Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = proteolytic indexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1916 KiB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 (registering DOI) - 31 Jul 2025
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

15 pages, 516 KiB  
Article
Effect of High-Pressure Processing on Proteolysis, Texture and Sensorial Attributes of Raw Ewe’s Cheeses Throughout Storage
by Rita S. Inácio, Maria J. P. Monteiro, José A. Lopes-da-Silva, Jorge A. Saraiva and Ana M. P. Gomes
Appl. Sci. 2025, 15(12), 6562; https://doi.org/10.3390/app15126562 - 11 Jun 2025
Cited by 1 | Viewed by 319
Abstract
Serra da Estrela cheese, with a Protected Denomination of Origin (PDO), is one of the most appreciated traditional raw milk Portuguese cheeses, and it is well known for its unique flavor and texture, which are derived from the use of raw ewe’s milk [...] Read more.
Serra da Estrela cheese, with a Protected Denomination of Origin (PDO), is one of the most appreciated traditional raw milk Portuguese cheeses, and it is well known for its unique flavor and texture, which are derived from the use of raw ewe’s milk and its production process. In this work, 45-day-old ripened Serra da Estrela cheeses were processed by high-pressure processing (HPP) at 600 MPa/6 min (P1), 450 MPa/6 min (P2) and 450 MPa/9 min (P3) to study the effect of HPP initially and during 15 months of storage at 4 °C. The proteolysis indexes were, in general, lower in the HPP-treated cheeses than in the control cheeses. The P1 cheeses kept their ripening extension index throughout the 15 months of storage close to that of non-processed cheese at month 0. Progression of the ripening depth and free amino acids indexes was also slowed down by HPP. HPP had no immediate effect on the cheese texture parameters, and minor changes were found up to 3 months of storage; moreover, the P2 cheeses maintained their hardness and consistency levels during the 15-month storage period at values close to those of the control cheeses at month 0. Sensory evaluation by trained panelists showed that the P2 cheeses were softer than the control cheeses; furthermore, for the P3 cheeses, there were no observed treatment effects on the sensory attributes evaluated at the end of storage. Overall, the results uphold the potential of HPP in rendering Serra da Estrela cheese proteolysis levels similar to those of control cheese at 45 days of ripening with minor effects on texture. Full article
Show Figures

Figure 1

17 pages, 5013 KiB  
Article
A Novel Protein Demonstrating Antibacterial Activity Against Multidrug-Resistant Escherichia coli Purified from Bacillus velezensis CB6
by Nan Jiang, Tajin Wang, Yue Fang, Xiaoyu Liu, Nan Dai, Hongling Ruan, Huining Dai, Lili Guan, Chengguang He, Lingcong Kong, Weixue Meng, Hongxia Ma and Haipeng Zhang
Foods 2025, 14(7), 1255; https://doi.org/10.3390/foods14071255 - 3 Apr 2025
Viewed by 604
Abstract
In recent years, multidrug resistance in pathogenic bacteria has become increasingly serious, causing serious harm to the livestock and poultry breeding industries and posing severe challenges to its clinical prevention and treatment; therefore, the development of new antibacterial agents is urgently needed. We [...] Read more.
In recent years, multidrug resistance in pathogenic bacteria has become increasingly serious, causing serious harm to the livestock and poultry breeding industries and posing severe challenges to its clinical prevention and treatment; therefore, the development of new antibacterial agents is urgently needed. We previously isolated Bacillus velezensis CB6, which exhibits broad-spectrum antibacterial activity, from Changbaishan in China. In this study, multidrug-resistant Escherichia coli B2(MDR E. coli B2) was used as an indicator bacterium. Ammonium sulfate precipitation, dextran gel chromatography, and Diethylaminoethyl Bestarose High Performance was used to isolate antibacterial protein with strong activity against MDR E. coli B2. SDS–PAGE combined with liquid chromatography-mass spectrometry was used to obtain the antibacterial protein CB6-E, which has a molecular weight of 54.537 kDa. Our study found that CB6-E has a strong inhibitory effect on Gram-negative bacteria such as Pseudomonas aeruginosa Z1, Salmonella H9812, and Shigella castellani Z1; among them, the minimum inhibitory concentration for MDR E. coli B2 was 32 µg/mL. In addition, CB6-E is stable under various conditions including exposure to various temperatures, organic reagents, pH values, and proteolytic enzymes. The hemolytic activity test and cytotoxicity test also showed that CB6-E is safe. Research on antibacterial mechanisms showed that CB6-E destroys cell membranes in a dose-dependent manner and can inhibit the growth of MDR E. coli B2 by targeting lipopolysaccharides on the cell membrane, showing good therapeutic effects in model animals. In summary, CB6-E is a newly discovered antibacterial protein with a high therapeutic index that is safe, nontoxic, and stabile, and is expected to be an effective antibacterial agent. Full article
Show Figures

Figure 1

14 pages, 3209 KiB  
Article
The Effect of a Magnetic Field on the Enzymatic Activities of Common Airborne Aspergillus Strains Isolated from Indoor Environments
by Matilde Anaya-Villalpanda, Erasmo Gámez-Espinosa and Sofía Borrego-Alonso
Aerobiology 2025, 3(1), 2; https://doi.org/10.3390/aerobiology3010002 - 26 Feb 2025
Viewed by 695
Abstract
The aim of this study was to evaluate the effect of an extremely low-frequency oscillating magnetic field on the enzymatic activities of common airborne Aspergillus sp. strains that were isolated from indoor environments. A D-optimal experimental design with three factors was applied: magnetic [...] Read more.
The aim of this study was to evaluate the effect of an extremely low-frequency oscillating magnetic field on the enzymatic activities of common airborne Aspergillus sp. strains that were isolated from indoor environments. A D-optimal experimental design with three factors was applied: magnetic field density (0.5 to 2 mT), exposure time (0.5 to 2 h), and Aspergillus sp. strains (A. ellipticus, A. japonicus, A. flavus, and A. fumigatus). The response variables were exoenzymatic indexes (cellulolytic, amylolytic, proteolytic, lipolytic, and hemolytic) and pH, as a measure of organic acid production. A. ellipticus was the highest producer of organic acids, and A. japonicus was as pathogenic as A. fumigatus. Different magnetobiological effects were observed: on enzyme secretion in the remaining strains, we detected no appreciable effect (Ilip and Iprot of A. flavus), inhibition (Ilip of A. ellipticus; Icel and Iamil of A. japonicus; Iamil and Iprot of A. fumigatus), and stimulation. Predictive quadratic models were obtained, and 2 mT for 2 h was the magnetic treatment regime that influenced the fungal enzymatic activity. These physiological changes following magnetobiological effects could be influenced during fungal sporulation and must thus be considered in aeromicrobiology studies. They can also be beneficial for obtaining industrial-use enzymes, but detrimental to the biodeterioration of different materials and human health. Full article
Show Figures

Figure 1

19 pages, 3480 KiB  
Article
Enhancement of the Storage Potential of Farmed Rainbow Trout (Oncorhynchus mykiss) by Using Algal (Cystoseira myrica and Cystoseira trinodis) Extract–Ice Combinations
by Shima Ahmadi, Parastoo Pourashouri, Bahareh Shabanpour and Santiago P. Aubourg
Foods 2025, 14(3), 371; https://doi.org/10.3390/foods14030371 - 23 Jan 2025
Viewed by 1064
Abstract
An attempt to apply extracts of the brown algae Cystoseira myrica and Cystoseira trinodis for the quality enhancement of fish was carried out. Aqueous, ethanolic, and aqueous–ethanolic (1:1, v/v) extracts of both algae were included, respectively, in the icing system [...] Read more.
An attempt to apply extracts of the brown algae Cystoseira myrica and Cystoseira trinodis for the quality enhancement of fish was carried out. Aqueous, ethanolic, and aqueous–ethanolic (1:1, v/v) extracts of both algae were included, respectively, in the icing system employed for the chilled storage of farmed rainbow trout (Oncorhynchus mykiss). Chemical and microbiological quality indices were determined for a 0–16-day storage period. At the end of the experiment, all alga-treated fish revealed lower (p < 0.05) pH values and lower (p < 0.05) lipid hydrolysis (free fatty acid assessment) and oxidation (thiobarbituric acid index) development when compared to Control samples. Regarding microbial activity development (aerobe, psychrophilic, Enterobacteriaceae, proteolytic, and lipolytic counts), lower average values were detected in most cases in fish corresponding to alga-treated batches; preservative effects were found more important at advanced storage times. In general, water and water–ethanol extracts led to higher (p < 0.05) inhibitory effects than their counterpart ethanol extracts. Higher (p < 0.05) total polyphenol values were detected in water and water–ethanol extracts of both algae than in their counterpart extracts obtained only with ethanol. A novel, simple, and practical strategy for the quality enhancement and commercialization of chilled farmed rainbow trout is proposed by employing different extracts obtained from both Cystoseira species. Full article
(This article belongs to the Special Issue Storage and Shelf-Life Assessment of Food Products)
Show Figures

Figure 1

19 pages, 3661 KiB  
Article
Assessing Cytotoxicity, Proteolytic Stability, and Selectivity of Antimicrobial Peptides: Implications for Orthopedic Applications
by Davide Campoccia, Giulia Bottau, Andrea De Donno, Gloria Bua, Stefano Ravaioli, Eleonora Capponi, Giovanna Sotgiu, Chiara Bellotti, Silvia Costantini and Carla Renata Arciola
Int. J. Mol. Sci. 2024, 25(24), 13241; https://doi.org/10.3390/ijms252413241 - 10 Dec 2024
Cited by 2 | Viewed by 1337
Abstract
In orthopedics, the use of anti-infective biomaterials is considered the most promising strategy to contrast the bacterial contamination of implant surfaces and reduce the infection rate. KSL, KSL-W, and Dadapin-1 are three antimicrobial peptides (AMPs) that possess significant antibacterial properties, making them promising [...] Read more.
In orthopedics, the use of anti-infective biomaterials is considered the most promising strategy to contrast the bacterial contamination of implant surfaces and reduce the infection rate. KSL, KSL-W, and Dadapin-1 are three antimicrobial peptides (AMPs) that possess significant antibacterial properties, making them promising candidates for producing anti-infective biomaterials not based on antibiotics. To fully assess their true potential, this study explores in detail their cytocompatibility on human osteoblast-like MG63 cells, murine fibroblastoid L929 cells, and hMSCs. To this end, the cytotoxicity of the AMPs in terms of IC50 was tested over a range of concentrations of 450–0.22 µg/mL using the ATP bioluminescence assay. The tests were performed both in the presence and absence of bovine serum to assess the effects of serum components on peptide stability. IC50 values obtained under the most stringent conditions were used to extrapolate the selectivity index (S.I.) toward salient bacterial species. In medium containing serum, all AMPs exhibited minimal to no cytotoxicity, with IC50 values exceeding 100 µg/mL. Dadapin-1 was the peptide that exhibited the lowest cytotoxicity, KSL-W exhibited the highest stability, and KSL exhibited the highest selectivity. Overall, these findings highlight the potential of these AMPs for the future production of anti-infective materials. Full article
(This article belongs to the Special Issue Natural Compounds: Advances in Antimicrobial Activity)
Show Figures

Figure 1

18 pages, 1975 KiB  
Article
Comparison of the Degree of Proteolytic Modification in Wheat Malts Obtained from Wheat Grain Produced at Different Nitrogen Fertilization Rates
by Justyna Belcar and Józef Gorzelany
Appl. Sci. 2024, 14(23), 11388; https://doi.org/10.3390/app142311388 - 6 Dec 2024
Cited by 1 | Viewed by 750
Abstract
The degree of proteolytic modification in wheat malts significantly affects their quality, determining their suitability for use in brewing. Nitrogen fertilization at doses of 60 and 80 kg N·ha−1 applied during 3-year field experiments had a positive effect on the content of [...] Read more.
The degree of proteolytic modification in wheat malts significantly affects their quality, determining their suitability for use in brewing. Nitrogen fertilization at doses of 60 and 80 kg N·ha−1 applied during 3-year field experiments had a positive effect on the content of protein compounds in the analyzed wheat malts. The total protein content of the malts obtained averaged 9.9–10.1% d. m., depending on the cultivar, and from 9.1 to 10.8% dry matter, depending on nitrogen fertilization. The soluble protein content and Kolbach index value were at similar levels (4.60% dry matter and 46.07%, respectively, on average) except for malt obtained from the Elixer cultivar, for which significantly lower values were obtained (by 7.39% and 6.66%, respectively). In contrast, the highest free amino nitrogen value was obtained for malts derived from the Elixer and Gimantis cultivars. The least variation in the quality of malts derived from grains obtained in the three growing seasons during the field experiments was in the cultivar Gimantis. In 2-year commodity field experiments (in commodity farms), under 60 kg N·ha−1 nitrogen fertilization, the cultivar Lawina was characterized by the best indices of the degree of proteolytic modification. Full article
(This article belongs to the Special Issue Technologies and Techniques for the Enhancement of Agriculture 4.0)
Show Figures

Figure 1

17 pages, 16316 KiB  
Article
Effects of Ozone Gas and Slightly Acidic Electrolyzed Water on the Quality of Salmon (Salmo salar) Fillets from the Perspective of Muscle Protein
by Yun-Fang Qian, Lu Sun, Jing-Jing Zhang, Cheng-Jian Shi and Sheng-Ping Yang
Foods 2024, 13(23), 3833; https://doi.org/10.3390/foods13233833 - 28 Nov 2024
Cited by 3 | Viewed by 1231
Abstract
To elucidate the mechanisms of ozone gas (OG) and slight acid electrolyzed water (SA) on the quality changes in texture, water-holding capacity, and softening of salmon, the bacterial growth, total volatile basic nitrogen, thiobarbituric acid reactive substance, a* value, texture properties, carbonyl content [...] Read more.
To elucidate the mechanisms of ozone gas (OG) and slight acid electrolyzed water (SA) on the quality changes in texture, water-holding capacity, and softening of salmon, the bacterial growth, total volatile basic nitrogen, thiobarbituric acid reactive substance, a* value, texture properties, carbonyl content and free sulfhydryl content, myofibrillar fragmentation index, and proteolytic activities of salmon treated by OG (1 mg/m3 for 10 min) and SA (ACC 30 mg/L, 5 min) individually and in combination were studied. The results showed that total viable counts of SA + OG (dipped in SAEW for 5 min, followed by exposure to ozone for 10 min) was about 3.36 log CFU/g lower than the control (CK) (dipped in distilled water for 5 min) on day 10. Further studies indicate that at the end of storage, the hardness of SA + OG fillets only decreased by 33.95%, while the drip loss and myofibrillar fragmentation index (MFI) were the lowest (i.e., 14.76% and 101.07). The activity of cathepsin D was extensively inhibited by SA + OG, which was only 2.063 U/g meat at the end. In addition, the carbonyl content was 1.90 μmol/g protein, and the free sulfhydryl content was 39.70 mg/mL in the SA + OG group, indicating that protein oxidation was also effectively inhibited. Correlation analysis shows that bacteria and endogenous proteases are the main causes of protein degradation. Overall, the combination of OG and SAEW is an effective way to maintain the muscle quality of salmon by inhibiting bacterial growth and endogenous enzymes. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

19 pages, 7313 KiB  
Article
Valorization of Strawberry Juice Production Wastewater: Possibilities for Polyphenols Recovery and Plant Biostimulant Production
by Ivana Danilov, Vanja Vlajkov, Zdravko Šumić, Anita Milić, Aleksandra Tepić Horecki, Tatjana Dujković, Nemanja Živanović, Nataša Simin, Marija Lesjak and Jovana Grahovac
Foods 2024, 13(20), 3224; https://doi.org/10.3390/foods13203224 - 10 Oct 2024
Viewed by 1839
Abstract
Fruit juice production is one of the most important branches of the food and beverage industry, considering both the market size and demand. It is also one of the largest generators of industrial wastewater, considering the large consumption of fresh water during fruit [...] Read more.
Fruit juice production is one of the most important branches of the food and beverage industry, considering both the market size and demand. It is also one of the largest generators of industrial wastewater, considering the large consumption of fresh water during fruit processing. Hence, the appropriate treatment strategies are of the utmost importance to minimize the environmental footprint of food industry effluents. This study aimed to investigate the valorization routes for strawberry juice production wastewater (SJPW), both in terms of nutrient recovery and a circular approach to its utilization as a medium for plant biostimulant production. The results show a low antioxidant capacity and low content of polyphenols in SJPW; however, promising results were obtained for the in vitro seed germination and tomato growth promotion when investigating a biostimulant based on Bacillus sp. BioSol021, which was cultivated using SJPW in a lab-scale bioreactor, with root and shoot length improvements of approximately 30% and 25%, respectively, compared to the control samples. The plant growth promotion (PGP) traits indicated the ability of IAA production, in a concentration of 8.55 ± 0.05 mg/L, and the enzymatic activity was evaluated as through the enzymatic activity index (EAI), achieving the following: 2.26 ± 0.04 for cellulolytic activity, 2.49 ± 0.08 for hemicellulolytic activity, 2.91 ± 0.16 for pectinolytic activity, and 1.05 ± 0.00 for proteolytic activity. This study opens a new chapter of possibilities for the development of techno-economically viable circular bioprocess solutions aimed at obtaining value-added microbial products for sustainable agriculture based on the valorization of food industry effluents thus contributing to more sustainable food production at both the agricultural and industrial levels. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Graphical abstract

13 pages, 1854 KiB  
Article
Drug Combination Studies of Isoquinolinone AM12 with Curcumin or Quercetin: A New Combination Strategy to Synergistically Inhibit 20S Proteasome
by Carla Di Chio, Santo Previti, Josè Starvaggi, Fabiola De Luca, Maria Luisa Calabrò, Maria Zappalà and Roberta Ettari
Int. J. Mol. Sci. 2024, 25(19), 10708; https://doi.org/10.3390/ijms251910708 - 4 Oct 2024
Cited by 2 | Viewed by 1375
Abstract
In the eukaryotic cells, the ubiquitin–proteasome system (UPS) plays a crucial role in the intracellular protein turnover. It is involved in several cellular functions such as the control of the regular cell cycle progression, the immune surveillance, and the homeostasis. Within the 20S [...] Read more.
In the eukaryotic cells, the ubiquitin–proteasome system (UPS) plays a crucial role in the intracellular protein turnover. It is involved in several cellular functions such as the control of the regular cell cycle progression, the immune surveillance, and the homeostasis. Within the 20S proteasome barrel-like structure, the catalytic subunits, β1, β2 and β5, are responsible for different proteolytic activities: caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (ChT-L), respectively. The β5 subunit is particularly targeted for its role in antitumor activity: the synthesis of β5 subunit inhibitors could be a promising strategy for the treatment of solid and hematologic tumors. In the present work, we performed two combination studies of AM12, a recently developed synthetic proteasome inhibitor, with curcumin and quercetin, two nutraceuticals endowed of many pharmacological properties. We measured the combination index (CI), applying the Chou and Talalay method, comparing the two studies, from 50% to 90% of proteasome inhibition. In the case of the combination AM12 + curcumin, an increasing synergism was observed from 50% to 90% of proteasome inhibition, while in the case of the combination AM12 + quercetin an additive effect was observed only from 50% to 70% of β5 subunit inhibition. These results suggest that combining AM12 with curcumin is a more promising strategy than combining it with quercetin for potential therapeutic applications, especially in treating tumors. Full article
Show Figures

Figure 1

15 pages, 8725 KiB  
Article
Accomplishment of α-Chymotrypsin on Photodynamic Effect of Octa-Substituted Zn(II)- and Ga(III)-Phthalocyanines against Melanoma Cells
by Vanya Mantareva, Diana Braikova, Neli Vilhelmova-Ilieva, Ivan Angelov and Ivan Iliev
Inorganics 2024, 12(8), 204; https://doi.org/10.3390/inorganics12080204 - 29 Jul 2024
Cited by 3 | Viewed by 1462
Abstract
Octa-methylpyridiloxy-substituted Zn(II)- and Ga(III)-phthalocyanines (ZnPc1 and GaPc1) were studied on human pigmented melanoma (SH4) and keratinocyte (HaCaT) cell lines. The efficacy of ZnPc1 and GaPc1 against melanoma cells was compared to the results in the presence of a proteaseα-chymotrypsin (ChT). The [...] Read more.
Octa-methylpyridiloxy-substituted Zn(II)- and Ga(III)-phthalocyanines (ZnPc1 and GaPc1) were studied on human pigmented melanoma (SH4) and keratinocyte (HaCaT) cell lines. The efficacy of ZnPc1 and GaPc1 against melanoma cells was compared to the results in the presence of a proteaseα-chymotrypsin (ChT). The synthesis and characterization of compounds were carried out using well-known approaches. The formation of physical conjugates due to the addition of ChT was studied via absorption and fluorescence. The proteolytic activity of ChT was verified with casein as a substrate. The photosafety of compounds was proven on embryonal cells (BALB 3T3) under solar exposure (LED 360–1100 nm). The photodynamic activity of GaPc1 and ZnPc1 was studied for a concentration range of irradiation (LED 660 nm). The reduction of the proteolytic activity of ChT was observed only for the irradiation of ZnPc1 or GaPc1. GaPc1 and ChT and their conjugates, except ZnPc1 (PIF ~6), were evaluated as photo-safe to solar light (PIF < 2). The efficiency of GaPc1 was shown to be much higher than that of ZnPc1 in their individual applications. The phototherapeutic index of GaPc1 (PI = 1.71) on SH4 cells was higher for the conjugate. α-Chymotrypsin and phthalocyanine have the advantages of reducing high toxicity and increasing the phototherapeutic index. Full article
(This article belongs to the Special Issue Biological Activity of Metal Complexes)
Show Figures

Graphical abstract

19 pages, 2826 KiB  
Article
Mixture of Doxycycline, ML-7 and L-NAME Restores the Pro- and Antioxidant Balance during Myocardial Infarction—In Vivo Pig Model Study
by Iwona Bil-Lula, Wiktor Kuliczkowski, Anna Krzywonos-Zawadzka, Piotr Frydrychowski, Dominika Stygar, Kornela Hałucha and Agnieszka Noszczyk-Nowak
Biomedicines 2024, 12(4), 784; https://doi.org/10.3390/biomedicines12040784 - 2 Apr 2024
Cited by 1 | Viewed by 1694
Abstract
The restoration of blood flow to the ischemic myocardium inflicts ischemia/reperfusion (I/R) heart injury (IRI). The main contributors to IRI are increased oxidative stress and subsequent excessive production of ROS, increased expression of NOS and peroxinitate, activation of MMPs, and enhanced posttranslational modifications [...] Read more.
The restoration of blood flow to the ischemic myocardium inflicts ischemia/reperfusion (I/R) heart injury (IRI). The main contributors to IRI are increased oxidative stress and subsequent excessive production of ROS, increased expression of NOS and peroxinitate, activation of MMPs, and enhanced posttranslational modifications of contractile proteins, which make them more susceptible to proteolytic degradation. Since the pathophysiology of IRI is a complex issue, and thus, various therapeutic strategies are required to prevent or reduce IRI and microvascular dysfunction, in the current study we proposed an innovative multi-drug therapy using low concentrations of drugs applied intracoronary to reach microvessels in order to stabilize the pro- and antioxidant balance during a MI in an in vivo pig model. The ability of a mixture of doxycycline (1 μM), ML-7 (0.5 μM), and L-NAME (2 μM) to modulate the pro- and antioxidative balance was tested in the left ventricle tissue and blood samples. Data showed that infusion of a MIX reduced the total oxidative status (TOS), oxidative stress index (OSI), and malondialdehyde (MDA). It also increased the total antioxidant capacity, confirming its antioxidative properties. MIX administration also reduced the activity of MMP-2 and MMP-9, and then decreased the release of MLC1 and BNP-26 into plasma. This study demonstrated that intracoronary administration of low concentrations of doxycycline in combination with ML-7 and L-NAME is incredibly efficient in regulating pro- and antioxidant balance during MI. Full article
(This article belongs to the Special Issue State-of-the-Art Drug Discovery and Development in Poland)
Show Figures

Figure 1

14 pages, 1846 KiB  
Article
Estimating In Vitro Protein Digestion and Protein Digestibility Corrected Amino Acid Score of Chicken Breasts Affected by White Striping and Wooden Breast Abnormalities
by Yanee Srimarut, Apinya Phanphuet, Thanatorn Trithavisup, Wachiraya Rattanawongsa, Rattaporn Saenmuangchin, Annop Klamchuen and Yuwares Malila
Foods 2024, 13(1), 159; https://doi.org/10.3390/foods13010159 - 2 Jan 2024
Cited by 3 | Viewed by 3413
Abstract
An understanding regarding impacts of growth-related myopathies, i.e., white striping (WS) and wooden breast (WB), on the quality of dietary protein from cooked chicken breast is still limited. This study aimed at comparing protein content and in vitro protein digestion and estimating the [...] Read more.
An understanding regarding impacts of growth-related myopathies, i.e., white striping (WS) and wooden breast (WB), on the quality of dietary protein from cooked chicken breast is still limited. This study aimed at comparing protein content and in vitro protein digestion and estimating the in vitro protein digestibility corrected amino acid score (PDCAAS) of cooked chicken meat exhibiting different abnormality levels (i.e., normal, WS, and WS + WB). The results show that the WS + WB samples exhibited lower protein content, greater cooking loss, and greater lipid oxidation than those of normal samples (p < 0.05). No differences in protein carbonyls or the myofibril fragmentation index were found (p ≥ 0.05). Cooked samples were hydrolyzed in vitro using digestive enzyme mixtures that subsequently mimicked the enzymatic reactions in oral, gastric, and intestinal routes. The WS + WB samples exhibited greater values of free NH2 and degree of hydrolysis than the others at all digestion phases (p < 0.05), suggesting a greater proteolytic susceptibility. The in vitro PDCAAS of the WS + WB samples was greater than that of the other samples for pre-school children, school children, and adults (p < 0.05). Overall, the findings suggest that the cooked chicken breast with the WS + WB condition might provide greater protein digestibility and availability than WS and normal chicken breasts. Full article
Show Figures

Figure 1

17 pages, 952 KiB  
Article
Valorization of Different Dairy By-Products to Produce a Functional Dairy–Millet Beverage Fermented with Lactobacillus paracasei as an Adjunct Culture
by Azzah A. A. Alwohaibi, Asmahan A. Ali, Sally S. Sakr, Isam A. Mohamed Ahmed, Raghad M. Alhomaid, Khalid A. Alsaleem, Mohammed Aladhadh, Hassan Barakat and Mohamed F. Y. Hassan
Fermentation 2023, 9(11), 927; https://doi.org/10.3390/fermentation9110927 - 24 Oct 2023
Cited by 8 | Viewed by 2892
Abstract
Fermented dairy products not only have a long shelf-life but also have beneficial nutritional values. The products are deficient in dietary fiber and certain bioactive compounds. Adding grains to dairy products is a widespread practice to improve the nutritional and economic aspects. In [...] Read more.
Fermented dairy products not only have a long shelf-life but also have beneficial nutritional values. The products are deficient in dietary fiber and certain bioactive compounds. Adding grains to dairy products is a widespread practice to improve the nutritional and economic aspects. In this work, we studied the effect of fermented millet–milk beverages (FMBs) using pearl millet grains and three different dairy by-products (sweet whey, sweet buttermilk, and skimmed milk). A control treatment prepared with water was also manufactured for comparison. Samples were continuously prepared and fermented using a commercial yogurt starter culture (YC-381) containing L. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and a pure strain of L. paracasei subsp. Paracasei. Four FMBs (water based: WB-FMB, whey based: WHB-FMB, buttermilk based: BMB-FMB, and skimmed milk based: SMB-FMB) were analyzed during cold storage at 4 °C for up to 15 days for chemical, microbiological properties, minerals content, antioxidant properties, glycemic index, and glycemic load on days 1, 8, and 15. The sensory characteristics of the FMBs were also evaluated during cold storage (4 °C/15 days). In general, the progression of acidity was slower in SMB-FMB and WHB-FMB samples during fermentation compared to in the BMB-FMB sample. The longest fermentation time was for the SMB-FBM sample (3 h), while the shortest was for the BMB-FMB sample (1.5 h). Reflecting the good manufacturing practices, all samples were free of coliform, mold, and yeast. No bacterial growth was detected in the WB-FMB sample at days 8 and 15 of storage, while the growth of Lactobacillus spp. and S. thermophilus was significantly higher (9.97 ± 0.01 and 9.48 ± 0.06, respectively) in the BMB-FMB sample compared to in the other three FMBs. The FMBs produced using dairy by-products had more antioxidant properties. All samples were better perceived during sensory evaluation by panelists than the water-based sample, except for the BMB-FMB sample, in which a bitter taste appeared. In the BMB-FMB sample, the proteolytic degree was significantly higher (4.8 ± 0.09) after 3 h of fermentation by about 460% than in the fresh sample. All samples had a low glycemic index and glycemic load. In addition, acidity progression was slower in SMB-FMB and WHB-FMB samples during fermentation and storage compared to the WB-FMB sample. Therefore, it could be recommended that it is more beneficial to prepare fermented millet–milk beverages using dairy by-products and suitable starter cultures under optimal fermentation conditions instead of using water to maximize the nutritional and economic aspects. Full article
(This article belongs to the Special Issue Probiotic Fermented Foods: An Overview)
Show Figures

Figure 1

18 pages, 3381 KiB  
Article
Effect of Tryptic Digestion on Sensitivity and Specificity in MALDI-TOF-Based Molecular Diagnostics through Machine Learning
by Sumon Sarkar, Abigail Squire, Hanin Diab, Md. Kaisar Rahman, Angela Perdomo, Babafela Awosile, Alexandra Calle and Jonathan Thompson
Sensors 2023, 23(19), 8042; https://doi.org/10.3390/s23198042 - 23 Sep 2023
Cited by 3 | Viewed by 3981
Abstract
The digestion of protein into peptide fragments reduces the size and complexity of protein molecules. Peptide fragments can be analyzed with higher sensitivity (often > 102 fold) and resolution using MALDI-TOF mass spectrometers, leading to improved pattern recognition by common machine learning [...] Read more.
The digestion of protein into peptide fragments reduces the size and complexity of protein molecules. Peptide fragments can be analyzed with higher sensitivity (often > 102 fold) and resolution using MALDI-TOF mass spectrometers, leading to improved pattern recognition by common machine learning algorithms. In turn, enhanced sensitivity and specificity for bacterial sorting and/or disease diagnosis may be obtained. To test this hypothesis, four exemplar case studies have been pursued in which samples are sorted into dichotomous groups by machine learning (ML) software based on MALDI-TOF spectra. Samples were analyzed in ‘intact’ mode in which the proteins present in the sample were not digested with protease prior to MALDI-TOF analysis and separately after the standard overnight tryptic digestion of the same samples. For each case, sensitivity (sens), specificity (spc), and the Youdin index (J) were used to assess the ML model performance. The proteolytic digestion of samples prior to MALDI-TOF analysis substantially enhanced the sensitivity and specificity of dichotomous sorting. Two exceptions were when substantial differences in chemical composition between the samples were present and, in such cases, both ‘intact’ and ‘digested’ protocols performed similarly. The results suggest proteolytic digestion prior to analysis can improve sorting in MALDI/ML-based workflows and may enable improved biomarker discovery. However, when samples are easily distinguishable protein digestion is not necessary to obtain useful diagnostic results. Full article
(This article belongs to the Special Issue Machine Learning for Biomedical Sensing and Healthcare)
Show Figures

Figure 1

Back to TopTop