First-Line Combination with Proteasome Inhibitor-Based Treatment and Zoledronic Acid Is Effective in Reducing Later Fractures in Multiple Myeloma Irrespective of Multiple Myeloma Bone Disease at Diagnosis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dimopoulos, M.A.; Moreau, P.; Terpos, E.; Mateos, M.V.; Zweegman, S.; Cook, G.; Delforge, M.; Hájek, R.; Schjesvold, F.; Cavo, M.; et al. Multiple Myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised international staging system for multiple myeloma: A report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Thorsteinsdottir, S.; Gislason, G.; Aspelund, T.; Sverrisdottir, I.; Landgren, O.; Turesson, I.; Björkholm, M.; Kristinsson, S.Y. Fractures and survival in multiple myeloma: Results from a population-based study. Haematologica 2020, 105, 1067–1073. [Google Scholar] [CrossRef]
- Coluzzi, F.; Rolke, R.; Mercadante, S. Pain Management in Patients with Multiple Myeloma: An Update. Cancers 2019, 11, 2037. [Google Scholar] [CrossRef]
- Bladé, J.; Beksac, M.; Caers, J.; Jurczyszyn, A.; von Lilienfeld-Toal, M.; Moreau, P.; Rasche, L.; Rosiñol, L.; Usmani, S.Z.; Zamagni, E.; et al. Extramedullary disease in multiple myeloma: A systematic literature review. Blood Cancer J. 2022, 12, 45. [Google Scholar] [CrossRef]
- Panaroni, C.; Yee, A.J.; Raje, N.S. Myeloma and Bone Disease. Curr. Osteoporos. Rep. 2017, 15, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Zamagni, E.; Lentzsch, S.; Drake, M.T.; García-Sanz, R.; Abildgaard, N.; Ntanasis-Stathopoulos, I.; Schjesvold, F.; de la Rubia, J.; Kyriakou, C.; et al. Treatment of multiple myeloma-related bone disease: Recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet Oncol. 2021, 22, 119–130. [Google Scholar] [CrossRef]
- Mhaskar, R.; Redzepovic, J.; Wheatley, K.; Clark, O.; Glasmacher, A.; Miladinovic, B.; Kumar, A.; Djulbegovic, B. Comparative Effectiveness of Bisphosphonates in Multiple Myeloma. Blood 2010, 116, 3028. [Google Scholar] [CrossRef]
- Leng, S.; Chen, Y.; Tsai, W.Y.; Bhutani, D.; Hillyer, G.C.; Lim, E.; Accordino, M.K.; Wright, J.D.; Hershman, D.L.; Lentzsch, S.; et al. Use of Bisphosphonates in Newly Diagnosed Elderly Patients with Multiple Myeloma. J. Natl. Comp. Cancer Netw. 2019, 17, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, H.; Ashcroft, J.; Szabo, Z.; Garderet, L. Navigating the treatment landscape in multiple myeloma: Which combinations to use and when? Ann. Hematol. 2019, 98, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Mhaskar, R.; Kumar, A.; Wheatley, K.; Clark, O.A.C.; Miladinovic, B.; Glasmacher, A.; Kumar, A.; Djulbegovic, B. Bisphosphonates in multiple myeloma: An updated network meta-analysis. Cochrane Database Syst. Rev. 2017, 12, 12. [Google Scholar] [CrossRef]
- Sanfilippo, K.M.; Gage, B.; Luo, S.; Weilbaecher, K.; Tomasson, M.; Vij, R.; Colditz, G.; Carson, K. Comparative Effectiveness on Survival of Zoledronic Acid Versus Pamidronate in Multiple Myeloma. Leuk. Lymphoma 2015, 56, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Morgan, G.J.; Davies, F.E.; Gregory, W.M.; Cocks, K.; Bell, S.E.; Szubert, A.J.; Navarro-Coy, N.; Drayson, M.T.; Owen, R.G.; Feyler, S.; et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): A randomised controlled trial. Lancet 2010, 376, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
- Morgan, G.J.; Davies, F.E.; Gregory, W.M.; Szubert, A.J.; Bell, S.E.; Drayson, M.T.; Owen, R.G.; Ashcroft, A.J.; Jackson, G.H.; Child, J.A. Effects of induction and maintenance plus long-term bisphosphonates on bone disease in patients with multiple myeloma: The Medical Research Council Myeloma IX Trial. Blood 2012, 119, 5374–5383. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Ismaila, N.; Flynn, P.J.; Halabi, S.; Jagannath, S.; Ogaily, M.S.; Omel, J.; Raje, N.; Roodman, G.D.; Yee, G.C.; et al. Role of Bone-Modifying Agents in Multiple Myeloma: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.P.; Beck, J.T.; Stewart, A.K.; Shah, J.; Kelly, K.R.; Isaacs, R.; Bilic, S.; Sen, S.; Munshi, N.C. A Phase IB multicentre dose-determination study of BHQ 880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br. J. Haematol. 2014, 167, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.; Terpos, E.; Willenbacher, W.; Shimizu, K.; García-Sanz, R.; Durie, B.; Legieć, W.; Krejčí, M.; Laribi, K.; Zhu, L.; et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: An international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol. 2018, 19, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Royle, K.L.; Gregory, W.M.; Cairns, D.A.; Bell, S.E.; Cook, G.; Owen, R.G.; Drayson, M.T.; Davies, F.E.; Jackson, G.H.; Morgan, G.J.; et al. Quality of life during and following sequential treatment of previously untreated patients with multiple myeloma: Findings of the Medical Research Council Myeloma IX randomised study. Br. J. Haematol. 2018, 182, 816–829. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Patients (n = 345) | % |
---|---|---|
Age at diagnosis | ||
Median (years) | 61 | |
Range (years) | 25–74 | |
Sex | ||
Male | 189 | 54.8% |
Comorbidities | ||
Cardiovascular disease | 127 | 36.8% |
Diabetes | 40 | 11.6% |
Rheumatoid arthritis | 10 | 2.9% |
Previous treated cancer | 16 | 4.6% |
IBD | 8 | 2.3% |
Stroke or TIA | 5 | 1.5% |
COPD | 4 | 1.2% |
Neurological disease | 4 | 1.2% |
Bone disease at diagnosis | ||
Yes | 251 | 72.8% |
No | 90 | 26.1% |
Unknown | 4 | 1.1% |
Method used to diagnose bone disease | ||
X-ray | 110 | 43.8% |
CT | 84 | 33.5% |
MRI | 49 | 19.5% |
Unknown | 8 | 3.2% |
Fracture at diagnosis | ||
Yes | 158 | 45.8% |
No | 172 | 49.9% |
Unknown | 15 | 4.3% |
Type of fracture | ||
Pathological | 101 | 29.3% |
Osteoporotic | 54 | 15.7% |
Unknown | 190 | 55.1% |
Site of fracture | ||
Vertebra and ribs | 122 | 77.2% |
Other | 36 | 22.8% |
1st line bone disease treatment | ||
Yes | 316 | 91.6% |
No | 15 | 4.3% |
Unknown | 14 | 4.1% |
1st line bone-targeted treatment | ||
No treatment | 35 | 10.1% |
ZA | 172 | 49.9% |
Pamidronate | 103 | 29.9% |
Alendronate | 6 | 1.7% |
Denosumab | 12 | 3.5% |
Calcitonin | 1 | 0.3% |
Unknown | 16 | 4.6% |
1st line calcium + vitamin D substitution | ||
Yes | 220 | 63.8% |
No | 109 | 31.6% |
Unknown | 16 | 4.6% |
Denosumab at 1st line | ||
Yes | 12 | 3.5% |
No | 317 | 91.9% |
Unknown | 16 | 4.6% |
Later fracture during FU | ||
Yes | 100 | 29.0% |
No | 165 | 47.8% |
Unknown | 80 | 23.2% |
Treatment | Patients (n = 345) | % |
---|---|---|
1st line PI | ||
Yes | 203 | 58.9% |
No | 137 | 39.7% |
Unknown | 5 | 1.4% |
1st line IMiD without PI | ||
Yes | 105 | 30.4% |
No | 240 | 69.6% |
1st line PI and IMiD | ||
Yes | 101 | 29.3% |
No | 239 | 69.3% |
Unknown | 5 | 1.4% |
1st line induction PI | ||
VD | 80 | 23.2% |
VCD | 74 | 21.4% |
VRD | 20 | 5.8% |
VTD | 1 | 0.3% |
IRD | 7 | 2.0% |
1st line induction IMiD without PI | ||
Tal-Dex | 27 | 7.8% |
Len-Dex | 2 | 0.6% |
Other induction therapy | ||
VAD | 123 | 35.7% |
MP | 5 | 1.4% |
Cyclo-Dex | 1 | 0.3% |
Unknown | 5 | 1.4% |
1st line maintenance | ||
α-interferon | 37 | 10.7% |
Tal | 6 | 1.7% |
Len | 54 | 15.7% |
Single Vel | 3 | 0.9% |
Cyclic Dex | 1 | 0.3% |
No maintenance | 186 | 53.9% |
Unknown | 54 | 15.7% |
HR | 95% CI | p Value | p-Value ¨ | |
---|---|---|---|---|
A. | ||||
Cytogenetics | 1.112 | 0.641–1.928 | 0.706 | 0.311 |
PI | 1.679 | 1.121–2.517 | 0.012 | <0.001 |
PI and IMiD | 1.255 | 1.025–1.536 | 0.027 | <0.001 |
IMiD | 1.016 | 0.678–1.523 | 0.937 | 0.937 |
PI and ZA | 1.252 | 1.061–1.476 | 0.008 | <0.001 |
Bisphosphonate | 1.503 | 0.985–2.294 | 0.060 | <0.001 |
* | ||||
Cytogenetics | 1.339 | 0.758–2.365 | 0.315 | 0.634 |
PI | 1.371 | 0.185–10.137 | 0.757 | 0.336 |
PI and IMiD | 1.138 | 0.663–1.956 | 0.639 | 0.271 |
IMiD | 1.108 | 0.548–2.239 | 0.775 | 0.611 |
PI and ZA | 1.451 | 0.851–2.475 | 0.171 | 0.084 |
Bisphosphonate | 2.245 | 0.953–5.285 | 0.064 | 0.114 |
B. | ||||
Cytogenetics | 1.360 | 1.018–1.816 | 0.037 | 0.473 |
PI | 1.009 | 0.773–1.317 | 0.949 | <0.001 |
PI and IMiD | 1.026 | 0.899–1.170 | 0.708 | <0.001 |
IMiD | 1.320 | 0.999–1.744 | 0.051 | 0.018 |
PI and ZA | 1.451 | 1.065–1.976 | 0.034 | 0.018 |
Bisphosphonate | 0.941 | 0.677–1.232 | 0.553 | <0.001 |
* | ||||
Cytogenetics | 1.394 | 1.035–1.878 | 0.029 | 0.760 |
PI | 1.375 | 0.337–5.615 | 0.657 | 0.198 |
PI and IMiD | 1.349 | 0.986–1.845 | 0.062 | 0.043 |
IMiD | 1.459 | 0.972–2.189 | 0.068 | 0.198 |
PI and ZA | 1.516 | 1.117–2.058 | 0.045 | 0.008 |
Bisphosphonate | 1.594 | 0.906–2.805 | 0.106 | 0.303 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eskelinen, V.; Nivakoski, E.; Launonen, K.; Partanen, A.; Kakko, S.; Kuusisto, M.E.L. First-Line Combination with Proteasome Inhibitor-Based Treatment and Zoledronic Acid Is Effective in Reducing Later Fractures in Multiple Myeloma Irrespective of Multiple Myeloma Bone Disease at Diagnosis. Hematol. Rep. 2024, 16, 529-540. https://doi.org/10.3390/hematolrep16030051
Eskelinen V, Nivakoski E, Launonen K, Partanen A, Kakko S, Kuusisto MEL. First-Line Combination with Proteasome Inhibitor-Based Treatment and Zoledronic Acid Is Effective in Reducing Later Fractures in Multiple Myeloma Irrespective of Multiple Myeloma Bone Disease at Diagnosis. Hematology Reports. 2024; 16(3):529-540. https://doi.org/10.3390/hematolrep16030051
Chicago/Turabian StyleEskelinen, Veera, Elise Nivakoski, Kirsi Launonen, Anu Partanen, Sakari Kakko, and Milla E. L. Kuusisto. 2024. "First-Line Combination with Proteasome Inhibitor-Based Treatment and Zoledronic Acid Is Effective in Reducing Later Fractures in Multiple Myeloma Irrespective of Multiple Myeloma Bone Disease at Diagnosis" Hematology Reports 16, no. 3: 529-540. https://doi.org/10.3390/hematolrep16030051
APA StyleEskelinen, V., Nivakoski, E., Launonen, K., Partanen, A., Kakko, S., & Kuusisto, M. E. L. (2024). First-Line Combination with Proteasome Inhibitor-Based Treatment and Zoledronic Acid Is Effective in Reducing Later Fractures in Multiple Myeloma Irrespective of Multiple Myeloma Bone Disease at Diagnosis. Hematology Reports, 16(3), 529-540. https://doi.org/10.3390/hematolrep16030051