Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = proteosome inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 346 KB  
Review
Serum Factors in Primary Podocytopathies
by Edward John Filippone and John L. Farber
Antibodies 2025, 14(4), 82; https://doi.org/10.3390/antib14040082 - 28 Sep 2025
Viewed by 1206
Abstract
Primary podocytopathies, including minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS), are caused by a circulating factor or factors injurious to the podocyte. An immunologic origin seems likely based on responsiveness to corticosteroids or other immunosuppressive agents, including calcineurin inhibitors targeting T-cells [...] Read more.
Primary podocytopathies, including minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS), are caused by a circulating factor or factors injurious to the podocyte. An immunologic origin seems likely based on responsiveness to corticosteroids or other immunosuppressive agents, including calcineurin inhibitors targeting T-cells and rituximab targeting B-cells. Potential non-antibody-mediated circulating factors have been identified, including cardiotrophin-like cytokine 1, soluble urokinase plasminogen activator receptor, and angiopoietin-like 4, among others. More recent research supports a primary antibody pathogenesis, with anti-nephrin antibodies found in a significant percentage of cases. Such antibodies also predict recurrence after transplantation. Other potential antigenic targets besides nephrin include annexin, the proteosome, podocin, and CD40. Additionally, high-resolution confocal microscopy has identified punctate immunoglobulin deposits along the slit diaphragm and podocyte cell body that may or may not colocalize with abnormal punctate nephrin staining and may correlate with detectable circulating antibodies. The success of rituximab in observational studies in both native kidneys and transplants supports a primary role for autoantibodies. We discuss in detail the data supporting putative non-antibody circulating factors, as well as the recent data supporting antibody pathogenesis, which may provide some clues on treating the individual patient. Full article
(This article belongs to the Section Humoral Immunity)
16 pages, 2561 KB  
Article
β-Arrestin 2 as a Prognostic Indicator and Immunomodulatory Factor in Multiple Myeloma
by Parker Mathews, Xiaobei Wang, Jian Wu, Shaima Jabbar, Kimberly Burcher, Lindsay Rein and Yubin Kang
Cells 2025, 14(7), 496; https://doi.org/10.3390/cells14070496 - 26 Mar 2025
Cited by 2 | Viewed by 1427
Abstract
β-arrestin 2 (ARRB2) is involved in the desensitization and trafficking of G protein-coupled receptors (GPCRs) and plays a critical role in cell proliferation, apoptosis, chemotaxis, and immune response modulation. The role of ARRB2 in the pathogenesis of multiple myeloma (MM) has not been [...] Read more.
β-arrestin 2 (ARRB2) is involved in the desensitization and trafficking of G protein-coupled receptors (GPCRs) and plays a critical role in cell proliferation, apoptosis, chemotaxis, and immune response modulation. The role of ARRB2 in the pathogenesis of multiple myeloma (MM) has not been elucidated. This study addressed this question by evaluating the expression of ARRB2 in bone marrow (BM) samples from newly diagnosed MM patients and deriving correlations with key clinical outcomes. In light of recent trends towards the use of immune checkpoint inhibitors across malignancies, the effect of ARRB2 in the regulation of the PD-1/PD-L1 axis was also investigated. The expression of ARRB2 was significantly higher in MM patients resistant to proteosome inhibitor (bortezomib) treatment compared to those who responded. Higher ARRB2 expression in the BM of newly diagnosed MM patients was associated with inferior progression-free survival and overall survival. PD-1 expression was downregulated in CD3 T cells isolated from ARRB2 knockout (KO) mice. Furthermore, knockdown of ARRB2 with siRNA reduced PD-1 expression in murine CD3 T cells and PD-L1 expression in murine myeloid-derived suppressor cells. These findings suggest an important role of ARRB2 in MM pathogenesis, potentially mediated via modulation of immune checkpoints in the tumor microenvironment. Our study provides new evidence that ARRB2 may have non-canonical functions independent of GPCRs with relevance to the understanding of MM pathobiology as well as immunotherapy and checkpoint inhibitor escape/resistance more broadly. Full article
(This article belongs to the Special Issue Novel Insights into Molecular Mechanisms and Therapy of Myeloma)
Show Figures

Graphical abstract

24 pages, 3073 KB  
Article
Rac1 GTPase Regulates the βTrCP-Mediated Proteolysis of YAP Independently of the LATS1/2 Kinases
by Chitra Palanivel, Tabbatha N. Somers, Bailey M. Gabler, Yuanhong Chen, Yongji Zeng, Jesse L. Cox, Parthasarathy Seshacharyulu, Jixin Dong, Ying Yan, Surinder K. Batra and Michel M. Ouellette
Cancers 2024, 16(21), 3605; https://doi.org/10.3390/cancers16213605 - 25 Oct 2024
Cited by 1 | Viewed by 2270
Abstract
Background: Oncogenic mutations in the KRAS gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic KRAS drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional [...] Read more.
Background: Oncogenic mutations in the KRAS gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic KRAS drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional coactivator required for transformation by the RAS oncogenes and the development of PC. In Ras-driven tumors, YAP can also substitute for oncogenic KRAS to drive tumor survival after the repression of the oncogene. Ras oncoproteins exert their transforming properties through their downstream effectors, including the PI3K kinase, Rac1 GTPase, and MAPK pathways. Methods: To identify Ras effectors that regulate YAP, YAP levels were measured in PC cells exposed to inhibitors of oncogenic K-Ras and its effectors. Results: In PC cells, the inhibition of Rac1 leads to a time-dependent decline in YAP protein, which could be blocked by proteosome inhibitor MG132. This YAP degradation after Rac1 inhibition was observed in a range of cell lines using different Rac1 inhibitors, Rac1 siRNA, or expression of dominant negative Rac1T17N mutant. Several E3 ubiquitin ligases, including SCFβTrCP, regulate YAP protein stability. To be recognized by this ligase, the βTrCP degron of YAP (amino acid 383–388) requires its phosphorylation by casein kinase 1 at Ser384 and Ser387, but these events must first be primed by the phosphorylation of Ser381 by LATS1/2. Using Flag-tagged mutants of YAP, we show that YAP degradation after Rac1 inhibition requires the integrity of this degron and is blocked by the silencing of βTrCP1/2 and by the inhibition of casein kinase 1. Unexpectedly, YAP degradation after Rac1 inhibition was still observed after the silencing of LATS1/2 or in cells carrying a LATS1/2 double knockout. Conclusions: These results reveal Rac1 as an oncogenic KRAS effector that contributes to YAP stabilization in PC cells. They also show that this regulation of YAP by Rac1 requires the SCFβTrCP ligase but occurs independently of the LATS1/2 kinases. Full article
(This article belongs to the Special Issue Hippo Signaling in Cancer)
Show Figures

Figure 1

12 pages, 2480 KB  
Article
First-Line Combination with Proteasome Inhibitor-Based Treatment and Zoledronic Acid Is Effective in Reducing Later Fractures in Multiple Myeloma Irrespective of Multiple Myeloma Bone Disease at Diagnosis
by Veera Eskelinen, Elise Nivakoski, Kirsi Launonen, Anu Partanen, Sakari Kakko and Milla E. L. Kuusisto
Hematol. Rep. 2024, 16(3), 529-540; https://doi.org/10.3390/hematolrep16030051 - 6 Aug 2024
Cited by 2 | Viewed by 2025
Abstract
The present study provides real-world evidence on the treatment of multiple myeloma (MM) bone disease with various bisphosphonates combined for different myeloma-specific treatments as no validated data regarding the best combination treatment for bone disease associated with MM are available. We examined retrospectively [...] Read more.
The present study provides real-world evidence on the treatment of multiple myeloma (MM) bone disease with various bisphosphonates combined for different myeloma-specific treatments as no validated data regarding the best combination treatment for bone disease associated with MM are available. We examined retrospectively 345 MM patients treated with autologous stem cell transplantation in Finland during 1996–2020. The median age of the patients was 60 years with a median follow-up time of 50 months (1–339). At diagnosis, 72.1% of the patients had myeloma-associated bone disease and 45.8% had fractures. Most patients (58.8%) received proteasome inhibitor (PI)-containing treatment at first line. MM bone disease was treated in 91.6% of the patients; 49.9% received zoledronic acid (ZA) and 29.9% pamidronate. Inferior overall survival was associated with MM bone disease at diagnosis (p = 0.005) or a fracture at diagnosis (p = 0.003). A later fracture was identified in 29% of the patients, and in those patients without MM bone disease at diagnosis later fractures were less common after ZA treatment (p = 0.049). PI-based treatment plus ZA (p = 0.019) seemed to be the best combination to prevent later fractures, even though the same patient subgroup was more likely to experience relapse (p = 0.018), and also when excluding patients with previous induction therapy without novel agents (p = 0.008). To conclude, this study suggests that the best therapy to prevent later fractures in MM might be PI-based treatment combined with ZA. Full article
Show Figures

Figure 1

20 pages, 4151 KB  
Article
Carriers of Heterozygous Loss-of-Function ACE Mutations Are at Risk for Alzheimer’s Disease
by Sergei M. Danilov, Ivan A. Adzhubei, Alexander J. Kozuch, Pavel A. Petukhov, Isolda A. Popova, Ananyo Choudhury, Dhriti Sengupta and Steven M. Dudek
Biomedicines 2024, 12(1), 162; https://doi.org/10.3390/biomedicines12010162 - 12 Jan 2024
Cited by 12 | Viewed by 3623
Abstract
We hypothesized that subjects with heterozygous loss-of-function (LoF) ACE mutations are at risk for Alzheimer’s disease because amyloid Aβ42, a primary component of the protein aggregates that accumulate in the brains of AD patients, is cleaved by ACE (angiotensin I-converting enzyme). Thus, decreased [...] Read more.
We hypothesized that subjects with heterozygous loss-of-function (LoF) ACE mutations are at risk for Alzheimer’s disease because amyloid Aβ42, a primary component of the protein aggregates that accumulate in the brains of AD patients, is cleaved by ACE (angiotensin I-converting enzyme). Thus, decreased ACE activity in the brain, either due to genetic mutation or the effects of ACE inhibitors, could be a risk factor for AD. To explore this hypothesis in the current study, existing SNP databases were analyzed for LoF ACE mutations using four predicting tools, including PolyPhen-2, and compared with the topology of known ACE mutations already associated with AD. The combined frequency of >400 of these LoF-damaging ACE mutations in the general population is quite significant—up to 5%—comparable to the frequency of AD in the population > 70 y.o., which indicates that the contribution of low ACE in the development of AD could be under appreciated. Our analysis suggests several mechanisms by which ACE mutations may be associated with Alzheimer’s disease. Systematic analysis of blood ACE levels in patients with all ACE mutations is likely to have clinical significance because available sequencing data will help detect persons with increased risk of late-onset Alzheimer’s disease. Patients with transport-deficient ACE mutations (about 20% of damaging ACE mutations) may benefit from preventive or therapeutic treatment with a combination of chemical and pharmacological (e.g., centrally acting ACE inhibitors) chaperones and proteosome inhibitors to restore impaired surface ACE expression, as was shown previously by our group for another transport-deficient ACE mutation-Q1069R. Full article
(This article belongs to the Special Issue Angiotensin-Converting Enzyme in Health and Diseases)
Show Figures

Figure 1

17 pages, 1111 KB  
Review
Bispecific Antibodies in Multiple Myeloma: Opportunities to Enhance Efficacy and Improve Safety
by Dawn Swan, Philip Murphy, Siobhan Glavey and John Quinn
Cancers 2023, 15(6), 1819; https://doi.org/10.3390/cancers15061819 - 17 Mar 2023
Cited by 31 | Viewed by 8987
Abstract
Multiple myeloma (MM) is the second most common haematological neoplasm of adults in the Western world. Overall survival has doubled since the advent of proteosome inhibitors (PIs), immunomodulatory agents (IMiDs), and monoclonal antibodies. However, patients with adverse cytogenetics or high-risk disease as determined [...] Read more.
Multiple myeloma (MM) is the second most common haematological neoplasm of adults in the Western world. Overall survival has doubled since the advent of proteosome inhibitors (PIs), immunomodulatory agents (IMiDs), and monoclonal antibodies. However, patients with adverse cytogenetics or high-risk disease as determined by the Revised International Staging System (R-ISS) continue to have poorer outcomes, and triple-refractory patients have a median survival of less than 1 year. Bispecific antibodies (BsAbs) commonly bind to a tumour epitope along with CD3 on T-cells, leading to T-cell activation and tumour cell killing. These treatments show great promise in MM patients, with the first agent, teclistamab, receiving regulatory approval in 2022. Their potential utility is hampered by the immunosuppressive tumour microenvironment (TME), a hallmark of MM, which may limit efficacy, and by undesirable adverse events, including cytokine release syndrome (CRS) and infections, some of which may be fatal. In this review, we first consider the means of enhancing the efficacy of BsAbs in MM. These include combining BsAbs with other drugs that ameliorate the effect of the immunosuppressive TME, improving target availability, the use of BsAbs directed against multiple target antigens, and the optimal time in the treatment pathway to employ BsAbs. We then discuss methods to improve safety, focusing on reducing infection rates associated with treatment-induced hypogammaglobulinaemia, and decreasing the frequency and severity of CRS. BsAbs offer a highly-active therapeutic option in MM. Improving the efficacy and safety profiles of these agents may enable more patients to benefit from these novel therapies and improve outcomes for patients with high-risk disease. Full article
Show Figures

Figure 1

14 pages, 3000 KB  
Article
Essential Oil from Glossogyne tenuifolia Inhibits Lipopolysaccharide-Induced Inflammation-Associated Genes in Macro-Phage Cells via Suppression of NF-κB Signaling Pathway
by Wan-Teng Lin, Yen-Hua He, Yun-Hsin Lo, Yu-Ting Chiang, Sheng-Yang Wang, Ismail Bezirganoglu and K. J. Senthil Kumar
Plants 2023, 12(6), 1241; https://doi.org/10.3390/plants12061241 - 9 Mar 2023
Cited by 11 | Viewed by 2653
Abstract
Glossogyne tenuifolia Cassini (Hsiang-Ju in Chinese) is a perennial herb native to Taiwan. It was used in traditional Chinese medicine (TCM) as an antipyretic, anti-inflammatory, and hepatoprotective agent. Recent studies have shown that extracts of G. tenuifolia possess various bioactivities, including anti-oxidant, [...] Read more.
Glossogyne tenuifolia Cassini (Hsiang-Ju in Chinese) is a perennial herb native to Taiwan. It was used in traditional Chinese medicine (TCM) as an antipyretic, anti-inflammatory, and hepatoprotective agent. Recent studies have shown that extracts of G. tenuifolia possess various bioactivities, including anti-oxidant, anti-inflammatory, immunomodulation, and anti-cancer properties. However, the pharmacological activities of G. tenuifolia essential oils have not been studied. In this study, we extracted essential oil from air-dried G. tenuifolia plants, then investigated the anti-inflammatory potential of G. tenuifolia essential oil (GTEO) on lipopolysaccharide (LPS)-induced inflammation in murine macrophage cells (RAW 264.7) in vitro. Treatment with GTEO (25, 50, and 100 μg/mL) significantly as well as dose-dependently inhibited LPS-induced pro-inflammatory molecules, such as nitric oxide (NO) and prostaglandin E2 (PGE2) production, without causing cytotoxicity. Q-PCR and immunoblotting analysis revealed that the inhibition of NO and PGE2 was caused by downregulation of their corresponding mediator genes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), respectively. Immunofluorescence and luciferase reporter assays revealed that the inhibition of iNOS and COX-2 genes by GTEO was associated with the suppression of nuclear export and transcriptional activation of the redox-sensitive transcription factor, nuclear factor -κB (NF-κB). In addition, GTEO treatment significantly inhibited phosphorylation and proteosomal degradation of the inhibitor of NF-κB (I-κBα), an endogenous repressor of NF-κB. Moreover, treatment with GTEO significantly blocked the LPS-mediated activation of inhibitory κB kinase α (IKKα), an upstream kinase of the I-κBα. Furthermore, p-cymene, β-myrcene, β-cedrene, cis-β-ocimene, α-pinene, and D-limonene were represented as major components of GTEO. We found that treatment with p-cymene, α-pinene, and D-limonene were significantly inhibiting LPS-induced NO production in RAW 264.7 cells. Taken together, these results strongly suggest that GTEO inhibits inflammation through the downregulation of NF-κB-mediated inflammatory genes and pro-inflammatory molecules in macrophage cells. Full article
(This article belongs to the Special Issue Biosynthesis, Function, and Application of Plant Volatiles II)
Show Figures

Figure 1

27 pages, 9114 KB  
Article
Transcriptional and Post-Translational Regulation of Junctional Adhesion Molecule-B (JAM-B) in Leukocytes under Inflammatory Stimuli
by Priscilla E. Day-Walsh, Bryony Keeble, Gothai Pirabagar, Samuel J. Fountain and Paul A. Kroon
Int. J. Mol. Sci. 2022, 23(15), 8646; https://doi.org/10.3390/ijms23158646 - 3 Aug 2022
Viewed by 3258
Abstract
Junctional adhesion molecules (JAMs; comprising JAM-A, -B and -C) act as receptors for viruses, mediate cell permeability, facilitate leukocyte migration during sterile and non-sterile inflammation and are important for the maintenance of epithelial barrier integrity. As such, they are implicated in the development [...] Read more.
Junctional adhesion molecules (JAMs; comprising JAM-A, -B and -C) act as receptors for viruses, mediate cell permeability, facilitate leukocyte migration during sterile and non-sterile inflammation and are important for the maintenance of epithelial barrier integrity. As such, they are implicated in the development of both communicable and non-communicable chronic diseases. Here, we investigated the expression and regulation of JAM-B in leukocytes under pathogen- and host-derived inflammatory stimuli using immunoassays, qPCR and pharmacological inhibitors of inflammatory signalling pathways. We show that JAM-B is expressed at both the mRNA and protein level in leukocytes. JAM-B protein is localised to the cytoplasm, Golgi apparatus and in the nucleus around ring-shaped structures. We also provide evidence that JAM-B nuclear localisation occurs via the classical importin-α/β pathway, which is likely mediated through JAM-B protein nuclear localisation signals (NLS) and export signals (NES). In addition, we provide evidence that under both pathogen- and host-derived inflammatory stimuli, JAM-B transcription is regulated via the NF-κB-dependent pathways, whereas at the post-translational level JAM-B is regulated by ubiquitin-proteosome pathways. Anaphase-promoting ubiquitin ligase complex (APC/C) and herpes simplex virus-associated ubiquitin-specific protease (HAUSP/USP) were identified as candidates for JAM-B ubiquitination and de-ubiquitination, respectively. The expression and regulation of JAM-B in leukocytes reported here is a novel observation and contrasts with previous reports. The data reported here suggest that JAM-B expression in leukocytes is under the control of common inflammatory pathways. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 5410 KB  
Article
Enhancement of Farnesoid X Receptor Inhibits Migration, Adhesion and Angiogenesis through Proteasome Degradation and VEGF Reduction in Bladder Cancers
by Chien-Rui Lai, Hisao-Hsien Wang, Hsin-Han Chang, Yu-Ling Tsai, Wen-Chiuan Tsai, Chen-Ray Lee, Chih-Ying Changchien, Yu-Chen Cheng, Sheng-Tang Wu and Ying Chen
Int. J. Mol. Sci. 2022, 23(9), 5259; https://doi.org/10.3390/ijms23095259 - 9 May 2022
Cited by 12 | Viewed by 3130
Abstract
(1) Background: Bladder cancer is a malignant tumor mainly caused by exposure to environmental chemicals, with a high recurrence rate. NR1H4, also known as Farnesoid X Receptor (FXR), acts as a nuclear receptor that can be activated by binding with bile acids, and [...] Read more.
(1) Background: Bladder cancer is a malignant tumor mainly caused by exposure to environmental chemicals, with a high recurrence rate. NR1H4, also known as Farnesoid X Receptor (FXR), acts as a nuclear receptor that can be activated by binding with bile acids, and FXR is highly correlated with the progression of cancers. The aim of this study was to verify the role of FXR in bladder cancer cells. (2) Methods: A FXR overexpressed system was established to investigate the effect of cell viability, migration, adhesion, and angiogenesis in low-grade TSGH8301 and high-grade T24 cells. (3) Results: After FXR overexpression, the ability of migration, adhesion, invasion and angiogenesis of bladder cancer cells declined significantly. Focal adhesive complex, MMP2, MMP9, and angiogenic-related proteins were decreased, while FXR was overexpressed in bladder cancer cells. Moreover, FXR overexpression reduced vascular endothelial growth factor mRNA and protein expression and secretion in bladder cancer cells. After treatment with the proteosome inhibitor MG132, the migration, adhesion and angiogenesis caused by FXR overexpression were all reversed in bladder cancer cells. (4) Conclusions: These results may provide evidence on the role of FXR in bladder cancer, and thus may improve the therapeutic efficacy of urothelial carcinoma in the future. Full article
(This article belongs to the Special Issue A New Frontier on Cancer Invasion and Metastasis Research 2022)
Show Figures

Graphical abstract

11 pages, 2414 KB  
Article
Rational Design and Synthesis of HSF1-PROTACs for Anticancer Drug Development
by Chiranjeev Sharma, Myeong A Choi, Yoojin Song and Young Ho Seo
Molecules 2022, 27(5), 1655; https://doi.org/10.3390/molecules27051655 - 2 Mar 2022
Cited by 4 | Viewed by 4986
Abstract
PROTACs employ the proteosome-mediated proteolysis via E3 ligase and recruit the natural protein degradation machinery to selectively degrade the cancerous proteins. Herein, we have designed and synthesized heterobifunctional small molecules that consist of different linkers tethering KRIBB11, a HSF1 inhibitor, with pomalidomide, a [...] Read more.
PROTACs employ the proteosome-mediated proteolysis via E3 ligase and recruit the natural protein degradation machinery to selectively degrade the cancerous proteins. Herein, we have designed and synthesized heterobifunctional small molecules that consist of different linkers tethering KRIBB11, a HSF1 inhibitor, with pomalidomide, a commonly used E3 ligase ligand for anticancer drug development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 1757 KB  
Article
Carfilzomib Promotes the Unfolded Protein Response and Apoptosis in Cetuximab-Resistant Colorectal Cancer
by Ahmad Zulkifli, Fiona H. Tan, Zammam Areeb, Sarah F. Stuart, Juliana Gomez, Lucia Paradiso and Rodney B. Luwor
Int. J. Mol. Sci. 2021, 22(13), 7114; https://doi.org/10.3390/ijms22137114 - 1 Jul 2021
Cited by 9 | Viewed by 4074
Abstract
Cetuximab is a common treatment option for patients with wild-type K-Ras colorectal carcinoma. However, patients often display intrinsic resistance or acquire resistance to cetuximab following treatment. Here we generate two human CRC cells with acquired resistance to cetuximab that are derived from cetuximab-sensitive [...] Read more.
Cetuximab is a common treatment option for patients with wild-type K-Ras colorectal carcinoma. However, patients often display intrinsic resistance or acquire resistance to cetuximab following treatment. Here we generate two human CRC cells with acquired resistance to cetuximab that are derived from cetuximab-sensitive parental cell lines. These cetuximab-resistant cells display greater in vitro proliferation, colony formation and migration, and in vivo tumour growth compared with their parental counterparts. To evaluate potential alternative therapeutics to cetuximab-acquired-resistant cells, we tested the efficacy of 38 current FDA-approved agents against our cetuximab-acquired-resistant clones. We identified carfilzomib, a selective proteosome inhibitor to be most effective against our cell lines. Carfilzomib displayed potent antiproliferative effects, induced the unfolded protein response as determined by enhanced CHOP expression and ATF6 activity, and enhanced apoptosis as determined by enhanced caspase-3/7 activity. Overall, our results indicate a potentially novel indication for carfilzomib: that of a potential alternative agent to treat cetuximab-resistant colorectal cancer. Full article
(This article belongs to the Special Issue Endoplasmic Reticulum Stress and Unfolded Protein Response 2021)
Show Figures

Figure 1

21 pages, 359 KB  
Review
Belantamab Mafodotin to Treat Multiple Myeloma: A Comprehensive Review of Disease, Drug Efficacy and Side Effects
by Grace Lassiter, Cole Bergeron, Ryan Guedry, Julia Cucarola, Adam M. Kaye, Elyse M. Cornett, Alan D. Kaye, Giustino Varrassi, Omar Viswanath and Ivan Urits
Curr. Oncol. 2021, 28(1), 640-660; https://doi.org/10.3390/curroncol28010063 - 21 Jan 2021
Cited by 37 | Viewed by 7326
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by excessive clonal proliferation of plasma cells. The treatment of multiple myeloma presents a variety of unique challenges due to the complex molecular pathophysiology and incurable status of the disease at this time. Given that [...] Read more.
Multiple myeloma (MM) is a hematologic malignancy characterized by excessive clonal proliferation of plasma cells. The treatment of multiple myeloma presents a variety of unique challenges due to the complex molecular pathophysiology and incurable status of the disease at this time. Given that MM is the second most common blood cancer with a characteristic and unavoidable relapse/refractory state during the course of the disease, the development of new therapeutic modalities is crucial. Belantamab mafodotin (belamaf, GSK2857916) is a first-in-class therapeutic, indicated for patients who have previously attempted four other treatments, including an anti-CD38 monoclonal antibody, a proteosome inhibitor, and an immunomodulatory agent. In November 2017, the FDA designated belamaf as a breakthrough therapy for heavily pretreated patients with relapsed/refractory multiple myeloma. In August 2020, the FDA granted accelerated approval as a monotherapy for relapsed or treatment-refractory multiple myeloma. The drug was also approved in the EU for this indication in late August 2020. Of note, belamaf is associated with the following adverse events: decreased platelets, corneal disease, decreased or blurred vision, anemia, infusion-related reactions, pyrexia, and fetal risk, among others. Further studies are necessary to evaluate efficacy in comparison to other standard treatment modalities and as future drugs in this class are developed. Full article
29 pages, 8810 KB  
Article
Synergistic Effects of Bortezomib-OV Therapy and Anti-Invasive Strategies in Glioblastoma: A Mathematical Model
by Yangjin Kim, Junho Lee, Donggu Lee and Hans G. Othmer
Cancers 2019, 11(2), 215; https://doi.org/10.3390/cancers11020215 - 13 Feb 2019
Cited by 18 | Viewed by 5305
Abstract
It is well-known that the tumor microenvironment (TME) plays an important role in the regulation of tumor growth and the efficacy of anti-tumor therapies. Recent studies have demonstrated the potential of combination therapies, using oncolytic viruses (OVs) in conjunction with proteosome inhibitors for [...] Read more.
It is well-known that the tumor microenvironment (TME) plays an important role in the regulation of tumor growth and the efficacy of anti-tumor therapies. Recent studies have demonstrated the potential of combination therapies, using oncolytic viruses (OVs) in conjunction with proteosome inhibitors for the treatment of glioblastoma, but the role of the TME in such therapies has not been studied. In this paper, we develop a mathematical model for combination therapies based on the proteosome inhibitor bortezomib and the oncolytic herpes simplex virus (oHSV), with the goal of understanding their roles in bortezomib-induced endoplasmic reticulum (ER) stress, and how the balance between apoptosis and necroptosis is affected by the treatment protocol. We show that the TME plays a significant role in anti-tumor efficacy in OV combination therapy, and illustrate the effect of different spatial patterns of OV injection. The results illustrate a possible phenotypic switch within tumor populations in a given microenvironment, and suggest new anti-invasion therapies. Full article
(This article belongs to the Special Issue Glioblastoma: State of the Art and Future Perspectives)
Show Figures

Figure 1

4 pages, 637 KB  
Case Report
Progressive Multifocal Leukoencephalopathy during Ixazomib-Based Chemotherapy
by C.P. Sawicki, S.A. Climans, C.C. Hsia and J.A. Fraser
Curr. Oncol. 2018, 25(1), 99-102; https://doi.org/10.3747/co.25.3674 - 1 Feb 2018
Cited by 10 | Viewed by 1328
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disease of the central nervous system that most often affects immunocompromised individuals. It is caused by the reactivation of the John Cunningham virus (JCV), which is found in latent form in [...] Read more.
Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disease of the central nervous system that most often affects immunocompromised individuals. It is caused by the reactivation of the John Cunningham virus (JCV), which is found in latent form in the majority of adults. We describe a 59-year-old man with multiple myeloma who developed severe neurological deficits during treatment with ixazomib-based chemotherapy. A diagnosis of PML was established with gadolinium-enhanced magnetic resonance imaging (MRI) and by detection of JCV in the cerebrospinal fluid. Despite cessation of chemotherapy and treatment with mirtazapine, he had an inexorable neurological decline and died two months after presenting to hospital. Multiple myeloma and its treatments can predispose patients to opportunistic infections including PML. Although there have been case reports of PML in patients with multiple myeloma treated with bortezomib (a different proteosome inhibitor), this is, to our knowledge, the first documented case of PML in a patient treated with a regimen that includes ixazomib. Full article
17 pages, 2652 KB  
Article
Antiproliferative and Antiangiogenic Effects of Punica granatum Juice (PGJ) in Multiple Myeloma (MM)
by Daniele Tibullo, Nunzia Caporarello, Cesarina Giallongo, Carmelina Daniela Anfuso, Claudia Genovese, Carmen Arlotta, Fabrizio Puglisi, Nunziatina L. Parrinello, Vincenzo Bramanti, Alessandra Romano, Gabriella Lupo, Valeria Toscano, Roberto Avola, Maria Violetta Brundo, Francesco Di Raimondo and Salvatore Antonio Raccuia
Nutrients 2016, 8(10), 611; https://doi.org/10.3390/nu8100611 - 1 Oct 2016
Cited by 40 | Viewed by 8618
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of clonal plasma cells (PC) in the bone marrow (BM) leading to bone destruction and BM failure. Despite recent advances in pharmacological therapy, MM remains a largely incurable pathology. Therefore, novel [...] Read more.
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of clonal plasma cells (PC) in the bone marrow (BM) leading to bone destruction and BM failure. Despite recent advances in pharmacological therapy, MM remains a largely incurable pathology. Therefore, novel effective and less toxic agents are urgently necessary. In the last few years, pomegranate has been studied for its potential therapeutic properties including treatment and prevention of cancer. Pomegranate juice (PGJ) contains a number of potential active compounds including organic acids, vitamins, sugars, and phenolic components that are all responsible of the pro-apoptotic effects observed in tumor cell line. The aim of present investigation is to assess the antiproliferative and antiangiogenic potential of the PGJ in human multiple myeloma cell lines. Our data demonstrate the anti-proliferative potential of PGJ in MM cells; its ability to induce G0/G1 cell cycle block and its anti-angiogenic effects. Interestingly, sequential combination of bortezomib/PGJ improved the cytotoxic effect of the proteosome inhibitor. We investigated the effect of PGJ on angiogenesis and cell migration/invasion. Interestingly, we observed an inhibitory effect on the tube formation, microvessel outgrowth aorting ring and decreased cell migration and invasion as showed by wound-healing and transwell assays, respectively. Analysis of angiogenic genes expression in endothelial cells confirmed the anti-angiogenic properties of pomegranate. Therefore, PGJ administration could represent a good tool in order to identify novel therapeutic strategies for MM treatment, exploiting its anti-proliferative and anti-angiogenic effects. Finally, the present research supports the evidence that PGJ could play a key role of a future therapeutic approach for treatment of MM in order to optimize the pharmacological effect of bortezomib, especially as adjuvant after treatment. Full article
(This article belongs to the Special Issue Polyphenols for Cancer Treatment or Prevention)
Show Figures

Figure 1

Back to TopTop