Serum Factors in Primary Podocytopathies
Abstract
1. Introduction
2. Non-Antibody Circulating Factors
2.1. Vascular Permeability Factor
2.2. Hemopexin
2.3. The FSGS Factor
2.4. Zinc Fingers and Homobox Transcription Factors and Angiopoietin-like 4
2.5. suPAR
2.6. Calcium/Calmodulin-Dependent Serine Protease (CASK)
2.7. Micro-RNAs
2.8. Soluble CD40 Ligand
3. Autoantibody Pathogenesis
3.1. Ubiquitin Carboxyterminal Hydrolase L1 Autoantibodies
3.2. Proteosome Subunit Alpha Type 1 Autoantibodies
3.3. Annexin A2 Autoantibodies
3.4. Anti-CD40 Autoantibodies
3.5. Anti-Nephrin Autoantibodies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- D’Agati, V.D.; Fogo, A.B.; Bruijn, J.A.; Jennette, J.C. Pathologic classification of focal segmental glomerulosclerosis: A working proposal. Am. J. Kidney Dis. 2004, 43, 368–382. [Google Scholar] [CrossRef] [PubMed]
- Vivarelli, M.; Massella, L.; Ruggiero, B.; Emma, F. Minimal change disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 332–345. Available online: https://journals.lww.com/cjasn/fulltext/2017/02000/minimal_change_disease.17.aspx (accessed on 1 July 2025). [CrossRef]
- Bagchi, S.; Agarwal, S.; Kalaivani, M.; Bhowmik, D.; Singh, G.; Mahajan, S.; Dinda, A. Primary FSGS in nephrotic adults: Clinical profile, response to immunosuppression and outcome. Nephron 2016, 132, 81–85. [Google Scholar] [CrossRef]
- Rosenberg, A.Z.; Kopp, J.B. Focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2017, 12, 502–517. [Google Scholar] [CrossRef]
- Uffing, A.; Pérez-Sáez, M.J.; Mazzali, M.; Manfro, R.C.; Bauer, A.C.; Drumond, F.d.S.; O’sHaughnessy, M.M.; Cheng, X.S.; Chin, K.-K.; Ventura, C.G.; et al. Recurrence of FSGS after kidney transplantation in adults. Clin. J. Am. Soc. Nephrol. 2020, 15, 247–256. [Google Scholar] [CrossRef]
- Maas, R.J.; Deegens, J.K.; Smeets, B.; Moeller, M.J.; Wetzels, J.F. Minimal change disease and idiopathic FSGS: Manifestations of the same disease. Nat. Rev. Nephrol. 2016, 12, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Shalhoub, R. Pathogenesis of lipoid nephrosis: A disorder of t-cell function. Lancet 1974, 304, 556–560. [Google Scholar] [CrossRef]
- Watts, A.J.; Keller, K.H.; Lerner, G.; Rosales, I.; Collins, A.B.; Sekulic, M.; Waikar, S.S.; Chandraker, A.; Riella, L.V.; Alexander, M.P.; et al. Discovery of autoantibodies targeting nephrin in minimal change disease supports a novel autoimmune etiology. J. Am. Soc. Nephrol. 2022, 33, 238–252. Available online: https://journals.lww.com/jasn/fulltext/2022/01000/discovery_of_autoantibodies_targeting_nephrin_in.23.aspx (accessed on 3 May 2025). [CrossRef]
- Shirai, Y.; Miura, K.; Ishizuka, K.; Ando, T.; Kanda, S.; Hashimoto, J.; Hamasaki, Y.; Hotta, K.; Ito, N.; Honda, K.; et al. A multi-institutional study found a possible role of anti-nephrin antibodies in post-transplant focal segmental glomerulosclerosis recurrence. Kidney Int. 2024, 105, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Chebotareva, N.; Vinogradov, A.; Birukova, Y.; Alentov, I.; Sergeeva, N.; Chemodanova, D.; Kononikhin, A.S.; Moiseev, S.V. A pilot study of anti-nephrin antibodies in podocytopaties among adults. Nephrology 2024, 29, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Watts, A.J.; Ichikawa, D.; Shibagaki, Y.; Suzuki, T.; Keller, K.H.; Weins, A.; Murakami, N. Clinical characteristics of nephrin autoantibody-positive minimal change disease in older adults. Kidney Int. Rep. 2024, 9, 2563–2566. [Google Scholar] [CrossRef] [PubMed]
- Batal, I.; Watts, A.J.; Gibier, J.-B.; Hamroun, A.; Top, I.; Provot, F.; Keller, K.; Ye, X.; Fernandez, H.E.; Leal, R.; et al. Pre-transplant anti-nephrin antibodies are specific predictors of recurrent diffuse podocytopathy in the kidney allograft. Kidney Int. 2024, 106, 749–752. [Google Scholar] [CrossRef]
- Hengel, F.E.; Dehde, S.; Lassé, M.; Zahner, G.; Seifert, L.; Schnarre, A.; Kretz, O.; Demir, F.; Pinnschmidt, H.O.; Grahammer, F.; et al. Autoantibodies targeting nephrin in podocytopathies. N. Engl. J. Med. 2024, 391, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, S.; Ye, Q.; Lin, W.; Liao, Y.; Xiong, Y.; Xu, J.; Gao, R.; Li, B.; Liu, L.; et al. Anti-nephrin antibody: A potential biomarker of minimal change disease. Clin. Kidney J. 2025, 18, sfaf012. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Huang, J.; Jiang, L.; Zhang, Y.-M.; Wang, F.; Wang, X.; Meng, L.-Q.; Cheng, X.-Y.; Liu, G.; Wang, S.-X.; et al. Anti-nephrin antibodies in adult chinese patients with minimal change disease and primary focal segmental glomerulosclerosis. Kidney Int. 2025, 108, 433–444. [Google Scholar] [CrossRef]
- Horinouchi, T.; Nagano, C.; Watts, A.J.B. Anti-nephrin antibodies in steroid-sensitive nephrotic syndrome in japanese children. Pediatr. Nephrol. 2024, 39, 337. [Google Scholar] [CrossRef]
- Angeletti, A.; Spinelli, S.; Kajana, X.; Caridi, G.; Cravedi, P.; Lugani, F.; Bigatti, C.; Ghiggeri, G.M.; Bruschi, M. Circulating anti-nephrin antibodies in idiopathic nephrotic syndrome: A large cohort study testing association with disease activity: TH-OR94. J. Am. Soc. Nephrol. 2024, 35, 10.1681. [Google Scholar] [CrossRef]
- Bianchi, G.; Morello, W.; Pesce, E.; Berrettini, A.; Montini, G.; Collino, F. Detection of antinephrin antibodies in childhood idiopathic nephrotic syndrome. Kidney Int. Rep. 2024, 10, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Hengel, F.E.; Dehde, S.; Yilmaz, A.; Bayazit, A.K.; Ozaltin, F.; Paripovic, D.; Emma, F.; Ronco, P.; Vivarelli, M.; Hogan, J.; et al. Anti-nephrin autoantibodies in steroid-resistant nephrotic syndrome may inform treatment strategy. Kidney Int. 2025, 107, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Raglianti, V.; Angelotti, M.L.; Cirillo, L.; Ravaglia, F.; Landini, S.; Palazzo, V.; Melica, M.E.; Antonelli, G.; Conte, C.; Buti, E.; et al. Anti-slit diaphragm antibodies on kidney biopsy identify pediatric patients with steroid-resistant nephrotic syndrome responsive to second-line immunosuppressants. Kidney Int. 2024, 106, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Lagrue, G.; Xheneumont, S.; Branellec, A.; Hirbec, G.; Weil, B. A vascular permeability factor elaborated from lymphocytes. I. demonstration in patients with nephrotic syndrome. Biomedicine 1975, 23, 37–40. [Google Scholar]
- Sobel, A.T.; Branellec, A.I.; Blanc, C.J.; Lagrue, G.A. Physicochemical characterization of a vascular permeability factor produced by con A-stimulated human lymphocytes. J. Immunol. 1977, 119, 1230–1234. [Google Scholar] [CrossRef]
- Tomizawa, S.; Maruyama, K.; Nagasawa, N.; Suzuki, S.; Kuroume, T. Studies of vascular permeability factor derived from T lymphocytes and inhibitory effect of plasma on its production in minimal change nephrotic syndrome. Nephron 1985, 41, 157–160. [Google Scholar] [CrossRef]
- Heslan, J.M.; Branellec, A.; Laurent, J.; Lagrue, G. The vascular permeability factor is a T lymphocyte product. Nephron 1986, 42, 187–188. [Google Scholar] [CrossRef]
- Bakker, W.W.; Luijk, W.H. Do circulating factors play a role in the pathogenesis of minimal change nephrotic syndrome? Pediatr. Nephrol. 1989, 3, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.K.; Klok, P.A.; Bakker, W.W. Minimal change-like glomerular alterations induced by a human plasma factor. Nephron 1996, 74, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.K.; Stulp, B.; Immenschuh, S.; Borghuis, T.; Baller, J.F.; Bakker, W.W. Is 100KF an isoform of hemopexin? immunochemical characterization of the vasoactive plasma factor 100KF. J. Am. Soc. Nephrol. 1999, 10, 1700–1708. Available online: https://journals.lww.com/jasn/fulltext/1999/08000/is_100kf_an_isoform_of_hemopexin__immunochemical.8.aspx (accessed on 1 June 2025). [CrossRef]
- Lennon, R.; Singh, A.; Welsh, G.I.; Coward, R.J.; Satchell, S.; Ni, L.; Mathieson, P.W.; Bakker, W.W.; Saleem, M.A. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J. Am. Soc. Nephrol. 2008, 19, 2140–2149. Available online: https://journals.lww.com/jasn/fulltext/2008/11000/hemopexin_induces_nephrin_dependent_reorganization.15.aspx (accessed on 1 May 2025). [CrossRef]
- Savin, V.J.; Sharma, R.; Lovell, H.B.; Welling, D.J. Measurement of albumin reflection coefficient with isolated rat glomeruli. J. Am. Soc. Nephrol. 1992, 3, 1260–1269. Available online: https://journals.lww.com/jasn/fulltext/1992/12000/measurement_of_albumin_reflection_coefficient_with.9.aspx (accessed on 15 April 2025). [CrossRef]
- Savin, V.J.; Sharma, R.; Sharma, M.; McCarthy, E.T.; Swan, S.K.; Ellis, E.; Lovell, H.; Warady, B.; Gunwar, S.; Chonko, A.M.; et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N. Engl. J. Med. 1996, 334, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Feld, S.M.; Figueroa, P.; Savin, V.; Nast, C.; Sharma, R.; Sharma, M.; Hirschberg, R.; Adler, S. Plasmapheresis in the treatment of steroid-resistant focal segmental glomerulosclerosis in native kidneys. Am. J. Kidney Dis. 1998, 32, 230–237. [Google Scholar] [CrossRef]
- Cattran, D.; Neogi, T.; Sharma, R.; McCarthy, E.T.; Savin, V.J.; For the North American Nephrotic, Syndrome Group. Serial estimates of serum permeability activity and clinical correlates in patients with native kidney focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 2003, 14, 448–453. Available online: https://journals.lww.com/jasn/fulltext/2003/02000/serial_estimates_of_serum_permeability_activity.21.aspx (accessed on 3 January 2025). [CrossRef] [PubMed]
- Sharma, M.; Sharma, R.; McCarthy, E.T.; Savin, V.J. “The FSGS factor”: Enrichment and: In vivo: Effect of activity from focal segmental glomerulosclerosis plasma. J. Am. Soc. Nephrol. 1999, 10, 552–561. Available online: https://journals.lww.com/jasn/fulltext/1999/03000/_the_fsgs_factor___enrichment_and__in_vivo__effect.14.aspx (accessed on 30 January 2025). [CrossRef] [PubMed]
- Sharma, M.; Sharma, R.; McCarthy, E.T.; Savin, V.J. The focal segmental glomerulosclerosis permeability factor: Biochemical characteristics and biological effects. Exp. Biol. Med. 2004, 229, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Sharma, M.; Ge, X.; McCarthy, E.T.; Savin, V.J. Cyclosporine Protects Glomeruli From Fsgs Factor Via an Increase in Glomerular cAMP1,2. Transplantation 1996, 62, 1916–1920. Available online: https://journals.lww.com/transplantjournal/fulltext/1996/12270/cyclosporine_protects_glomeruli_from_fsgs_factor.41.aspx. (accessed on 30 January 2025). [CrossRef] [PubMed]
- Sharma, R.; Sharma, M.; McCarthy, E.T.; Ge, X.L.; Savin, V.J. Components of normal serum block the focal segmental glomerulosclerosis factor activity in vitro. Kidney Int. 2000, 58, 1973–1979. [Google Scholar] [CrossRef]
- Candiano, G.; Musante, L.; Carraro, M.; Faccini, L.; Campanacci, L.; Zennaro, C.; Artero, M.; Ginevri, F.; Perfumo, F.; Gusmano, R.; et al. Apolipoproteins prevent glomerular albumin permeability induced in vitro by serum from patients with focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 2001, 12, 143–150. [Google Scholar] [CrossRef]
- McCarthy, E.T.; Sharma, M. Indomethacin protects permeability barrier from focal segmental glomerulosclerosis serum. Kidney Int. 2002, 61, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Li, J.Z.; Sharma, R.; Artero, M.; Ge, X.; McCarthy, E.T.; Wang, H.Y.; Savin, V. Inhibitory effect of tripterygium wilfordii multiglycoside on increased glomerular albumin permeability in vitro. Nephrol. Dial. Transplant. 1997, 12, 2064–2068. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Zhou, J.; Gauchat, J.-F.; Sharma, R.; McCarthy, E.T.; Srivastava, T.; Savin, V.J. Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier. Transl. Res. 2015, 166, 384–398. [Google Scholar] [CrossRef]
- Macé, C.; Del Nogal Avila, M.; Marshall, C.B.; Kharlyngdoh, J.; Das, R.; Molina-Jijon, E.; Blazquez, H.D.; Shastry, S.; Soria, E.; Wetzels, J.; et al. The zinc fingers and homeoboxes 2 protein ZHX2 and its interacting proteins regulate upstream pathways in podocyte diseases. Kidney Int. 2020, 97, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Chugh, S.S.; Clement, L.C. “Idiopathic” minimal change nephrotic syndrome: A podocyte mystery nears the end. Am. J. Physiol. Ren. Physiol. 2023, 325, F685–F694. [Google Scholar] [CrossRef]
- Avila, M.D.N.; Das, R.; Kharlyngdoh, J.; Molina-Jijon, E.; Blazquez, H.D.; Gambut, S.; Crowley, M.; Crossman, D.K.; Gbadagesin, R.A.; Chugh, S.S.; et al. Cytokine storm-based mechanisms for extrapulmonary manifestations of SARS-CoV-2 infection. JCI Insight 2023, 8, e166012. [Google Scholar] [CrossRef] [PubMed]
- Clement, L.C.; Macé, C.; Avila-Casado, C.; Joles, J.A.; Kersten, S.; Chugh, S.S. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat. Med. 2014, 20, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Clement, L.C.; Avila-Casado, C.; Macé, C.; Soria, E.; Bakker, W.W.; Kersten, S.; Chugh, S.S. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat. Med. 2011, 17, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Tan, M.J.; Huang, R.; Zhu, P.; Tan, M.J.; Huang, R.-L.; Tan, C.K.; Chong, H.C.; Pal, M.; Lam, C.R.I.; et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell 2011, 19, 401–415. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Deng, H.; Liu, M.; Lin, X.; Zhang, M.; Li, G.; Yue, S.; Gao, X. ANGPTL4 promotes nephrotic syndrome by downregulating podocyte expression of ACTN4 and podocin. Biochem. Biophys. Res. Commun. 2023, 639, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Cara-Fuentes, G.; Segarra, A.; Silva-Sanchez, C.; Wang, H.; Lanaspa, M.A.; Johnson, R.J.; Garin, E.H. Angiopoietin-like-4 and minimal change disease. PLoS ONE 2017, 12, e0176198. [Google Scholar] [CrossRef]
- Smith, H.W.; Marshall, C.J. Regulation of cell signalling by uPAR. Nat. Rev. Mol. Cell Biol. 2010, 11, 23–36. [Google Scholar] [CrossRef]
- Belvederi, F.; Leggeri, S.; Urbani, A.; Baroni, S. suPAR as a biomarker of support in different clinical settings. Clin. Chim. Acta 2025, 573, 120303. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Spear, R.; Hahm, E.; Reiser, J. suPAR, a circulating kidney disease factor. Front. Med. 2021, 8, 745838. Available online: https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2021.745838 (accessed on 3 February 2025). [CrossRef]
- Almroth, G.; Lönn, J.; Uhlin, F.; Nayeri, F.; Brudin, L.; Andersson, B.; Hahn-Zoric, M. Fibroblast growth factor 23, hepatocyte growth factor, Interleukin-6, High-Sensitivity C-Reactive protein and soluble urokinase plasminogen activator receptor inflammation markers in chronic haemodialysis patients? Scand. J. Immunol. 2013, 78, 285–290. [Google Scholar] [CrossRef]
- Hayek, S.S.; Sever, S.; Ko, Y.; Ko, Y.-A.; Trachtman, H.; Awad, M.; Wadhwani, S.; Altintas, M.M.; Wei, C.; Hotton, A.L.; et al. Soluble urokinase receptor and chronic kidney disease. N. Engl. J. Med. 2015, 373, 1916–1925. [Google Scholar] [CrossRef] [PubMed]
- Theilade, S.; Lyngbaek, S.; Hansen, T.W.; Eugen-Olsen, J.; Fenger, M.; Rossing, P.; Jeppesen, J.L. Soluble urokinase plasminogen activator receptor levels are elevated and associated with complications in patients with type 1 diabetes. J. Intern. Med. 2015, 277, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Möller, C.C.; Altintas, M.M.; Li, J.; Schwarz, K.; Zacchigna, S.; Xie, L.; Henger, A.; Schmid, H.; Rastaldi, M.P.; et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med. 2008, 14, 55–63. [Google Scholar] [CrossRef]
- Wei, C.; El Hindi, S.; Li, J.; Fornoni, A.; Goes, N.; Sageshima, J.; Maiguel, D.; Karumanchi, S.A.; Yap, H.-K.; Saleem, M.; et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 2011, 17, 952–960. [Google Scholar] [CrossRef]
- Wei, C.; Trachtman, H.; Li, J.; Dong, C.; Friedman, A.L.; Gassman, J.J.; McMahan, J.L.; Radeva, M.; Heil, K.M.; Trautmann, A.; et al. Circulating suPAR in two cohorts of primary FSGS. J. Am. Soc. Nephrol. 2012, 23, 2051–2059. Available online: https://journals.lww.com/jasn/fulltext/2012/12000/circulating_supar_in_two_cohorts_of_primary_fsgs.19.aspx (accessed on 3 February 2025). [CrossRef] [PubMed]
- Hahm, E.; Wei, C.; Fernandez, I.; Li, J.; Tardi, N.J.; Tracy, M.; Wadhwani, S.; Cao, Y.; Peev, V.; Zloza, A.; et al. Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat. Med. 2017, 23, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Alfano, M.; Cinque, P.; Giusti, G.; Proietti, S.; Nebuloni, M.; Danese, S.; D’Alessio, S.; Genua, M.; Portale, F.; Lo Porto, M.; et al. Full-length soluble urokinase plasminogen activator receptor down-modulates nephrin expression in podocytes. Sci. Rep. 2015, 5, 13647. [Google Scholar] [CrossRef]
- Cathelin, D.; Placier, S.; Ploug, M.; Verpont, M.-C.; Vandermeersch, S.; Luque, Y.; Hertig, A.; Rondeau, E.; Mesnard, L. Administration of recombinant soluble urokinase receptor per se is not sufficient to induce podocyte alterations and proteinuria in mice. J. Am. Soc. Nephrol. 2014, 25, 1662–1668. Available online: https://journals.lww.com/jasn/fulltext/2014/08000/administration_of_recombinant_soluble_urokinase.11.aspx (accessed on 5 February 2025). [CrossRef]
- Spinale, J.M.; Mariani, L.H.; Kapoor, S.; Zhang, J.; Weyant, R.; Song, P.X.; Wong, H.N.; Troost, J.P.; Gadegbeku, C.A.; Gipson, D.S.; et al. A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease. Kidney Int. 2015, 87, 564–574. [Google Scholar] [CrossRef]
- Bock, M.E.; Price, H.E.; Gallon, L.; Langman, C.B. Serum soluble urokinase-type plasminogen activator receptor levels and idiopathic FSGS in children: A single-center report. Clin. J. Am. Soc. Nephrol. 2013, 8, 1304–1311. [Google Scholar] [CrossRef]
- Huang, J.; Liu, G.; Zhang, Y.-M.; Cui, Z.; Wang, F.; Liu, X.-J.; Chu, R.; Chen, Y.; Zhao, M.-H. Plasma soluble urokinase receptor levels are increased but do not distinguish primary from secondary focal segmental glomerulosclerosis. Kidney Int. 2013, 84, 366–372. [Google Scholar] [CrossRef]
- Meijers, B.; Maas, R.J.H.; Sprangers, B.; Claes, K.; Poesen, R.; Bammens, B.; Naesens, M.; Deegens, J.K.; Dietrich, R.; Storr, M.; et al. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int. 2014, 85, 636–640. [Google Scholar] [CrossRef]
- Sinha, A.; Bajpai, J.; Saini, S.; Bhatia, D.; Gupta, A.; Puraswani, M.; Dinda, A.K.; Agarwal, S.K.; Sopory, S.; Pandey, R.M.; et al. Serum-soluble urokinase receptor levels do not distinguish focal segmental glomerulosclerosis from other causes of nephrotic syndrome in children. Kidney Int. 2014, 85, 649–658. [Google Scholar] [CrossRef]
- Yoo, T.; Pedigo, C.E.; Guzman, J.; Correa-Medina, M.; Wei, C.; Villarreal, R.; Mitrofanova, A.; Leclercq, F.; Faul, C.; Li, J.; et al. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J. Am. Soc. Nephrol. 2015, 26, 133–147. [Google Scholar] [CrossRef]
- Fornoni, A.; Sageshima, J.; Wei, C.; Merscher-Gomez, S.; Aguillon-Prada, R.; Jauregui, A.N.; Li, J.; Mattiazzi, A.; Ciancio, G.; Chen, L.; et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci. Transl. Med. 2011, 3, 85ra46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, C.; Han, Y.; Li, D.; Huang, Y.; Shi, K.; Xia, S.; Wei, J.; Liu, H.; Sun, L.; et al. The predictive value of suPAR for glomerular segmental sclerosis lesions in renal pathology. Ren. Fail. 2025, 47, 2498628. [Google Scholar] [CrossRef] [PubMed]
- Beaudreuil, S.; Zhang, X.; Herr, F.; Harper, F.; Candelier, J.J.; Fan, Y.; Yeter, H.; Dudreuilh, C.; Lecru, L.; Vazquez, A.; et al. Circulating CASK is associated with recurrent focal segmental glomerulosclerosis after transplantation. PLoS ONE 2019, 14, e0219353. [Google Scholar] [CrossRef] [PubMed]
- Bharati, J.; Kumar, M.; Kumar, N.; Malhotra, A.; Singhal, P.C. MicroRNA193a: An emerging mediator of glomerular diseases. Biomolecules 2023, 13, 1743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, C.; Chen, H.; Li, L.; Tu, Y.; Liu, C.; Shi, S.; Zen, K.; Liu, Z. Evaluation of microRNAs miR-196a, miR-30a-5P, and miR-490 as biomarkers of disease activity among patients with FSGS. Clin. J. Am. Soc. Nephrol. 2014, 9, 1545–1552. [Google Scholar] [CrossRef]
- Gebeshuber, C.A.; Kornauth, C.; Dong, L.; Sierig, R.; Seibler, J.; Reiss, M.; Tauber, S.; Bilban, M.; Wang, S.; Kain, R.; et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 2013, 19, 481–487. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wang, Z.; Zhou, J.; Zhang, Y. Higher urine exosomal miR-193a is associated with a higher probability of primary focal segmental glomerulosclerosis and an increased risk of poor prognosis among children with nephrotic syndrome. Front. Cell Dev. Biol. 2021, 9, 727370. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Chen, H.-M.; Liu, C.; Wu, J.; Shi, S.; Liu, Z.-H. Plasma microRNA-186 and proteinuria in focal segmental glomerulosclerosis. Am. J. Kidney Dis. 2015, 65, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilzadeh Aghjeh, M.; Suer, I.; Dirim, A.B.; Kaya, M.; Ozturk, S. Advances in focal segmental glomerulosclerosis research: Genetic causes to non-coding RNAs. Mol. Biol. Rep. 2025, 52, 384. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, S.; Ding, W.; Zhu, C.; Jiang, G.; Li, H. Recent advances in miRNA biomarkers for diagnosis and prognosis of focal segmental glomerulosclerosis. Kidney Dis. 2025, 11, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Doublier, S.; Zennaro, C.; Musante, L.; Spatola, T.; Candiano, G.; Bruschi, M.; Besso, L.; Cedrino, M.; Carraro, M.; Ghiggeri, G.M.; et al. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS. PLoS ONE 2017, 12, e0188045. [Google Scholar] [CrossRef] [PubMed]
- Rigothier, C.; Daculsi, R.; Lepreux, S.; Auguste, P.; Villeneuve, J.; Dewitte, A.; Doudnikoff, E.; Saleem, M.; Bourget, C.; Combe, C.; et al. CD154 induces matrix metalloproteinase-9 secretion in human podocytes. J. Cell Biochem. 2016, 117, 2737–2747. [Google Scholar] [CrossRef] [PubMed]
- Matthies, K.M.G.; Newman, J.L.; Hodzic, A.; Wingett, D.G. Differential regulation of soluble and membrane CD40L proteins in T cells. Cell Immunol. 2006, 241, 47–58. [Google Scholar] [CrossRef]
- Kuo, H.; Huang, C.; Lin, T.; Lin, C. IL-17 and CD40 ligand synergistically stimulate the chronicity of diabetic nephropathy. Nephrol. Dial. Transplant. 2018, 33, 248–256. [Google Scholar] [CrossRef]
- Shirato, I.; Asanuma, K.; Takeda, Y.; Hayashi, K.; Tomino, Y. Protein gene product 9.5 is selectively localized in parietal epithelial cells of bowman’s capsule in the rat kidney. J. Am. Soc. Nephrol. 2000, 11, 2381–2386. [Google Scholar] [CrossRef] [PubMed]
- Diomedi-Camassei, F.; Ravà, L.; Lerut, E.; Callea, F.; Van Damme, B. Protein gene product 9.5 and ubiquitin are expressed in metabolically active epithelial cells of normal and pathologic human kidney. Nephrol. Dial. Transplant. 2005, 20, 2714–2719. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Wu, H.; Wang, T.; Gan, H.; Zhang, X.; Liu, Y.; Li, R.; Zhao, Z.; Chen, Q.; et al. UCH-L1 expression of podocytes in diseased glomeruli and in vitro. J. Pathol. 2009, 217, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Jamin, A.; Berthelot, L.; Couderc, A.; Chemouny, J.M.; Boedec, E.; Dehoux, L.; Abbad, L.; Dossier, C.; Daugas, E.; Monteiro, R.C.; et al. Autoantibodies against podocytic UCHL1 are associated with idiopathic nephrotic syndrome relapses and induce proteinuria in mice. J. Autoimmun. 2018, 89, 149–161. [Google Scholar] [CrossRef]
- Chebotareva, N.; Cao, V.; Vinogradov, A.; Alentov, I.; Sergeeva, N.; Kononikhin, A.; Moiseev, S. Preliminary study of anti-CD40 and ubiquitin proteasome antibodies in primary podocytopaties. Front. Med. 2023, 10, 1189017. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Zhou, C.; Wang, D.; Fu, H.; Wang, J.; Mao, J. Seven novel podocyte autoantibodies were identified to diagnosis a new disease subgroup-autoimmune podocytopathies. Clin. Immunol. 2021, 232, 108869. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, C.; Wang, D.; Meng, H.; Zhu, S.; Zhang, J.; Mao, J.; Ye, Q. Autoantibodies targeting proteasome subunit alpha type 1 in autoimmune podocytopathies. J. Am. Soc. Nephrol. 2025, 36, 406–419. Available online: https://journals.lww.com/jasn/fulltext/2025/03000/autoantibodies_targeting_proteasome_subunit_alpha.11.aspx (accessed on 1 July 2025). [CrossRef] [PubMed]
- Ye, Q.; Zhang, Y.; Zhuang, J.; Bi, Y.; Xu, H.; Shen, Q.; Liu, J.; Fu, H.; Wang, J.; Feng, C.; et al. The important roles and molecular mechanisms of annexin A(2) autoantibody in children with nephrotic syndrome. Ann. Transl. Med. 2021, 9, 1452–3988. [Google Scholar] [CrossRef]
- Delville, M.; Sigdel, T.K.; Wei, C.; Li, J.; Hsieh, S.; Fornoni, A.; Burke, G.W.; Bruneval, P.; Naesens, M.; Jackson, A.; et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci. Transl. Med. 2014, 6, 256ra136. [Google Scholar] [CrossRef]
- Hattori, M.; Shirai, Y.; Kanda, S.; Ishizuka, K.; Kaneko, N.; Ando, T.; Eguchi, M.; Miura, K. Circulating nephrin autoantibodies and posttransplant recurrence of primary focal segmental glomerulosclerosis. Am. J. Transplant. 2022, 22, 2478–2480. [Google Scholar] [CrossRef] [PubMed]
- Raglianti, V.; Angelotti, M.L.; De Chiara, L.; Allinovi, M.; Cirillo, L.; Manonelles, A.; Cruzado, J.M.; Melica, M.E.; Antonelli, G.; Conte, C.; et al. Anti-slit antibodies against podocin and Kirrel1 in pediatric and adult podocytopathies. J. Am. Soc. Nephrol. 2025, 36, 702–705. Available online: https://journals.lww.com/jasn/fulltext/2025/04000/anti_slit_antibodies_against_podocin_and_kirrel1.17.aspx (accessed on 1 July 2025). [CrossRef]
- Berre, L.; Godfrin, Y.; Lafond-Puyet, L.; Perretto, S.; Le Carrer, D.; Bouhours, J.-F.; Soulillou, J.-P.; Dantal, J. Effect of plasma fractions from patients with focal and segmental glomerulosclerosis on rat proteinuria. Kidney Int. 2000, 58, 2502–2511. [Google Scholar] [CrossRef] [PubMed]
- Raina, R.; Jothi, S.; Haffner, D.; Somers, M.; Filler, G.; Vasistha, P.; Chakraborty, R.; Shapiro, R.; Randhawa, P.S.; Parekh, R.; et al. Post-transplant recurrence of focal segmental glomerular sclerosis: Consensus statements. Kidney Int. 2024, 105, 450–463. [Google Scholar] [CrossRef] [PubMed]
- Gohh, R.Y.; Yango, A.F.; Morrissey, P.E.; Monaco, A.P.; Gautam, A.; Sharma, M.; McCarthy, E.T.; Savin, V.J. Preemptive plasmapheresis and recurrence of FSGS in High-Risk renal transplant recipients. Am. J. Transplant. 2005, 5, 2907–2912. [Google Scholar] [CrossRef] [PubMed]
- Shuster, S.; Ankawi, G.; Licht, C.; Reiser, J.; Wang, X.; Wei, C.; Chitayat, D.; Hladunewich, M. Fetal renal echogenicity associated with maternal focal segmental glomerulosclerosis: The effect of transplacental transmission of permeability factor suPAR. J. Clin. Med. 2018, 7, 324. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.; Wilson, E.; Moorhead, J.F.; Amlot, P.; Abdulla, A.; Fernando, O.N.; Dorman, A.; Sweny, P. Minimal-change glomerular nephritis: Normal kidneys in an abnormal environment? Transplantation 1994, 58, 849–852. [Google Scholar]
- Rea, R.; Smith, C.; Sandhu, K.; Kwan, J.; Tomson, C. Successful transplant of a kidney with focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 2001, 16, 416–417. [Google Scholar] [CrossRef] [PubMed]
- Gallon, L.; Leventhal, J.; Skaro, A.; Kanwar, Y.; Alvarado, A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N. Engl. J. Med. 2012, 366, 1648–1649. [Google Scholar] [CrossRef]
- Xing, C.Y.; Saleem, M.A.; Coward, R.J.; Ni, L.; Witherden, I.R.; Mathieson, P.W. Direct effects of dexamethasone on human podocytes. Kidney Int. 2006, 70, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Faul, C.; Donnelly, M.; Merscher-Gomez, S.; Chang, Y.H.; Franz, S.; Delfgaauw, J.; Chang, J.-M.; Choi, H.Y.; Campbell, K.N.; Kim, K.; et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 2008, 14, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Artomov, M.; Brähler, S.; Stander, M.C.; Shamsan, G.; Sampson, M.G.; White, J.M.; Kretzler, M.; Miner, J.H.; Jain, S.; et al. A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis. J. Clin. Investig. 2016, 126, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Kopp, J.B.; Nelson, G.W.; Sampath, K.; Johnson, R.C.; Genovese, G.; An, P.; Friedman, D.; Briggs, W.; Dart, R.; Korbet, S.; et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 2011, 22, 2129–2137. [Google Scholar] [CrossRef] [PubMed]
- Gbadegesin Rasheed, A.; Ifeoma, U.; Samuel, A.; Yemi, R.; Timothy, O.; Charlotte, O.; Ademola, A.D.; Adanze, A.; Winkler, C.A.; David, B.; et al. APOL1 bi- and monoallelic variants and chronic kidney disease in west africans. N. Engl. J. Med. 2025, 392, 228–238. [Google Scholar] [CrossRef]
- Egbuna, O.; Zimmerman, B.; Manos, G.; Fortier, A.; Chirieac, M.C.; Dakin, L.A.; Friedman, D.J.; Bramham, K.; Campbell, K.; Knebelmann, B.; et al. Inaxaplin for proteinuric kidney disease in persons with two APOL1 variants. N. Engl. J. Med. 2023, 388, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Hayek, S.S.; Koh, K.H.; Grams, M.E.; Wei, C.; Ko, Y.-A.; Li, J.; Samelko, B.; Lee, H.; Dande, R.R.; Lee, H.W.; et al. A tripartite complex of suPAR, APOL1 risk variants and α(v)β(3) integrin on podocytes mediates chronic kidney disease. Nat. Med. 2017, 23, 945–953. [Google Scholar] [CrossRef]
- Topham, P.S.; Kawachi, H.; Haydar, S.A.; Chugh, S.; Addona, T.A.; Charron, K.B.; Holzman, L.B.; Shia, M.; Shimizu, F.; Salant, D.J. Nephritogenic mAb 5-1-6 is directed at the extracellular domain of rat nephrin. J. Clin. Investig. 1999, 104, 1559–1566. [Google Scholar] [CrossRef]
- Holmberg, C.; Jalanko, H. Congenital nephrotic syndrome and recurrence of proteinuria after renal transplantation. Pediatr. Nephrol. 2014, 29, 2309–2317. [Google Scholar] [CrossRef]
- Patrakka, J.; Ruotsalainen, V.; Reponen, P.; Qvist, E.; Laine, J.; Holmberg, C.; Tryggvason, K.; Jalanko, H. Recurrence of nephrotic syndrome in kidney grafts of patients with congenital nephrotic syndrome of the finnish type: Role of nephrin. Transplantation 2002, 73, 394–403. [Google Scholar] [CrossRef]
- Coward, R.J.M.; Foster, R.R.; Patton, D.; Ni, L.; Lennon, R.; Bates, D.O.; Harper, S.J.; Mathieson, P.W.; Saleem, M.A. Nephrotic plasma alters slit diaphragm-dependent signaling and translocates nephrin, podocin, and CD2 associated protein in cultured human podocytes. J. Am. Soc. Nephrol. 2005, 16, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Doublier, S.; Ruotsalainen, V.; Salvidio, G.; Lupia, E.; Biancone, L.; Conaldi, P.G.; Reponen, P.; Tryggvason, K.; Camussi, G. Nephrin redistribution on podocytes is a potential mechanism for proteinuria in patients with primary acquired nephrotic syndrome. Am. J. Pathol. 2001, 158, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Wernerson, A.; Dunér, F.; Pettersson, E.; Widholm, S.M.; Berg, U.; Ruotsalainen, V.; Tryggvason, K.; Hultenby, K.; Söderberg, M. Altered ultrastructural distribution of nephrin in minimal change nephrotic syndrome. Nephrol. Dial. Transplant. 2003, 18, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Hengel, F.E.; Dehde, S.; Kretz, O.; Engesser, J.; Zimmermann, T.; Huber, T.B.; Tomas, N.M. Passive transfer of patient-derived anti-nephrin autoantibodies causes a podocytopathy with minimal change lesions. J. Clin. Investig. 2025, 135, e186769. [Google Scholar] [CrossRef]
- Liu, P.; Liu, S.; Dalal, V.; Lane, J.; Cravedi, P.; Campbell, K.; Angeletti, A.; Xie, X.; Gessaroli, E.; Forte, E.; et al. Evaluation of methodologies in anti-nephrin autoantibody detection. bioRxiv 2024. [Google Scholar] [CrossRef]
- Hengel, F.E.; Huber, T.B.; Tomas, N.M. Potential and pitfalls of measuring circulating anti-nephrin autoantibodies in glomerular diseases. Clin. Kidney J. 2025, 18, sfaf100. [Google Scholar] [CrossRef]
- Mirioglu, S.; Bruchfeld, A.; Caravaca-Fontan, F.; Floege, J.; Frangou, E.; Moran, S.M.; Stevens, K.I.; Teng, Y.K.O.; Steiger, S.; Kronbichler, A.; et al. Quo vadis standardization of anti-nephrin antibody detection? Glomerular Dis. 2025, 5, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Solanki, A.K.; Arif, E.; Wolf, B.J.; Janech, M.G.; Budisavljevic, M.N.; Kwon, S.-H.; Nihalani, D. Development of a novel cell-based assay to diagnose recurrent focal segmental glomerulosclerosis patients. Kidney Int. 2019, 95, 708–716. [Google Scholar] [CrossRef]
- Braanker, D.J.; Maas, R.J.; Deegens, J.K.; Yanginlar, C.; Wetzels, J.F.M.; van der Vlag, J.; Nijenhuis, T. Novel in vitro assays to detect circulating permeability factor(s) in idiopathic focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 2021, 36, 247–256. [Google Scholar] [CrossRef]
- Veissi, S.T.; Smeets, B.; van Wijk, J.A.E.; Classens, R.; van der Velden, T.J.A.M.; Jeronimus-Klaasen, A.; Veltkamp, F.; Mak–Nienhuis, E.M.; Morello, W.; Montini, G.; et al. Circulating permeability factors in focal segmental glomerulosclerosis: In Vitro detection. Kidney Int. Rep. 2022, 7, 2691–2703. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Minocha, E.; Koss, K.M.; Naved, B.A.; Safar-Boueri, L.; Wertheim, J.A.; Gallon, L. A kidney organoid-based readout to assess disease activity in primary and recurrent focal segmental glomerulosclerosis. Kidney Int. 2025, 107, 888–902. [Google Scholar] [CrossRef] [PubMed]
- Rovin, B.H.; Adler, S.G.; Barratt, J.; Bridoux, F.; Burdge, K.A.; Chan, T.M.; Cook, H.T.; Fervenza, F.C.; Gibson, K.L.; Glassock, R.J.; et al. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef]
- Chan, E.Y.; Yu, E.L.M.; Angeletti, A.; Arslan, Z.; Basu, B.; Boyer, O.; Chan, C.-Y.; Colucci, M.; Dorval, G.; Dossier, C.; et al. Long-term efficacy and safety of repeated rituximab to maintain remission in idiopathic childhood nephrotic syndrome: An international study. J. Am. Soc. Nephrol. 2022, 33, 1193–1207. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Pan, Y.; Zhang, Y.-M.; Wang, X.; Meng, L.-Q.; Cheng, X.-Y.; Liu, G.; Zhao, M.-H.; Cui, Z. The efficacy and safety of rituximab in adult patients with steroid-dependent or frequent relapsing nephrotic syndrome: A retrospective study. Int. Immunopharmacol. 2025, 158, 114795. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Lin, Y.; Yu, B.; Wang, Y.; Pan, H.; Wang, H.; Lou, X.; Lang, X.; Zhang, Q.; Jin, L.; et al. Efficacy of rituximab for minimal change disease and focal segmental glomerulosclerosis with frequently relapsing or steroid-dependent nephrotic syndrome in adults: A chinese multicenter retrospective study. Am. J. Nephrol. 2024, 55, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Gauckler, P.; Matyjek, A.; Kapsia, S.; Marinaki, S.; Quintana, L.F.; Diaz, M.M.; King, C.; Griffin, S.; Ramachandran, R.; Odler, B.; et al. Long-term outcomes of rituximab-treated adult patients with podocytopathies. J. Am. Soc. Nephrol. 2025, 36, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Lanaret, C.; Anglicheau, D.; Audard, V.; Büchler, M.; Caillard, S.; Couzi, L.; Malvezzi, P.; Mesnard, L.; Bertrand, D.; Martinez, F.; et al. Rituximab for recurrence of primary focal segmental glomerulosclerosis after kidney transplantation: Results of a nationwide study. Am. J. Transplant. 2021, 21, 3021–3033. [Google Scholar] [CrossRef] [PubMed]
Vascular permeability factor Hemopexin Cardiotropin-like cytokine factor-1 Zinc fingers and homobox transcription factors/angiopoietin-like 4 suPAR Calcium/calmodulin-dependent serine protease Micro-RNAs Soluble CD40L Antibodies (see Table 2) |
Ubiquitin carboxyterminal hydrolase L1 Proteosome subunit alpha type 1 Annexin A2 CD40 Nephrin (see Table 3.) Podocin Kirrel1 |
Study/Year | Phenotype/Number | Population | Methodology | Results | Comments |
---|---|---|---|---|---|
Watts/2022 [8] | MCD 62 | Ped/adults | IP followed by signal-enhanced in-house ELISA with human nephrin (aa 1–1059) in HEK293 cells | 18/62 (29%) | Shorter relapse-free period when positive Antibodies reduced/absent with remission Punctate IgG colocalizing with nephrin by confocal microscopy and SIM |
Shirai/2024 [9] | FSGS 22 All Transplanted 8 genetic, 14 presumed pFSGS FSGS 8/14 presumed pFSGS recurred | Ped | Signal-enhanced in-house ELISA with commercial nephrin (aa 23–1029) in mouse myeloma cells | All 8 recurrent had elevated levels pre-Tx or at recurrence (100%) Genetic FSGS and non-recurrent FSGS levels like controls | Antibodies decreased with remission Punctate IgG colocalizing with nephrin by confocal microscopy Increased nephrin phosphorylation with increased Src homology and collagen homology A expression |
Chebotareva/2024 [10] | FSGS 41 (32 pFSGS) MCD 11 MN 25 | Adults | Commercial ELISA human nephrin (aa 23–92) | 22/32 (68%) pFSGS 10/11 (91%) MCD 5/9 (56%) sFSGS 10/25 (40%) MN | 3 PLA2R-positive MN patients also anti-nephrin positive AUC 0.71 at cutoff 41.6 ng/mL for primary podocytopathy No difference in remission rate based on anti-nephrin |
Fujita/2024 [11] | MCD 7 | Adult | Modified version of ELISA Watts et al. Specific nephrin N/A | 5/7 (71%) | Punctate IgG colocalized with nephrin on biopsy of all 7 positive cases |
Batal/2024 [12] | FSGS 30 MCD 7 SRNS 2 All transplanted | Adult | In-house ELISA with human nephrin (aa 1–1059) in HEK293 cells | 8/21 (38%) with recurrence 0/17 without recurrence | 100% specificity Shorter time to recurrence if positive 12/16 (75%) recurrent had punctate nephrin staining versus 1/8 (13%) nonrecurrent IgG/nephrin colocalized in 5/16 (31%) Punctate IgG and punctate nephrin non-colocalizing in 1/16 Punctate nephrin, negative IgG in 6/16 Negative IgG normal linear nephrin in 4/16 |
Hengel/2024 [13] | FSGS 74 MCD 105 INS * 182 | Ped/adults | IP followed by ELISA with in-house human nephrin (aa 36–1052) in HEK293 cells | 46/105 (44%) MCD 7/74 (9%) FSGS 94/182 (52%) INS 1/40 non-pFSGS | 90% positive if untreated active NS Positivity correlated with disease activity Immunization of mice with murine nephrin produced proteinuria, nephrin tyrosine phosphorylation, and IgG localization to slit diaphragm with no EDD |
Chen/2024 [14] | FSGS 16 MCD 36 MN 20, DN 17, 19 IgAN | Adults | IIF of full-length nephrin in HEK293 cells | 2/16 (12.5%) FSGS 7/36 (19%) MCD 0/56 other GN | Correlated with disease activity Colocalized IgG with nephrin in MCD patients with positive circulating antibodies |
Shu/2025 [15] | FSGS 160 MCD 436 | Adults | ELISA against commercial human nephrin (17757-H08H, Sino Biological, 1044 aa) Antigen inhibition ELISA IgG and IgM assayed | 60/160 (37.5%) FSGS 196/436 (45%) MCD Overall, 43% positive: 30% IgG, 26% IgM, 13.1% both | 51% positivity if untreated nephrosis versus 43% overall Dual IgG/IgM positivity had more severe disease Antibodies decreased during remission |
Horinouchi/2024 [16] | SSNS* 13 | Ped | N/A | 6/13 (46%) | Levels reduced following steroids |
Angeletti/2024 (Abstract only) [17] | INS 156 FSGS transplants 32 (+/− recurrence) Controls 143 | Ped | ELISA against human nephrin (aa 1–1055) ELISA against human nephrin (aa 23–1029) ELISA against intracellular domain | % positive N/A | No difference in levels between INS and controls No difference in 2 extracellular domain assays No correlation with recurrence Levels decreased after treatment |
Bianchi/2025 [18] | INS 60 (50 SSNS, 10 SRNS) | Ped | Indirect ELISA against human nephrin (aa 23–1055) in HEK293 cells | SSNS at onset: 65% above cutoff SRNS: 30% above cutoff | Correlated with disease activity 2/8 patients tested during relapse were positive, both became negative with subsequent remission |
Hengel/2025 [19] | SSNS 101 SDNS 67 SRNS (nongenetic) 103 SRNS (genetic) 62 | Ped | IP followed by ELISA with in-house human nephrin (aa 36–1052) in HEK293 cells | SSNS: 19/101 (68%) SDNS: 19/67 (28%) SRNS (non-genetic) 14/103 (14%) SRNS (genetic) 1/62 (2%) | Of non-genetic SRNS with active disease, 13/74 (18%) responders to IIS versus 0/17 non-responsive |
Raglianti2024 [20] | FSGS 32 MCD 30 Other ** 71 | Ped | High-resolution confocal microscopy 2 anti-nephrin assays: (1) A commercial kit against human nephrin aa 23–92 (2) Human nephrin (aa 23–1029) in mouse myeloma cells | FSGS 8/32 (25%) positive IgG at slit-diaphragm MCD: 10/30 (33%) positive Others ** 0/71 positive | In a second cohort of 48 adults slit-diaphragm IgG in 19% of FSGS and 68.4% of MCD. Nephrin colocalized with IgG in 14/18 pediatric cases but not in 4/18 (22%) compared to 44% of positive IgG cases in adults not colocalizing with nephrin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippone, E.J.; Farber, J.L. Serum Factors in Primary Podocytopathies. Antibodies 2025, 14, 82. https://doi.org/10.3390/antib14040082
Filippone EJ, Farber JL. Serum Factors in Primary Podocytopathies. Antibodies. 2025; 14(4):82. https://doi.org/10.3390/antib14040082
Chicago/Turabian StyleFilippone, Edward John, and John L. Farber. 2025. "Serum Factors in Primary Podocytopathies" Antibodies 14, no. 4: 82. https://doi.org/10.3390/antib14040082
APA StyleFilippone, E. J., & Farber, J. L. (2025). Serum Factors in Primary Podocytopathies. Antibodies, 14(4), 82. https://doi.org/10.3390/antib14040082