D.J. A Novel Humidity Sensor Using Yb-Doped SrCeO3 Ionic Conductor with a Au-Pd Filter. Ionics 1996, 2, 231–234. [Google Scholar] [CrossRef]
- Miao, J.; Chen, Y.; Li, Y.; Cheng, J.; Wu, Q.; Ng, K.W.; Cheng, X.; Chen, R.; Cheng, C.; Tang, Z. Proton Conducting Polyoxometalate/Polypyrrole Films and Their Humidity Sensing Performance. ACS Appl. Nano Mater. 2018, 1, 564–571. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, K.; Zhang, Q. Giant Humidity Response Using a Chitosan-Based Protonic Conductive Sensor. IEEE Sens. J. 2016, 16, 8884–8889. [Google Scholar] [CrossRef]
- Farahani, H.; Wagiran, R.; Urban, G.A. Investigation of Room Temperature Protonic Conduction of Perovskite Humidity Sensors. IEEE Sens. J. 2021, 21, 9657–9666. [Google Scholar] [CrossRef]
- Kalyakin, A.S.; Danilov, N.A.; Volkov, A.N. Determining Humidity of Nitrogen and Air Atmospheres by Means of a Protonic Ceramic Sensor. J. Electroanal. Chem. 2021, 895, 115523. [Google Scholar] [CrossRef]
- Medvedev, D.; Kalyakin, A.; Volkov, A.; Demin, A.; Tsiakaras, P. Electrochemical Moisture Analysis by Combining Oxygen- and Proton-Conducting Ceramic Electrolytes. Electrochem. Commun. 2017, 76, 55–58. [Google Scholar] [CrossRef]
- Hatakeyama, K.; Karim, M.R.; Ogata, C.; Tateishi, H.; Funatsu, A.; Taniguchi, T.; Koinuma, M.; Hayami, S.; Matsumoto, Y. Proton Conductivities of Graphene Oxide Nanosheets: Single, Multilayer, and Modified Nanosheets. Angew. Chem. Int. Ed. 2014, 53, 6997–7000. [Google Scholar] [CrossRef]
- Guo, L.; Jiang, H.-B.; Shao, R.-Q.; Zhang, Y.-L.; Xie, S.-Y.; Wang, J.-N.; Li, X.-B.; Jiang, F.; Chen, Q.-D.; Zhang, T.; et al. Two-Beam-Laser Interference Mediated Reduction, Patterning and Nanostructuring of Graphene Oxide for the Production of a Flexible Humidity Sensing Device. Carbon N. Y. 2012, 50, 1667–1673. [Google Scholar] [CrossRef]
- Mendes, S.; Kurapova, O.; Faia, P.; Pazheltsev, V.; Zaripov, A.; Konakov, V. Polyantimonic Acid-Based Materials Evaluated as Moisture Sensors at Ambient Temperature. J. Solid. State Electrochem. 2023, 27, 611–625. [Google Scholar] [CrossRef]
- Mendes, S.; Kurapova, O.; Faia, P. Enhancing Polyantimonic-Based Materials’ Moisture Response with Binder Content Tuning. Chemosensors 2023, 11, 423. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, S.R.; da Silva, G.M.G.; Araújo, E.S.; Faia, P.M. A Review on Low-Temperature Protonic Conductors: Principles and Chemical Sensing Applications. Chemosensors 2024, 12, 96. https://doi.org/10.3390/chemosensors12060096
Mendes SR, da Silva GMG, Araújo ES, Faia PM. A Review on Low-Temperature Protonic Conductors: Principles and Chemical Sensing Applications. Chemosensors. 2024; 12(6):96. https://doi.org/10.3390/chemosensors12060096
Chicago/Turabian StyleMendes, Sofia R., Georgenes M. G. da Silva, Evando S. Araújo, and Pedro M. Faia. 2024. "A Review on Low-Temperature Protonic Conductors: Principles and Chemical Sensing Applications" Chemosensors 12, no. 6: 96. https://doi.org/10.3390/chemosensors12060096
APA StyleMendes, S. R., da Silva, G. M. G., Araújo, E. S., & Faia, P. M. (2024). A Review on Low-Temperature Protonic Conductors: Principles and Chemical Sensing Applications. Chemosensors, 12(6), 96. https://doi.org/10.3390/chemosensors12060096