First-Line Combination with Proteasome Inhibitor-Based Treatment and Zoledronic Acid Is Effective in Reducing Later Fractures in Multiple Myeloma Irrespective of Multiple Myeloma Bone Disease at Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dimopoulos, M.A.; Moreau, P.; Terpos, E.; Mateos, M.V.; Zweegman, S.; Cook, G.; Delforge, M.; Hájek, R.; Schjesvold, F.; Cavo, M.; et al. Multiple Myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised international staging system for multiple myeloma: A report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Thorsteinsdottir, S.; Gislason, G.; Aspelund, T.; Sverrisdottir, I.; Landgren, O.; Turesson, I.; Björkholm, M.; Kristinsson, S.Y. Fractures and survival in multiple myeloma: Results from a population-based study. Haematologica 2020, 105, 1067–1073. [Google Scholar] [CrossRef]
- Coluzzi, F.; Rolke, R.; Mercadante, S. Pain Management in Patients with Multiple Myeloma: An Update. Cancers 2019, 11, 2037. [Google Scholar] [CrossRef]
- Bladé, J.; Beksac, M.; Caers, J.; Jurczyszyn, A.; von Lilienfeld-Toal, M.; Moreau, P.; Rasche, L.; Rosiñol, L.; Usmani, S.Z.; Zamagni, E.; et al. Extramedullary disease in multiple myeloma: A systematic literature review. Blood Cancer J. 2022, 12, 45. [Google Scholar] [CrossRef]
- Panaroni, C.; Yee, A.J.; Raje, N.S. Myeloma and Bone Disease. Curr. Osteoporos. Rep. 2017, 15, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Zamagni, E.; Lentzsch, S.; Drake, M.T.; García-Sanz, R.; Abildgaard, N.; Ntanasis-Stathopoulos, I.; Schjesvold, F.; de la Rubia, J.; Kyriakou, C.; et al. Treatment of multiple myeloma-related bone disease: Recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet Oncol. 2021, 22, 119–130. [Google Scholar] [CrossRef]
- Mhaskar, R.; Redzepovic, J.; Wheatley, K.; Clark, O.; Glasmacher, A.; Miladinovic, B.; Kumar, A.; Djulbegovic, B. Comparative Effectiveness of Bisphosphonates in Multiple Myeloma. Blood 2010, 116, 3028. [Google Scholar] [CrossRef]
- Leng, S.; Chen, Y.; Tsai, W.Y.; Bhutani, D.; Hillyer, G.C.; Lim, E.; Accordino, M.K.; Wright, J.D.; Hershman, D.L.; Lentzsch, S.; et al. Use of Bisphosphonates in Newly Diagnosed Elderly Patients with Multiple Myeloma. J. Natl. Comp. Cancer Netw. 2019, 17, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, H.; Ashcroft, J.; Szabo, Z.; Garderet, L. Navigating the treatment landscape in multiple myeloma: Which combinations to use and when? Ann. Hematol. 2019, 98, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Mhaskar, R.; Kumar, A.; Wheatley, K.; Clark, O.A.C.; Miladinovic, B.; Glasmacher, A.; Kumar, A.; Djulbegovic, B. Bisphosphonates in multiple myeloma: An updated network meta-analysis. Cochrane Database Syst. Rev. 2017, 12, 12. [Google Scholar] [CrossRef]
- Sanfilippo, K.M.; Gage, B.; Luo, S.; Weilbaecher, K.; Tomasson, M.; Vij, R.; Colditz, G.; Carson, K. Comparative Effectiveness on Survival of Zoledronic Acid Versus Pamidronate in Multiple Myeloma. Leuk. Lymphoma 2015, 56, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Morgan, G.J.; Davies, F.E.; Gregory, W.M.; Cocks, K.; Bell, S.E.; Szubert, A.J.; Navarro-Coy, N.; Drayson, M.T.; Owen, R.G.; Feyler, S.; et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): A randomised controlled trial. Lancet 2010, 376, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
- Morgan, G.J.; Davies, F.E.; Gregory, W.M.; Szubert, A.J.; Bell, S.E.; Drayson, M.T.; Owen, R.G.; Ashcroft, A.J.; Jackson, G.H.; Child, J.A. Effects of induction and maintenance plus long-term bisphosphonates on bone disease in patients with multiple myeloma: The Medical Research Council Myeloma IX Trial. Blood 2012, 119, 5374–5383. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Ismaila, N.; Flynn, P.J.; Halabi, S.; Jagannath, S.; Ogaily, M.S.; Omel, J.; Raje, N.; Roodman, G.D.; Yee, G.C.; et al. Role of Bone-Modifying Agents in Multiple Myeloma: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.P.; Beck, J.T.; Stewart, A.K.; Shah, J.; Kelly, K.R.; Isaacs, R.; Bilic, S.; Sen, S.; Munshi, N.C. A Phase IB multicentre dose-determination study of BHQ 880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br. J. Haematol. 2014, 167, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.; Terpos, E.; Willenbacher, W.; Shimizu, K.; García-Sanz, R.; Durie, B.; Legieć, W.; Krejčí, M.; Laribi, K.; Zhu, L.; et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: An international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol. 2018, 19, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Royle, K.L.; Gregory, W.M.; Cairns, D.A.; Bell, S.E.; Cook, G.; Owen, R.G.; Drayson, M.T.; Davies, F.E.; Jackson, G.H.; Morgan, G.J.; et al. Quality of life during and following sequential treatment of previously untreated patients with multiple myeloma: Findings of the Medical Research Council Myeloma IX randomised study. Br. J. Haematol. 2018, 182, 816–829. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Patients (n = 345) | % |
---|---|---|
Age at diagnosis | ||
Median (years) | 61 | |
Range (years) | 25–74 | |
Sex | ||
Male | 189 | 54.8% |
Comorbidities | ||
Cardiovascular disease | 127 | 36.8% |
Diabetes | 40 | 11.6% |
Rheumatoid arthritis | 10 | 2.9% |
Previous treated cancer | 16 | 4.6% |
IBD | 8 | 2.3% |
Stroke or TIA | 5 | 1.5% |
COPD | 4 | 1.2% |
Neurological disease | 4 | 1.2% |
Bone disease at diagnosis | ||
Yes | 251 | 72.8% |
No | 90 | 26.1% |
Unknown | 4 | 1.1% |
Method used to diagnose bone disease | ||
X-ray | 110 | 43.8% |
CT | 84 | 33.5% |
MRI | 49 | 19.5% |
Unknown | 8 | 3.2% |
Fracture at diagnosis | ||
Yes | 158 | 45.8% |
No | 172 | 49.9% |
Unknown | 15 | 4.3% |
Type of fracture | ||
Pathological | 101 | 29.3% |
Osteoporotic | 54 | 15.7% |
Unknown | 190 | 55.1% |
Site of fracture | ||
Vertebra and ribs | 122 | 77.2% |
Other | 36 | 22.8% |
1st line bone disease treatment | ||
Yes | 316 | 91.6% |
No | 15 | 4.3% |
Unknown | 14 | 4.1% |
1st line bone-targeted treatment | ||
No treatment | 35 | 10.1% |
ZA | 172 | 49.9% |
Pamidronate | 103 | 29.9% |
Alendronate | 6 | 1.7% |
Denosumab | 12 | 3.5% |
Calcitonin | 1 | 0.3% |
Unknown | 16 | 4.6% |
1st line calcium + vitamin D substitution | ||
Yes | 220 | 63.8% |
No | 109 | 31.6% |
Unknown | 16 | 4.6% |
Denosumab at 1st line | ||
Yes | 12 | 3.5% |
No | 317 | 91.9% |
Unknown | 16 | 4.6% |
Later fracture during FU | ||
Yes | 100 | 29.0% |
No | 165 | 47.8% |
Unknown | 80 | 23.2% |
Treatment | Patients (n = 345) | % |
---|---|---|
1st line PI | ||
Yes | 203 | 58.9% |
No | 137 | 39.7% |
Unknown | 5 | 1.4% |
1st line IMiD without PI | ||
Yes | 105 | 30.4% |
No | 240 | 69.6% |
1st line PI and IMiD | ||
Yes | 101 | 29.3% |
No | 239 | 69.3% |
Unknown | 5 | 1.4% |
1st line induction PI | ||
VD | 80 | 23.2% |
VCD | 74 | 21.4% |
VRD | 20 | 5.8% |
VTD | 1 | 0.3% |
IRD | 7 | 2.0% |
1st line induction IMiD without PI | ||
Tal-Dex | 27 | 7.8% |
Len-Dex | 2 | 0.6% |
Other induction therapy | ||
VAD | 123 | 35.7% |
MP | 5 | 1.4% |
Cyclo-Dex | 1 | 0.3% |
Unknown | 5 | 1.4% |
1st line maintenance | ||
α-interferon | 37 | 10.7% |
Tal | 6 | 1.7% |
Len | 54 | 15.7% |
Single Vel | 3 | 0.9% |
Cyclic Dex | 1 | 0.3% |
No maintenance | 186 | 53.9% |
Unknown | 54 | 15.7% |
HR | 95% CI | p Value | p-Value ¨ | |
---|---|---|---|---|
A. | ||||
Cytogenetics | 1.112 | 0.641–1.928 | 0.706 | 0.311 |
PI | 1.679 | 1.121–2.517 | 0.012 | <0.001 |
PI and IMiD | 1.255 | 1.025–1.536 | 0.027 | <0.001 |
IMiD | 1.016 | 0.678–1.523 | 0.937 | 0.937 |
PI and ZA | 1.252 | 1.061–1.476 | 0.008 | <0.001 |
Bisphosphonate | 1.503 | 0.985–2.294 | 0.060 | <0.001 |
* | ||||
Cytogenetics | 1.339 | 0.758–2.365 | 0.315 | 0.634 |
PI | 1.371 | 0.185–10.137 | 0.757 | 0.336 |
PI and IMiD | 1.138 | 0.663–1.956 | 0.639 | 0.271 |
IMiD | 1.108 | 0.548–2.239 | 0.775 | 0.611 |
PI and ZA | 1.451 | 0.851–2.475 | 0.171 | 0.084 |
Bisphosphonate | 2.245 | 0.953–5.285 | 0.064 | 0.114 |
B. | ||||
Cytogenetics | 1.360 | 1.018–1.816 | 0.037 | 0.473 |
PI | 1.009 | 0.773–1.317 | 0.949 | <0.001 |
PI and IMiD | 1.026 | 0.899–1.170 | 0.708 | <0.001 |
IMiD | 1.320 | 0.999–1.744 | 0.051 | 0.018 |
PI and ZA | 1.451 | 1.065–1.976 | 0.034 | 0.018 |
Bisphosphonate | 0.941 | 0.677–1.232 | 0.553 | <0.001 |
* | ||||
Cytogenetics | 1.394 | 1.035–1.878 | 0.029 | 0.760 |
PI | 1.375 | 0.337–5.615 | 0.657 | 0.198 |
PI and IMiD | 1.349 | 0.986–1.845 | 0.062 | 0.043 |
IMiD | 1.459 | 0.972–2.189 | 0.068 | 0.198 |
PI and ZA | 1.516 | 1.117–2.058 | 0.045 | 0.008 |
Bisphosphonate | 1.594 | 0.906–2.805 | 0.106 | 0.303 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eskelinen, V.; Nivakoski, E.; Launonen, K.; Partanen, A.; Kakko, S.; Kuusisto, M.E.L. First-Line Combination with Proteasome Inhibitor-Based Treatment and Zoledronic Acid Is Effective in Reducing Later Fractures in Multiple Myeloma Irrespective of Multiple Myeloma Bone Disease at Diagnosis. Hematol. Rep. 2024, 16, 529-540. https://doi.org/10.3390/hematolrep16030051
Eskelinen V, Nivakoski E, Launonen K, Partanen A, Kakko S, Kuusisto MEL. First-Line Combination with Proteasome Inhibitor-Based Treatment and Zoledronic Acid Is Effective in Reducing Later Fractures in Multiple Myeloma Irrespective of Multiple Myeloma Bone Disease at Diagnosis. Hematology Reports. 2024; 16(3):529-540. https://doi.org/10.3390/hematolrep16030051
Chicago/Turabian StyleEskelinen, Veera, Elise Nivakoski, Kirsi Launonen, Anu Partanen, Sakari Kakko, and Milla E. L. Kuusisto. 2024. "First-Line Combination with Proteasome Inhibitor-Based Treatment and Zoledronic Acid Is Effective in Reducing Later Fractures in Multiple Myeloma Irrespective of Multiple Myeloma Bone Disease at Diagnosis" Hematology Reports 16, no. 3: 529-540. https://doi.org/10.3390/hematolrep16030051
APA StyleEskelinen, V., Nivakoski, E., Launonen, K., Partanen, A., Kakko, S., & Kuusisto, M. E. L. (2024). First-Line Combination with Proteasome Inhibitor-Based Treatment and Zoledronic Acid Is Effective in Reducing Later Fractures in Multiple Myeloma Irrespective of Multiple Myeloma Bone Disease at Diagnosis. Hematology Reports, 16(3), 529-540. https://doi.org/10.3390/hematolrep16030051