Belantamab Mafodotin to Treat Multiple Myeloma: A Comprehensive Review of Disease, Drug Efficacy and Side Effects
Abstract
:1. Introduction
2. Multiple Myeloma Epidemiology and Risk Factors
3. Pathophysiology
4. Presentation
5. Current Treatment of Multiple Myeloma
5.1. Overview
5.2. Anti-BCMA Compounds Under Development
5.2.1. Anti-BCMA Antibody-Drug Conjugates (ADCs)
5.2.2. Anti-BCMA Bi-Specific Antibodies (BiAbs)
5.3. Novel Agents
5.4. Hematopoietic Stem Cell Transplant Eligibility
6. Belantamab Mafodotin Drug Info
7. Belantamab Mafodotin Mechanism of Action
7.1. Antibody Drug Conjugate (ADC)
7.2. Target Antigen-B-Cell Maturations Antigen (BCMA)
7.3. Afucosylated Monoclonal IgG1 Antibody
7.4. Monomethyl Auristatin-F (MMAF) and Linker
8. Pharmacokinetics
8.1. Absorption and Distribution
8.2. Metabolism
8.3. Elimination
9. Clinical Studies: Safety and Efficacy
9.1. Phase I Studies: DREAMM-1 Trial
9.2. Phase II Studies: DREAMM-2 Trial
9.3. Case Series
9.4. Indirect Comparison Study
9.5. Future Studies
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bird, S.; Boyd, K. Multiple myeloma: An overview of management. Palliat. Care Soc. Pract. 2019, 13. [Google Scholar] [CrossRef] [PubMed]
- Albagoush, S.A.; Azevedo, A.M. Multiple Myeloma; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534764/ (accessed on 13 July 2020).
- Michels, T.C.; Petersen, K.E. Multiple Myeloma: Diagnosis and Treatment. Am. Fam. Physician 2017, 95, 373–383. [Google Scholar] [PubMed]
- Cowan, A.J.; Allen, C.; Barac, A.; Basaleem, H.; Bensenor, I.; Curado, M.P.; Foreman, K.; Gupta, R.; Harvey, J.; Hosgood, H.D.; et al. Global Burden of Multiple Myeloma: A Systematic Analysis for the Global Burden of Disease Study 2016. JAMA Oncol. 2018, 4, 1221–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Bishop, K.; Kosary, C.L. Myeloma—Cancer Stat Facts [Internet]. SEER Cancer Statistics Review, 1975–2014. 2017. Available online: https://seer.cancer.gov/statfacts/html/mulmy.html (accessed on 10 December 2020).
- Kumar, S.K.; Rajkumar, S.V.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Zeldenrust, S.R.; Dingli, D.; Russell, S.J.; Lust, J.A.; et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008, 111, 2516–2520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Hoos, A.; Gupta, I.; Bragulat, V.; et al. Antibody–drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: An update on safety and efficacy from dose expansion phase I study. Blood Cancer J. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Teras, L.R.; DeSantis, C.E.; Cerhan, J.R.; Morton, L.M.; Jemal, A.; Flowers, C.R. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA A Cancer J. Clin. 2016, 66, 443–459. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA A Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA A Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [Green Version]
- Castaneda, O.; Baz, R. Multiple Myeloma Genomics—A Concise Review. Acta Med. Acad. 2019, 48, 57–67. [Google Scholar]
- Kuehl, W.M.; Bergsagel, P.L. Molecular pathogenesis of multiple myeloma and its premalignant precursor. J. Clin. Investig. 2012, 122, 3456–3463. [Google Scholar] [CrossRef]
- Pawlyn, C.; Davies, F.E. Toward personalized treatment in multiple myeloma based on molecular characteristics. Blood 2019, 133, 660–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brioli, A.; Melchor, L.; Cavo, M.; Morgan, G.J. The impact of intra-clonal heterogeneity on the treatment of multiple myeloma. Br. J. Haematol. 2014, 165, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, V.S. Multiple myeloma: Every year a new standard? Hematol. Oncol. 2019, 37, 62–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyle, R.A.; Gertz, M.A.; Witzig, T.E.; Lust, J.A.; Lacy, M.Q.; Dispenzieri, A.; Fonseca, R.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; et al. Review of 1027 Patients With Newly Diagnosed Multiple Myeloma. Mayo Clin. Proc. 2003, 78, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Eslick, R.; Talaulikar, D. Multiple myeloma: From diagnosis to treatment. Aust. Fam. Physician 2013, 42, 684–688. [Google Scholar]
- Diercks, D.B.; Shumaik, G.M.; Harrigan, R.A.; Brady, W.J.; Chan, T.C. Electrocardiographic manifestations: Electrolyte abnormalities. J. Emerg. Med. 2004, 27, 153–160. [Google Scholar] [CrossRef]
- Rajkumar, V.S.; Kumar, S.K. Multiple Myeloma: Diagnosis and Treatment. Mayo Clin. Proc. 2016, 91, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Kristinsson, S.Y.; Minter, A.R.; Korde, N.; Tan, E.; Landgren, O. Bone disease in multiple myeloma and precursor disease: Novel diagnostic approaches and implications on clinical management. Expert Rev. Mol. Diagn. 2011, 11, 593–603. [Google Scholar] [CrossRef]
- Abramson, H.N. B-Cell Maturation Antigen (BCMA) as a Target for New Drug Development in Relapsed and/or Refractory Multiple Myeloma. Int. J. Mol. Sci. 2020, 21, 5192. [Google Scholar] [CrossRef]
- Mogollón, P.; Díaz-Tejedor, A.; Algarín, E.M.; Paíno, T.; Garayoa, M.; Ocio, E.M. Biological Background of Resistance to Current Standards of Care in Multiple Myeloma. Cells 2019, 8, 1432. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, V.S. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2020, 95, 548–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkumar, S.V.; Rajkumar, V.; Kyle, R.A.; Van Duin, M.; Sonneveld, P.; Mateos, M.-V.; Gay, F.; Anderson, K.C. Multiple myeloma. Nat. Rev. Dis. Prim. 2017, 3, 17046. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Chari, A.; Scott, E.; Mezzi, K.; Usmani, S.Z. B-cell maturation antigen (BCMA) in multiple myeloma: Rationale for targeting and current therapeutic approaches. Leukemia 2020, 34, 985–1005. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, M.; Raje, N.S. Anti-BCMA CAR T-cell therapy in multiple myeloma: Can we do better? Leukemia 2019, 34, 21–34. [Google Scholar] [CrossRef]
- Bazarbachi, A.H.; Al Hamed, R.; Malard, F.; Harousseau, J.-L.; Mohty, M. Relapsed refractory multiple myeloma: A comprehensive overview. Leukemia 2019, 33, 2343–2357. [Google Scholar] [CrossRef]
- Tai, Y.-T.; Anderson, K.C. B cell maturation antigen (BCMA)-based immunotherapy for multiple myeloma. Expert Opin. Biol. Ther. 2019, 19, 1143–1156. [Google Scholar] [CrossRef]
- Burwick, N.; Sharma, S. Glucocorticoids in multiple myeloma: Past, present, and future. Ann. Hematol. 2019, 98, 19–28. [Google Scholar] [CrossRef]
- Swan, D.; Gurney, M.; Krawczyk, J.; Ryan, A.E.; O’Dwyer, M. Beyond DNA Damage: Exploring the Immunomodulatory Effects of Cyclophosphamide in Multiple Myeloma. Hemasphere 2020, 4, e350. [Google Scholar]
- Gabizon, A.A.; Patil, Y.; La-Beck, N.M. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist. Updat. 2016, 29, 90–106. [Google Scholar] [CrossRef]
- Kuczma, M.; Ding, Z.-C.; Zhou, G. Immunostimulatory Effects of Melphalan and Usefulness in Adoptive Cell Therapy with Antitumor CD4+ T Cells. Crit. Rev. Immunol. 2016, 36, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Esma, F.; Salvini, M.; Troia, R.; Boccadoro, M.; LaRocca, A.; Pautasso, C. Melphalan hydrochloride for the treatment of multiple myeloma. Expert Opin. Pharmacother. 2017, 18, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Offidani, M.; Patriarca, F.; Petrucci, M.T.; Cavo, M. Bendamustine for the treatment of multiple myeloma in first-line and relapsed–refractory settings: A review of clinical trial data. Leuk. Lymphoma 2014, 56, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Offidani, M.; Corvatta, L.; Maracci, L.; Liberati, A.M.; Ballanti, S.; Attolico, I.; Caraffa, P.; Alesiani, F.; Di Toritto, T.C.; Gentili, S.; et al. Efficacy and tolerability of bendamustine, bortezomib and dexamethasone in patients with relapsed-refractory multiple myeloma: A phase II study. Blood Cancer J. 2013, 3, e162. [Google Scholar] [CrossRef] [PubMed]
- Latif, T.; Chauhan, N.; Khan, R.; Morán, A.; Usmani, S.Z. Thalidomide and its analogues in the treatment of Multiple Myeloma. Exp. Hematol. Oncol. 2012, 1, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San-Miguel, J.; Weisel, K.; Moreau, P.; Lacy, M.; Song, K.; Delforge, M.; Karlin, L.; Goldschmidt, H.; Banos, A.; Oriol, A.; et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): A randomised, open-label, phase 3 trial. Lancet Oncol. 2013, 14, 1055–1066. [Google Scholar] [CrossRef] [Green Version]
- Moreau, P.; Weisel, K.C.; Song, K.W.; Gibson, C.J.; Saunders, O.; Sternas, L.A.; Hong, K.; Zaki, M.H.; Dimopoulos, M.A. Relationship of response and survival in patients with relapsed and refractory multiple myeloma treated with pomalidomide plus low-dose dexamethasone in the MM-003 trial randomized phase III trial (NIMBUS). Leuk. Lymphoma 2016, 57, 2839–2847. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Handa, H. Cereblon as a primary target of IMiDs. Jpn. J. Clin. Hematol. 2019, 60, 1013–1019. [Google Scholar] [CrossRef]
- Accardi, F.; Toscani, D.; Bolzoni, M.; Palma, B.D.; Aversa, F.; Giuliani, N. Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling. BioMed Res. Int. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Groen, K.; Van De Donk, N.W.C.J.; Stege, C.; Zweegman, S.; Nijhof, I. Carfilzomib for relapsed and refractory multiple myeloma. Cancer Manag. Res. 2019, 11, 2663–2675. [Google Scholar] [CrossRef] [Green Version]
- Raedler, L.A. Ninlaro (Ixazomib): First Oral Proteasome Inhibitor Approved for the Treatment of Patients with Re-lapsed or Refractory Multiple Myeloma. Am. Health Drug Benefits 2016, 9, 102–105. [Google Scholar]
- Narayanan, S.; Cai, C.-Y.; Assaraf, Y.G.; Guo, H.-Q.; Cui, Q.; Wei, L.; Huang, J.-J.; Ashby, C.R.; Chen, Z.-S. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist. Updat. 2020, 48, 100663. [Google Scholar] [CrossRef] [PubMed]
- Eleutherakis-Papaiakovou, E.; Kanellias, N.; Kastritis, E.; Gavriatopoulou, M.; Terpos, E.; Dimopoulos, M.A. Efficacy of Panobinostat for the Treatment of Multiple Myeloma. J. Oncol. 2020, 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bringhen, S.; De Wit, E.; Dimopoulos, M.-A. New Agents in Multiple Myeloma: An Examination of Safety Profiles. Clin. Lymphoma Myeloma Leuk. 2017, 17, 391–407.e5. [Google Scholar] [CrossRef] [PubMed]
- Yee, A.J.; Bensinger, W.I.; Supko, J.G.; Voorhees, P.M.; Berdeja, J.G.; Richardson, P.G.; Libby, E.N.; Wallace, E.E.; Birrer, N.E.; Burke, J.N.; et al. Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: A multicentre phase 1b trial. Lancet Oncol. 2016, 17, 1569–1578. [Google Scholar] [CrossRef]
- Vogl, D.T.; Raje, N.; Jagannath, S.; Richardson, P.; Hari, P.; Orlowski, R.; Supko, J.G.; Tamang, D.; Yang, M.; Jones, S.S.; et al. Ricolinostat, the First Selective Histone Deacetylase 6 Inhibitor, in Combination with Bortezomib and Dexamethasone for Relapsed or Refractory Multiple Myeloma. Clin. Cancer Res. 2017, 23, 3307–3315. [Google Scholar] [CrossRef] [Green Version]
- Pulya, S.; Amin, S.A.; Adhikari, N.; Biswas, S.; Jha, T.; Ghosh, B. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol. Res. 2020, 163, 105274. [Google Scholar] [CrossRef]
- Nooka, A.K.; Kaufman, J.L.; Hofmeister, C.C.; Joseph, N.S.; Heffner, T.L.; Gupta, V.A.; Sullivan, H.C.; Neish, A.S.; Dhodapkar, M.V.; Lonial, S. Daratumumab in multiple myeloma. Cancer 2019, 125, 2364–2382. [Google Scholar] [CrossRef]
- Lonial, S.; Vij, R.; Harousseau, J.-L.; Facon, T.; Moreau, P.; Mazumder, A.; Kaufman, J.L.; Leleu, X.; Tsao, L.C.; Westland, C.; et al. Elotuzumab in Combination With Lenalidomide and Low-Dose Dexamethasone in Relapsed or Refractory Multiple Myeloma. J. Clin. Oncol. 2012, 30, 1953–1959. [Google Scholar] [CrossRef]
- Richardson, P.G.; Jagannath, S.; Moreau, P.; Jakubowiak, A.J.; Raab, M.S.; Facon, T.; Vij, R.; White, D.; Reece, D.E.; Benboubker, L.; et al. Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: Final phase 2 results from the randomised, open-label, phase 1b–2 dose-escalation study. Lancet Haematol. 2015, 2, e516–e527. [Google Scholar] [CrossRef]
- Yee, A.J.; Raje, N.S. Denosumab for the treatment of bone disease in solid tumors and multiple myeloma. Future Oncol. 2018, 14, 195–203. [Google Scholar] [CrossRef]
- Varga, C.; Laubach, J.P.; Anderson, K.C.; Richardson, P.G. Investigational agents in immunotherapy: A new horizon for the treatment of multiple myeloma. Br. J. Haematol. 2018, 181, 433–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, L.; Perez, C.; Zabaleta, A.; Manrique, I.; Alignani, D.; Ajona, D.; Blanco, L.; Lasa, M.; Maiso, P.; Rodriguez, I.; et al. The Mechanism of Action of the Anti-CD38 Monoclonal Antibody Isatuximab in Multiple Myeloma. Clin. Cancer Res. 2019, 25, 3176–3187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van De Donk, N.W.; Usmani, S.Z. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. Front. Immunol. 2018, 9, 2134. [Google Scholar] [CrossRef] [PubMed]
- Jelinek, T.; Paiva, B.; Hajek, R. Update on PD-1/PD-L1 Inhibitors in Multiple Myeloma. Front. Immunol. 2018, 9, 2431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boussi, L.; Niesvizky, R. Advances in immunotherapy in multiple myeloma. Curr. Opin. Oncol. 2017, 29, 460–466. [Google Scholar] [CrossRef]
- Topp, M.S.; Duell, J.; Zugmaier, G.; Attal, M.; Moreau, P.; Langer, C.; Krönke, J.; Facon, T.; Salnikov, A.V.; Lesley, R.; et al. Anti–B-Cell Maturation Antigen BiTE Molecule AMG 420 Induces Responses in Multiple Myeloma. J. Clin. Oncol. 2020, 38, 775–783. [Google Scholar] [CrossRef]
- Cohen, A.D.; Raje, N.; Fowler, J.A.; Mezzi, K.; Scott, E.C.; Dhodapkar, M.V. How to Train Your T Cells: Overcoming Immune Dysfunction in Multiple Myeloma. Clin. Cancer Res. 2020, 26, 1541–1554. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Zhao, J.; Song, Y.; Liu, D. Recent updates on CAR T clinical trials for multiple myeloma. Mol. Cancer 2019, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Khoury, H.J.; Garcia-Manero, G.; Borthakur, G.; Kadia, T.; Foudray, M.C.; Arellano, M.; Langston, A.; Bethelmie-Bryan, B.; Rush, S.; Litwiler, K.; et al. A phase 1 dose-escalation study of ARRY-520, a kinesin spindle protein in-hibitor, in patients with advanced myeloid leukemias: ARRY-520 in Advanced Leukemias. Cancer 2012, 118, 3556–3564. [Google Scholar] [CrossRef] [Green Version]
- Shah, J.J.; Kaufman, J.L.; Zonder, J.A.; Cohen, A.D.; Bensinger, W.I.; Hilder, B.W.; Rush, S.A.; Walher, D.H.; Tunquist, B.J.; Litwiler, K.S.; et al. A Phase 1 and 2 study of Filanesib alone and in combination with low-dose dexame-thasone in relapsed/refractory multiple myeloma: Filanesib ± Dex in Multiple Myeloma. Cancer 2017, 123, 4617–4630. [Google Scholar] [CrossRef]
- Vaxman, I.; Sidiqi, M.H.; Gertz, M.A. Venetoclax for the treatment of multiple myeloma. Expert Rev. Hematol. 2018, 11, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Podar, K.; Shah, J.; Chari, A.; Richardson, P.G.; Jagannath, S. Selinexor for the treatment of multiple myeloma. Expert Opin. Pharmacother. 2020, 21, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.-O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020, 21, 207–221. [Google Scholar] [CrossRef]
- Farooq, A.V.; Degli Esposti, S.; Popat, R.; Thulasi, P.; Lonial, S.; Nooka, A.K.; Jakubowiak, A.; Sborov, D.; Zaugg, B.E.; Badros, A.Z.; et al. Corneal Epithelial Findings in Patients with Multiple Myeloma Treated with Antibody–Drug Conjugate Belantamab Mafodotin in the Pivotal, Randomized, DREAMM-2 Study. Ophthalmol. Ther. 2020, 9, 889–911. [Google Scholar] [CrossRef]
- Ailawadhi, S.; Kelly, K.R.; Vescio, R.A.; Jagannath, S.; Wolf, J.; Gharibo, M.; Sher, T.; Bojanini, L.; Kirby, M.; Chanan-Khan, A. A Phase I Study to Assess the Safety and Pharmacokinetics of Single-agent Lorvotuzumab Mertansine (IMGN901) in Patients with Relapsed and/or Refractory CD–56-positive Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019, 19, 29–34. [Google Scholar] [CrossRef]
- Iftikhar, A.; Hassan, H.; Iftikhar, N.; Mushtaq, A.; Sohail, A.; Rosko, N.; Chakraborty, R.; Razzaq, F.; Sandeep, S.; Valent, J.; et al. Investigational Monoclonal Antibodies in the Treatment of Multiple Myeloma: A Systematic Review of Agents under Clinical Development. Antibodies 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Bonello, F.; Mina, R.; Boccadoro, M.; Gay, F. Therapeutic Monoclonal Antibodies and Antibody Products: Current Practices and Development in Multiple Myeloma. Cancers 2019, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Dimopoulos, M.A.; Terpos, E. Anti-BCMA antibodies in the future management of multiple myeloma. Expert Rev. Anticancer. Ther. 2019, 19, 319–326. [Google Scholar] [CrossRef]
- O’Donnell, E.K.; Raje, N.S. New monoclonal antibodies on the horizon in multiple myeloma. Ther. Adv. Hematol. 2016, 8, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Kinneer, K.; Flynn, M.; Thomas, S.B.; Meekin, J.; Varkey, R.; Xiao, X.; Zhong, H.; Breen, S.; Hynes, P.G.; Fleming, R.; et al. Preclinical assessment of an antibody–PBD conjugate that targets BCMA on multiple myeloma and myeloma progenitor cells. Leukemia 2019, 33, 766–771. [Google Scholar] [CrossRef]
- Matinkhoo, K.; Pryyma, A.; Todorovic, M.; Patrick, B.; Perrin, D.M. Synthesis of the Death-Cap Mushroom Toxin α-Amanitin. J. Am. Chem. Soc. 2018, 140, 6513–6517. [Google Scholar] [CrossRef] [PubMed]
- Pahl, A.; Lutz, C.; Hechler, T. Amanitins and their development as a payload for antibody-drug conjugates. Drug Discov. Today Technol. 2018, 30, 85–89. [Google Scholar] [CrossRef]
- Zou, J.; Chen, D.; Zong, Y.; Ye, S.; Tang, J.; Meng, H.; An, G.; Zhang, X.; Yang, L. Immunotherapy based on bispecific T-cell engager with hIgG 1 Fc sequence as a new therapeutic strategy in multiple myeloma. Cancer Sci. 2015, 106, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.K.; Kang, S.; Youssef, Y.; Glankler, E.N.; Barrett, E.R.; Carter, A.M.; Ahmed, E.H.; Prasad, A.; Chen, L.; Zhang, J.; et al. A CS1-NKG2D Bispecific Antibody Collectively Activates Cytolytic Immune Cells against Multiple Myeloma. Cancer Immunol. Res. 2018, 6, 776–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terpos, E.; Ntanasis-Stathopoulos, I. International Myeloma Society Multiple Myeloma: Clinical Updates From the American Society of Hematology Annual Meeting 2018. Clin. Lymphoma Myeloma Leuk. 2019, 19, e324–e336. [Google Scholar] [CrossRef]
- Mikhael, J.R.; Dingli, D.; Roy, V.; Reeder, C.B.; Buadi, F.K.; Hayman, S.R.; Dispenzieri, A.; Fonseca, R.; Sher, T.; Kyle, R.A.; et al. Management of Newly Diagnosed Symptomatic Multiple Myeloma: Updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Guidelines 2013. Mayo Clin. Proc. 2013, 88, 360–376. [Google Scholar] [CrossRef]
- Al Hamed, R.; Bazarbachi, A.H.; Malard, F.; Harousseau, J.-L.; Mohty, M. Current status of autologous stem cell transplantation for multiple myeloma. Blood Cancer J. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Durie, B.G.M.; Hoering, A.; Abidi, M.H.; Rajkumar, S.V.; Epstein, J.; Kahanic, S.P.; Thakuri, M.; Reu, F.; Reynolds, C.M.; Sexton, R.; et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): A randomised, open-label, phase 3 trial. Lancet 2017, 389, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Majhail, N.S.; Liu, H. Hematopoietic Progenitor Cell Mobilization for Autologous Stem Cell Transplantation in Multiple Myeloma in Contemporary Era. Clin. Lymphoma Myeloma Leuk. 2019, 19, 200–205. [Google Scholar] [CrossRef]
- BLENREP-Belantamab Injection, Powder, Lyophilized, for Solution: Highlights of Prescribing Information. Updated 8/2020. GlaxoSmithKline LLC. Available online: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=16a160a4-3ec0-4ddf-99ce-05912dd3382d&type=display (accessed on 21 October 2020).
- FDA Approves GSK’s BLENREP (Belantamab Mafodotin-Blmf) for the Treatment of Patients with Relapsed or Refractory Multiple Myeloma. GSK. Published 6 August 2020. Available online: https://www.gsk.com/en-gb/media/press-releases/fda-approves-gsk-s-blenrep-belantamab-mafodotin-blmf-for-the-treatment-of-patients-with-relapsed-or-refractory-multiple-myeloma/ (accessed on 6 August 2020).
- O’Connor, B.P.; Raman, V.S.; Erickson, L.D.; Cook, W.J.; Weaver, L.K.; Ahonen, C.; Lin, L.-L.; Mantchev, G.T.; Bram, R.J.; Noelle, R.J. BCMA Is Essential for the Survival of Long-lived Bone Marrow Plasma Cells. J. Exp. Med. 2004, 199, 91–98. [Google Scholar] [CrossRef]
- Anti-BCMA Therapy Endorsed, despite Eye Toxicity. Cancer Discov. 2020, 10, OF2. [CrossRef] [PubMed]
- McMillan, A.; Warcel, D.; Popat, R. Antibody-drug conjugates for multiple myeloma. Expert Opin. Biol. Ther. 2020, 1–13. [Google Scholar] [CrossRef]
- Drugs and Lactation Database (LactMed) [Internet]. Bethesda (MD): National Library of Medicine (US). Belantamab Mafodotin. 2006. Available online: https://www.ncbi.nlm.nih.gov/books/NBK561136/ (accessed on 17 August 2020).
- Pereira, N.A.; Chan, K.F.; Lin, P.C.; Song, Z. The “less-is-more” in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. mAbs 2018, 10, 693–711. [Google Scholar] [CrossRef] [PubMed]
- Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Anderson, L.D.; Sutherland, H.J.; Yong, K.; et al. Targeting B-cell maturation antigen with GSK2857916 antibody–drug conjugate in relapsed or refractory multiple myeloma (BMA117159): A dose escalation and expansion phase 1 trial. Lancet Oncol. 2018, 19, 1641–1653. [Google Scholar] [CrossRef]
- Eaton, J.S.; Miller, P.E.; Mannis, M.J.; Murphy, C.J. Ocular Adverse Events Associated with Antibody–Drug Conjugates in Human Clinical Trials. J. Ocul. Pharmacol. Ther. 2015, 31, 589–604. [Google Scholar] [CrossRef]
- Popat, R.; Warcel, D.; O’Nions, J.; Cowley, A.; Smith, S.; Tucker, W.R.; Yong, K.; Degli Esposti, S. Characterization of response and corneal events with extended follow-up after belantamab mafodotin (GSK2857916) monotherapy for patients with relapsed multiple myeloma: A case series from the first-time-in-human clinical trial. Haematologica 2020, 105, e261–e263. [Google Scholar] [CrossRef] [PubMed]
- Popat, R.; Suvannasankha, A.; Kapetanakis, V.; Prawitz, T.; Sarri, G.; Hughes, R.; Wang, F.; Hogea, C.; Ferrante, S.A.; Willson, J. DREAMM-2: Assessing efficacy via indirect comparison of single-agent belantamab mafodotin versus selinexor plus dexamethasone combination in anti-CD38 exposed relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2020, 38, e20527. [Google Scholar] [CrossRef]
- Weisel, K.; Hopkins, T.G.; Fecteau, D.; Bao, W.; Quigley, C.; Jewell, R.C.; Nichols, M.; Opalinska, J. Dreamm-3: A Phase 3, Open-Label, Randomized Study to Evaluate the Efficacy and Safety of Belantamab Mafodotin (GSK2857916) Monotherapy Compared with Pomalidomide Plus Low-Dose Dexamethasone (Pom/Dex) in Participants with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2019, 134, 1900. [Google Scholar] [CrossRef]
- Nooka, A.K.; Stockerl-Goldstein, K.; Quach, H.; Forbes, A.; Mateos, M.-V.; Khot, A.; Tan, A.; Abonour, R.; Chopra, B.; Rogers, R.; et al. DREAMM-6: Safety and tolerability of belantamab mafodotin in combination with bortezomib/dexamethasone in relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2020, 38, 8502. [Google Scholar] [CrossRef]
- Longcor, J.; Oliver, K.; Friend, J.; Callandar, N. Interim evaluation of a targeted radiotherapeutic, CLR 131, in relapsed/refractory diffuse large B-cell lymphoma patients (R/R DLBCL). Ann. Oncol. 2019, 30, v435. [Google Scholar] [CrossRef]
- Musto, P.; La Rocca, F. Monoclonal antibodies in relapsed/refractory myeloma: Updated evidence from clinical trials, real-life studies, and meta-analyses. Expert Rev. Hematol. 2020, 13, 331–349. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Biswas, S.; Holkova, B.; Jackson, N.; Netherway, T.; Paul, S.; Ferron-Brady, G.; Yeakey, A.; Shelton, C.; De Oca, R.M.; et al. DREAMM-5 platform trial: Belantamab mafodotin in combination with novel agents in patients with relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2020, 38, TPS8552. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Terpos, E.; Janowski, W.; Quach, H.; West, S.; Williams, D.; Dettman, E.J.; Ferron-Brady, G.; Luptakova, K.; Gupta, I. DREAMM-9: Phase III study of belantamab mafodotin plus VRd versus VRd alone in transplant-ineligible newly diagnosed multiple myeloma (TI NDMM). J. Clin. Oncol. 2020, 38, TPS8556. [Google Scholar] [CrossRef]
Strategy | Name of the Drug | Mechanism of Action | References |
---|---|---|---|
Corticosteroids | Prednisone Dexamethasone | Anti-inflammatory and anti-proliferative effects on myeloma cells | [29] |
Conventional Chemotherapy | Cyclophosphamide Doxorubicin Melphalan Bendamustine | Alkylating agent Inhibits topoisomerase II; Intercalates into DNA Alkylating agent Alkylating agent | [30] [31] [32,33] [34,35] |
Immunomodulatory Drugs (IMiDs) | Thalidomide Lenalidomide Pomalidomide Avadomide (CC-122) * Iberdomide (CC-220) * | All: Inhibit production of TNF-a, IL-6, IL-8, VEGF; activate caspase-8 IL-6 inhibition; caspase-8 activation Inhibits Akt phosphorylation; co-stimulates CD28 Co-stimulates CD28 Cereblon E3 ligase modulator Cereblon E3 ligase modulator | [36] [36] [37,38] [39] [39] |
Proteasome Inhibitors (PIs) | Bortezomib Carfilzomib Ixazomib Oprozomib * Marizomib * Delanzomib * | Reversibly binds to CT-L/LMP7 subunit; binds C-L /LMP2 and T-L subunits with lower affinity Irreversibly binds to CT-L/LMP2 subunit; binds C-L/LMP2 and T-L subunits at high doses Binds to beta 5 subunit of 20s proteasome Irreversibly binds to CT-L /LMP7 subunit Binds CT-L/LMP7 and T-L subunits with high affinity; binds C-L/LMP2 subunit with lower affinity Reversibly inhibits CT-L/LMP7 and C-L /LMP2 subunits | [40] [41] [42] [43] [43] [43] |
Histone Deacetylase (HDAC) Inhibitors | Panobinostat Romidepsin Ricolinostat Citarinostat * | Pan-Histone Deacetylase Inhibitor Histone Deacetylase Inhibitor Histone Deacetylase 6 Inhibitor Histone Deacetylase 6 Inhibitor | [44] [45] [46,47] [48] |
Monoclonal Antibodies (mABs) | Daratumumab Elotuzumab Denosumab Siltuximab Felzartamab (MOR202) * Isatuximab TAK-079 * | Anti-CD38 Anti CS1/SLAMF7 Anti-RANKL Anti-IL6 Anti-CD38 Anti-CD38 Anti-CD38 | [49] [50,51] [52] [53] [53] [54] [55] |
Immunotherapies | Durvalumab Pembrolizumab Nivolumab Nelfinavir BiTE * CAR-T * | Anti-PDL1 Anti-PD1 Anti-PDL1 Protease Inhibitor Anti-BCMA Anti-BCMA | [56,57] [56,57] [56,57] [57] [58,59] [60] |
Novel Agents | Filanesib * Venetoclax * Selinexor | Kinesin Spindle Protein (EG5/KIF11) Inhibitor Selective Inhibitor of BCL-2 Inhibitor of XPO1-mediated nuclear export protein | [61,62] [63] [64] |
Antibody-Drug Conjugates (ADCs) | Belantamab mafodotin Lorvotuzumab mertansine * Milatuzumab doxorubicin * Indatuximab ravtansine * | Anti-BCMA Anti-CD56 Anti-CD74 Anti-CD138 | [65,66] [67] [68] [68] |
Author (Year) | Groups Studied and Intervention | Results and Findings | Conclusions |
---|---|---|---|
Trudel S. et al. (2018) [7,89] | DREAMM-1 trial: Patients with progressive and refractory multiple myeloma were treated with belamaf once every 3 weeks for a maximum of 16 treatments. Thirty-eight patients were included in the dose-escalation phase, with the dose-expansion phase consisting of thirty-five patients. | Dose escalations phase: Three patients receiving 3.4 mg/kg of drug therapy achieved an 100% response rate. Corneal events were the most commonly experienced adverse effect (AE) occurring in 53% of patients. Anemia was the most common grade III AE, and thrombocytopenia was the most frequently observed grade IV AE. A dosage of 3.4 mg/kg was designated as the recommended phase II dose (RP2D) based on data suggesting an acceptable efficacy and safety profile. Dose expansion phase: A 60% overall response rate (ORR) was achieved in those receiving 3.4 mg/kg of therapy with >40% of patients achieving a very good response rate (VGPR). Stringent complete response (sCR) was attained in one patient. | Data from this phase I study suggest belamaf is efficacious and well-tolerated in those with multiple myeloma refractory to multiple lines of therapy. |
Lonial S. et al. (2020) [65,66] | DREAMM-2 trial: Analyzed the clinical efficacy and safety of belamaf in two treatment cohorts at dosages 2.5 mg/kg (97 patients) and 3.4 mg/kg (99 patients). Both groups had received a median of 6 prior lines of therapy. | 2.5 mg/kg cohort: 31% of patients achieved an ORR with a VGPR observed in 18.5% of individuals. An estimated progression free survival (PFS) of 2.9 months was observed. 3.4 mg/kg cohort: An ORR was attained in 34% of patients in this treatment group. PFS was approximately 4.9 months. Median time to response was within 2 months in both treatment cohorts. Corneal events, anemia, and thrombocytopenia were the most commonly occurring AE with evidence of serious AEs observed in over 40% of patients at both dosages. Nearly half of patients with grade II ocular AEs had return to baseline corneal architecture following cessation of belamaf therapy. | Belamaf at dosages 2.5 mg/kg and 3.4 mg/kg proved to be clinically efficacious in patients that were refractory to a median of ≥6 lines of therapy. The 2.5 mg/kg cohort experienced similar results with reduced AE in comparison to those receiving higher dosage. Phase III studies are needed to evaluate efficacy in comparison to standard therapy modalities. |
Phase | Identifier | EN, n | Drug(s) | Indication | Prior Anti-myeloma Treatments, N of lines | Status |
---|---|---|---|---|---|---|
Phase III | NCT04162210, DREAMM-3 | 380 | Arm A: Belantamab mafodotin Arm B: Pomalidomide + Dexamethasone | RRMM | ≥2 | Recruiting |
Phase I/II | NCT03848845, DREAMM-4 | 40 | Belantamab mafodotin Pembrolizumab | RRMM | ≥3 | Active, Not Recruiting |
Phase I/II | NCT04126200, DREAMM-5 | 464 | Belantamab mafodotin GSK3174998 GSK3359609 Nirogacestat Dostarlimab | RRMM | ≥3 | Recruiting |
Phase I/II | NCT03544281, DREAMM-6 | 152 | Arm A: Belantamab mafodotin, Dexamethasone, Lenalidomide Arm B: Belantamab mafodotin, Dexamethasone, Bortezomib | RRMM | ≥1 | Recruiting |
Phase III | NCT04246047, DREAMM-7 | 478 | Arm A: Belantamab mafodotin, Bortezomib, Dexamethasone Arm B: Daratumumab, Bortezomib, Dexamethasone | RRMM | ≥1 | Recruiting |
Phase III | NCT04484623, DREAMM-8 | 450 | Arm A: Belantamab mafodotin, pomalidomide, dexamethasone Arm B: Bortezomib, pomalidomide, dexamethasone | RRMM | ≥1 | Recruiting |
Phase I | NCT04091126, DREAMM-9 | 144 | Belantamab mafodotin Bortezomib Lenalidomid Dexamethasone | NDMM TI | - | Recruiting |
Phase I | NCT04398745, DREAMM-12 | 36 | Belantamab mafodotin | RRMM | ≥2 | Recruiting |
Phase I | NCT04398680, DREAMM-13 | 24 | Belantamab mafodotin | RRMM | ≥2 | Not Yet Recruiting |
Phase III | NCT04549363 | 25 | Belantamab mafodotin | RRMM, prior or current treatment with belamaf | - | Not Yet Recruiting |
Phase I/II | NCT03715478, ALGONQUIN | 62 | Belantamab mafodotin Pomalidomide Dexamethasone | RRMM | ≥2 | Recruiting |
Phase I | NCT04177823 | 5 | Belantamab mafodotin | RRMM | ≥2 | Active, Not Recruiting |
Phase II | NCT04680468 | 47 | Belantamab mafodotin prior to melphalan + ASCT | RRMM | ≤2 | Not Yet Recruiting |
Phase II | NCT03525678 | 221 | Belantamab mafodotin (frozen liquid) Belantamab mafodotin (lyophilized powder) | RRMM | ≥3 | Active, Not Recruiting |
Phase I | NCT03828292 | 14 | Part 1: Belantamab mafodotin monotherapy Arm A: Belantamab mafodotin + Bortezomib/Dexamethasone Arm B: Belantamab mafodotin + Pomalidomide/Dexamethasone | RRMM | ≥2 | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lassiter, G.; Bergeron, C.; Guedry, R.; Cucarola, J.; Kaye, A.M.; Cornett, E.M.; Kaye, A.D.; Varrassi, G.; Viswanath, O.; Urits, I. Belantamab Mafodotin to Treat Multiple Myeloma: A Comprehensive Review of Disease, Drug Efficacy and Side Effects. Curr. Oncol. 2021, 28, 640-660. https://doi.org/10.3390/curroncol28010063
Lassiter G, Bergeron C, Guedry R, Cucarola J, Kaye AM, Cornett EM, Kaye AD, Varrassi G, Viswanath O, Urits I. Belantamab Mafodotin to Treat Multiple Myeloma: A Comprehensive Review of Disease, Drug Efficacy and Side Effects. Current Oncology. 2021; 28(1):640-660. https://doi.org/10.3390/curroncol28010063
Chicago/Turabian StyleLassiter, Grace, Cole Bergeron, Ryan Guedry, Julia Cucarola, Adam M. Kaye, Elyse M. Cornett, Alan D. Kaye, Giustino Varrassi, Omar Viswanath, and Ivan Urits. 2021. "Belantamab Mafodotin to Treat Multiple Myeloma: A Comprehensive Review of Disease, Drug Efficacy and Side Effects" Current Oncology 28, no. 1: 640-660. https://doi.org/10.3390/curroncol28010063
APA StyleLassiter, G., Bergeron, C., Guedry, R., Cucarola, J., Kaye, A. M., Cornett, E. M., Kaye, A. D., Varrassi, G., Viswanath, O., & Urits, I. (2021). Belantamab Mafodotin to Treat Multiple Myeloma: A Comprehensive Review of Disease, Drug Efficacy and Side Effects. Current Oncology, 28(1), 640-660. https://doi.org/10.3390/curroncol28010063