Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (159)

Search Parameters:
Keywords = protein-tyrosine phosphatase inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9213 KiB  
Article
Resveratrol Impairs Insulin Signaling in Hepatic Cells via Activation of PKC and PTP1B Pathways
by Karla D. Hernández-González, Monica A. Vinchira-Lamprea, Judith Hernandez-Aranda and J. Alberto Olivares-Reyes
Int. J. Mol. Sci. 2025, 26(15), 7434; https://doi.org/10.3390/ijms26157434 - 1 Aug 2025
Viewed by 450
Abstract
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, [...] Read more.
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, in recent years, it has been reported to completely inhibit Akt kinase function in liver cells. Akt is a central protein involved in the metabolic function of insulin and is regulated by the phosphatidylinositol-3-kinase (PI3K) pathway. In this study, we examined the effect of RSV on insulin-induced insulin receptor (IR) phosphorylation and proteins involved in the PI3K/Akt pathway in a hepatic cell model, clone 9 (C9), and in hepatoma cells, Hepa 1-6 (H1-6). In both cell lines, RSV inhibited tyrosine phosphorylation of IR and insulin-induced activation of Akt. We also evaluated the effect of RSV on the activation of protein tyrosine phosphatase 1B (PTP1B), which is associated with IR dephosphorylation, and found that RSV increased PTP1B-Tyr152 phosphorylation in a time- and concentration-dependent manner. Furthermore, we found that the protein kinase C (PKC) inhibitors BIM and Gö6976 prevented the inhibition of Akt phosphorylation by RSV and increased the phosphorylation of Ser/Thr residues in IR, suggesting that PKC is involved in the inhibition of the insulin pathway by RSV. Thus, classical PKC isoforms impair the PI3K/Akt pathway at the IR and GSK3 and GS downstream levels; however, IRS-Tyr632 phosphorylation remains unaffected. These results suggest that RSV can lead to insulin resistance by activating PTP1B and PKC, consequently affecting glucose homeostasis in hepatic cells. Full article
(This article belongs to the Special Issue The Molecular and Cellular Aspects of Insulin Resistance)
Show Figures

Figure 1

21 pages, 6859 KiB  
Review
Targeting SHP2 with Natural Products: Exploring Saponin-Based Allosteric Inhibitors and Their Therapeutic Potential
by Dong-Oh Moon
Curr. Issues Mol. Biol. 2025, 47(5), 309; https://doi.org/10.3390/cimb47050309 - 27 Apr 2025
Viewed by 618
Abstract
SHP2, a non-receptor protein tyrosine phosphatase, plays a pivotal role in regulating intracellular signaling pathways, particularly the RAS/MAPK and PI3K/AKT cascades, which are critical for cellular proliferation, differentiation, and survival. Aberrant SHP2 activity, often driven by gain-of-function mutations, is implicated in oncogenesis and [...] Read more.
SHP2, a non-receptor protein tyrosine phosphatase, plays a pivotal role in regulating intracellular signaling pathways, particularly the RAS/MAPK and PI3K/AKT cascades, which are critical for cellular proliferation, differentiation, and survival. Aberrant SHP2 activity, often driven by gain-of-function mutations, is implicated in oncogenesis and drug resistance, making it an attractive therapeutic target. Traditional inhibitors targeting SHP2’s catalytic site face limitations such as poor selectivity and low bioavailability. Recent advancements in allosteric inhibitors, specifically targeting SHP2’s tunnel site, offer improved specificity and pharmacokinetics. Natural products, especially saponins with their unique structural diversity, have emerged as promising candidates for SHP2 inhibition. This review explores the structural and functional dynamics of SHP2, highlights the potential of saponin-based inhibitors, and discusses their mechanisms of action, including their interactions with key residues in the tunnel site. The therapeutic potential of saponins is further emphasized by their ability to overcome the limitations of catalytic inhibitors and their applicability in combination therapies. Future directions include structural optimization to improve pharmacokinetics and the development of innovative strategies such as PROTACs to enhance the clinical utility of saponin-based SHP2 inhibitors. Full article
Show Figures

Figure 1

17 pages, 3053 KiB  
Article
Therapeutic Effect of Lebanese Cannabis Oil Extract in the Management of Sodium Orthovanadate-Induced Nephrotoxicity in Rats
by Christabel Habchy, Alia Khalil, Wassim Shebaby, Diana Bylan, Marissa El Hage, Mona Saad, Selim Nasser, Wissam H. Faour and Mohamad Mroueh
Int. J. Mol. Sci. 2025, 26(9), 4142; https://doi.org/10.3390/ijms26094142 - 27 Apr 2025
Viewed by 741
Abstract
Sodium orthovanadate is a non-selective protein tyrosine phosphatase inhibitor that can cause several types of kidney injury, including glomerulosclerosis, inflammation, and tubular damage. Cannabis is widely known for its medicinal use, and several studies have demonstrated its anti-diabetic and anti-inflammatory properties. The current [...] Read more.
Sodium orthovanadate is a non-selective protein tyrosine phosphatase inhibitor that can cause several types of kidney injury, including glomerulosclerosis, inflammation, and tubular damage. Cannabis is widely known for its medicinal use, and several studies have demonstrated its anti-diabetic and anti-inflammatory properties. The current study investigated the therapeutic effect of Lebanese cannabis oil extract (COE) against sodium orthovanadate-induced nephrotoxicity both in vitro and in vivo. Sprague Dawley male rats were intraperitoneally injected with 10 mg/kg sodium orthovanadate for 10 days followed by 5 mg/kg; 10 mg/kg; or 20 mg/kg intraperitoneal injection of cannabis oil extract, starting on day 4 until day 10. The body weight of the rats was monitored during the study, and clinical parameters, including serum urea, creatinine, and electrolytes, as well as kidney and heart pathology, were measured. Conditionally immortalized cultured rat podocytes were exposed to either sodium orthovanadate or selective phosphatase inhibitors, including DUSPi (DUSP1/6 inhibitor) and SF1670 (PTEN inhibitor), in the presence or absence of cannabis oil extract. MTS and an in vitro scratch assay were used to assess podocyte cell viability and migration, respectively. Western blot analysis was used to evaluate the phosphorylation levels of AKT and p38 MAPK. Rats injected with sodium orthovanadate displayed a marked reduction in body weight and an increase in serum creatinine and urea in comparison to the control non-treated group. All doses of COE caused a significant decrease in serum urea, with a significant decrease in serum creatinine observed at a dose of 20 mg/kg. Moreover, the COE treatment of rats injected with orthovanadate (20 mg/kg) showed a marked reduction in renal vascular dilatation, scattered foci of acute tubular necrosis, and numerous mitoses in tubular cells compared to the sodium orthovanadate-treated group. The cell viability assay revealed that COE reversed cytotoxicity induced by sodium orthovanadate and specific phosphatase inhibitors (DUSPi and SF1670) in rat podocytes. The in vitro scratch assay showed that COE partially restored the migratory capacity of podocytes incubated with DUSPi and SF1670. Time-course and dose-dependent experiments showed that COE (1 μg/mL) induced a significant increase in phospho-(S473)-AKT, along with a decrease in phospho (T180 + Y182) P38 levels. The current results demonstrated that Lebanese cannabis oil possesses important kidney protective effects against sodium orthovanadate-induced renal injury. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

20 pages, 1136 KiB  
Review
Kinase-Targeted Therapies for Glioblastoma
by Maria Salbini, Alessia Formato, Maria Patrizia Mongiardi, Andrea Levi and Maria Laura Falchetti
Int. J. Mol. Sci. 2025, 26(8), 3737; https://doi.org/10.3390/ijms26083737 - 15 Apr 2025
Viewed by 918
Abstract
Protein phosphorylation and dephosphorylation are key mechanisms that regulate cellular activities. The addition or removal of phosphate groups by specific enzymes, known as kinases and phosphatases, activates or inhibits many enzymes and receptors involved in various cell signaling pathways. Dysregulated activity of these [...] Read more.
Protein phosphorylation and dephosphorylation are key mechanisms that regulate cellular activities. The addition or removal of phosphate groups by specific enzymes, known as kinases and phosphatases, activates or inhibits many enzymes and receptors involved in various cell signaling pathways. Dysregulated activity of these enzymes is associated with various diseases, predominantly cancers. Synthetic and natural single- and multiple-kinase inhibitors are currently being used as targeted therapies for different tumors, including glioblastoma. Glioblastoma IDH-wild-type is the most aggressive brain tumor in adults, with a median overall survival of 15 months. The great majority of glioblastoma patients present mutations in receptor tyrosine kinase (RTK) signaling pathways responsible for tumor initiation and/or progression. Despite this, the multi-kinase inhibitor regorafenib has only recently been approved for glioblastoma patients in some countries. In this review, we analyze the history of kinase inhibitor drugs in glioblastoma therapy. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Graphical abstract

20 pages, 3660 KiB  
Article
Pre-Clinical Rationale for Amcenestrant Combinations in HER2+/ER+ Breast Cancer
by Amira F. Mahdi, Niall Ashfield, John Crown and Denis M. Collins
Int. J. Mol. Sci. 2025, 26(2), 460; https://doi.org/10.3390/ijms26020460 - 8 Jan 2025
Viewed by 1637
Abstract
HER2-positive/oestrogen receptor-positive (HER2+/ER+) represents a unique breast cancer subtype. The use of individual HER2- or ER-targeting agents can lead to the acquisition of therapeutic resistance due to compensatory receptor crosstalk. New drug combinations targeting HER2 and ER could improve outcomes for patients with [...] Read more.
HER2-positive/oestrogen receptor-positive (HER2+/ER+) represents a unique breast cancer subtype. The use of individual HER2- or ER-targeting agents can lead to the acquisition of therapeutic resistance due to compensatory receptor crosstalk. New drug combinations targeting HER2 and ER could improve outcomes for patients with HER2+/ER+ breast cancer. In this study, the pre-clinical rationale is explored for combining amcenestrant (Amc), a selective oestrogen receptor degrader (SERD), with HER2-targeted therapies including trastuzumab, trastuzumab-emtansine (T-DM1) and tyrosine kinase inhibitors (TKIs). The combination of Amc and anti-HER2 therapies was investigated in a panel of four HER2+/ER+ cell lines: BT-474, MDA-MB-361, EFM-192a and a trastuzumab-resistant variant BT-474-T. Proliferation (IC50 and matrix combination assays) was determined using acid phosphatase assays. HER2/ER and intracellular signalling pathway protein levels/activity were investigated by western blot. Apoptosis was assessed using caspase 3/7 assays. Additivity and synergy were observed between Amc and the TKIs neratinib, lapatinib and tucatinib in all cell lines. Amc increased the anti-proliferative effect of trastuzumab in MDA-MB-361 and BT-474-T. Addition of Amc also increased anti-proliferative efficacy of T-DM1 in BT-474-T. TKI/Amc combinations reduced p-HER2 and ER levels and resulted in increased apoptosis. Higher ER expression in MDA-MB-361 and BT-474-T was associated with greater potential for synergy. In conclusion, the combination of Amc- and HER2-targeted treatments has potential as a therapeutic strategy for the treatment of HER2+/ER+ breast cancer and warrants further clinical investigation to validate safety and efficacy in patients. Full article
(This article belongs to the Special Issue Hormone Receptor in Breast Cancer)
Show Figures

Figure 1

27 pages, 7809 KiB  
Article
Study on SHP2 Conformational Transition and Structural Characterization of Its High-Potency Allosteric Inhibitors by Molecular Dynamics Simulations Combined with Machine Learning
by Baerlike Wujieti, Mingtian Hao, Erxia Liu, Luqi Zhou, Huanchao Wang, Yu Zhang, Wei Cui and Bozhen Chen
Molecules 2025, 30(1), 14; https://doi.org/10.3390/molecules30010014 - 24 Dec 2024
Viewed by 1484
Abstract
The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and immune suppression, thus making it a potential target [...] Read more.
The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and immune suppression, thus making it a potential target for cancer therapy. Initially, researchers sought to develop inhibitors targeting SHP2’s catalytic site (protein tyrosine phosphatase domain, PTP). Due to limitations such as conservativeness and poor membrane permeability, SHP2 was once considered a challenging drug target. Nevertheless, with the in-depth investigations into the conformational switch mechanism from SHP2’s inactive to active state and the emergence of various SHP2 allosteric inhibitors, new hope has been brought to this target. In this study, we investigated the interaction models of various allosteric inhibitors with SHP2 using molecular dynamics simulations. Meanwhile, we explored the free energy landscape of SHP2 activation using enhanced sampling technique (meta-dynamics simulations), which provides insights into its conformational changes and activation mechanism. Furthermore, to biophysically interpret high-dimensional simulation trajectories, we employed interpretable machine learning methods, specifically extreme gradient boosting (XGBoost) with Shapley additive explanations (SHAP), to comprehensively analyze the simulation data. This approach allowed us to identify and highlight key structural features driving SHP2 conformational dynamics and regulating the activity of the allosteric inhibitor. These studies not only enhance our understanding of SHP2’s conformational switch mechanism but also offer crucial insights for designing potent allosteric SHP2 inhibitors and addressing drug resistance issues. Full article
(This article belongs to the Special Issue Chemical Biology in Asia)
Show Figures

Graphical abstract

20 pages, 4255 KiB  
Article
Exploring the Antimycobacterial Potential of Podocarpusflavone A from Kielmeyera membranacea: In Vitro and In Vivo Insights
by Marlon Heggdorne de Araujo, Salomé Muñoz Sánchez, Thatiana Lopes Biá Ventura Simão, Natalia Nowik, Stella Schuenck Antunes, Shaft Corrêa Pinto, Davide Sorze, Francesca Boldrin, Riccardo Manganelli, Nelilma Correia Romeiro, Elena B. Lasunskaia, Fons J. Verbeek, Herman P. Spaink and Michelle Frazão Muzitano
Pharmaceuticals 2024, 17(12), 1560; https://doi.org/10.3390/ph17121560 - 21 Nov 2024
Viewed by 1315
Abstract
Background/Objectives: Tuberculosis (TB) is one of the leading infectious causes of death worldwide, highlighting the importance of identifying new anti-TB agents. In previous research, our team identified antimycobacterial activity in Kielmeyera membranacea leaf extract; therefore, this study aims to conduct further exploration [...] Read more.
Background/Objectives: Tuberculosis (TB) is one of the leading infectious causes of death worldwide, highlighting the importance of identifying new anti-TB agents. In previous research, our team identified antimycobacterial activity in Kielmeyera membranacea leaf extract; therefore, this study aims to conduct further exploration of its potential. Methods: Classical chromatography was applied for fractionation and spectrometric techniques were utilized for chemical characterization. For in vitro tests, samples were assessed against Mycobacterium tuberculosis and Mycobacterium marinum. The toxicity and efficacy of active samples were evaluated in vivo using different zebrafish models. Chemogenomics studies were applied to predict the isolated active compound’s potential mode of action. Results: We performed fractionation of K. membranacea ethanolic extract (EE) and then its dichloromethane fraction (DCM), and the biflavonoid podocarpusflavone A (PCFA) was isolated and identified as a promising active compound. The EE and PCFA were found to be non-toxic to zebrafish larvae and were able to inhibit M. tuberculosis growth extracellularly. Additionally, PCFA demonstrated antimycobacterial activity within infected macrophages, especially when combined with isoniazid. In addition, the EE, DCM, and PCFA have shown the ability to inhibit M. marinum’s growth during in vivo zebrafish larvae yolk infection. Notably, PCFA also effectively countered systemic infection established through the caudal vein, showing a similar inhibitory activity profile to rifampicin, both at 32 µM. A reduction in the transcriptional levels of pro-inflammatory cytokines confirmed the infection resolution. The protein tyrosine phosphatase B (PtpB) of M. tuberculosis, which inhibits the macrophage immune response, was predicted as a theoretical target of PCFA. This finding is in agreement with the higher activity observed for PCFA intracellularly and in vivo on zebrafish, compared with the direct action in M. tuberculosis. Conclusions: Here, we describe the discovery of PCFA as an intracellular inhibitor of M. tuberculosis and provide evidence of its in vivo efficacy and safety, encouraging its further development as a combination drug in novel therapeutic regimens for TB. Full article
Show Figures

Graphical abstract

14 pages, 2756 KiB  
Article
Effects of PTPN6 Gene Knockdown in SKM-1 Cells on Apoptosis, Erythroid Differentiation and Inflammations
by Li Yu, Xiaoli Gu, Pengjie Chen, Rui Yang, Yonggang Xu and Xiupeng Yang
Curr. Issues Mol. Biol. 2024, 46(11), 12061-12074; https://doi.org/10.3390/cimb46110715 - 28 Oct 2024
Viewed by 1167
Abstract
Objective: Protein tyrosine phosphatase non-receptor type 6 (PTPN6) is a cytoplasmic phosphatase that acts as a key regulatory protein in cell signaling to control inflammation and cell death. In order to investigate the role of PTPN6 in hematologic tumor myelodysplastic syndrome (MDS), [...] Read more.
Objective: Protein tyrosine phosphatase non-receptor type 6 (PTPN6) is a cytoplasmic phosphatase that acts as a key regulatory protein in cell signaling to control inflammation and cell death. In order to investigate the role of PTPN6 in hematologic tumor myelodysplastic syndrome (MDS), this study infected SKM-1 cell line (MDS cell line) with packaged H_PTPN6-shRNA lentivirus to obtain H_PTPN6-shRNA SKM-1 stable strain. The effect of PTPN6 knockdown on apoptosis, erythroid differentiation, and inflammations in SKM-1 cell line was examined. Methods: The stable knockdown SKM-1 cell line was validated using qPCR and Western blot assays. The proliferation activity, apoptosi, erythroid differentiation, and inflammatory cytokines in SKM-1 cells were assessed before and after transfection. Results: qPCR confirmed that the expression level of H_PTPN6-shRNA in SKM-1 cells was significantly reduced, and Western blot showed that the protein expression level of H_PTPN6-shRNA in SKM-1 cells was also significantly reduced. The CCK-8 cell viability assay confirmed that stable gene knockdown did not affect cell viability. Flow cytometry revealed that the apoptosis rate of cells in the PTPN6 knockdown group was 0.8%, lower than the 2.7% observed in the empty plasmid group; the expression rate of the erythroid differentiation marker CD235a was 13.2%, lower than the 25.0% observed in the empty plasmid group. The expression levels of the proinflammatory factors IL-6 and IL-8 increased, and the expression levels of the inhibitor factor IL-4 decreased. Conclusions: The PTPN6 gene was successfully knocked down using lentivirus-mediated transduction, and the constructed cell line was validated using PCR and Western blot. The CCK-8 cell viability assay confirmed that stable gene knockdown did not affect cell proliferation viability. Flow cytometry analysis of apoptosis and erythroid differentiation indicated that PTPN6 knockdown inhibits apoptosis and erythroid differentiation in SKM-1 cells and also alters the level of inflammations in the bone marrow microenvironment. It suggests that the PTPN6 gene acts as a tumor suppressor in myelodysplastic syndrome cells, influencing hematopoietic cell apoptosis, erythroid differentiation, and inflammations. This provides a reliable experimental basis for further in-depth studies on the mechanism of PTPN6 in MDS and related pharmacological research. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 3594 KiB  
Article
Pleiotrophin Activates cMet- and mTORC1-Dependent Protein Synthesis through PTPRZ1—The Role of ανβ3 Integrin
by Eleni Mourkogianni, Katerina Karavasili, Athanasios Xanthopoulos, Michaela-Karina Enake, Lydia Menounou and Evangelia Papadimitriou
Int. J. Mol. Sci. 2024, 25(19), 10839; https://doi.org/10.3390/ijms251910839 - 9 Oct 2024
Cited by 1 | Viewed by 1624
Abstract
Pleiotrophin (PTN) is a secreted factor that regulates endothelial cell migration through protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) and αvβ3 integrin. Genetic deletion of Ptprz1 results in enhanced endothelial cell proliferation and migration, due to the decreased expression of [...] Read more.
Pleiotrophin (PTN) is a secreted factor that regulates endothelial cell migration through protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) and αvβ3 integrin. Genetic deletion of Ptprz1 results in enhanced endothelial cell proliferation and migration, due to the decreased expression of β3 integrin and the subsequent, enhanced cMet phosphorylation. In the present study, we investigated the effect of PTN and PTPRZ1 on activating the mTORC1 kinase and protein synthesis and identified part of the implicated signaling pathway in endothelial cells. PTN or genetic deletion of Ptprz1 activates protein synthesis in a mTORC1-dependent manner, as shown by the enhanced phosphorylation of the mTORC1-downstream targets ribosomal protein S6 kinase 1 (SK61) and 4E-binding protein 1 (4EBP1) and the upregulation of HIF-1α. The cMet tyrosine kinase inhibitor crizotinib abolishes the stimulatory effects of PTN or PTPRZ1 deletion on mTORC1 activation and protein synthesis, suggesting that mTORC1 activation is downstream of cMet. The mTORC1 inhibitor rapamycin abolishes the stimulatory effect of PTN or PTPRZ1 deletion on endothelial cell migration, suggesting that mTORC1 is involved in the PTN/PTPRZ1-dependent cell migration. The αvβ3 integrin blocking antibody LM609 and the peptide PTN112–136, both known to bind to ανβ3 and inhibit PTN-induced endothelial cell migration, increase cMet phosphorylation and activate mTORC1, suggesting that cMet and mTORC1 activation are required but are not sufficient to stimulate cell migration. Overall, our data highlight novel aspects of the signaling pathway downstream of the PTN/PTPRZ1 axis that regulates endothelial cell functions. Full article
(This article belongs to the Special Issue Kinase Inhibitors and Kinase-Targeted Cancer Therapies)
Show Figures

Figure 1

17 pages, 1523 KiB  
Article
Design and Synthesis of Pyridyl and 2-Hydroxyphenyl Chalcones with Antitubercular Activity
by Kelphina Aziafor, Ketan Ruparelia, Brandon Moulds, Mire Zloh, Tanya Parish and Federico Brucoli
Molecules 2024, 29(19), 4539; https://doi.org/10.3390/molecules29194539 - 24 Sep 2024
Cited by 2 | Viewed by 1812
Abstract
A focussed library of pyridyl and 2-hydroxyphenyl chalcones were synthesized and tested for growth inhibitory activity against Mycobacterium tuberculosis H37Rv, and normal and cancer breast cell lines. Pyridyl chalcones bearing lipophilic A-ring, e.g., dichloro-phenyl-(14), pyrene-1-yl (20)- and biphenyl-4-yl ( [...] Read more.
A focussed library of pyridyl and 2-hydroxyphenyl chalcones were synthesized and tested for growth inhibitory activity against Mycobacterium tuberculosis H37Rv, and normal and cancer breast cell lines. Pyridyl chalcones bearing lipophilic A-ring, e.g., dichloro-phenyl-(14), pyrene-1-yl (20)- and biphenyl-4-yl (21) moieties were found to be the most potent of the series inhibiting the growth of M. tuberculosis H37Rv with IC90 values ranging from 8.9–28 µM. Aryl chalcones containing a 3-methoxyphenyl A-ring and either p-Br-phenyl (25) or p-Cl-phenyl (26) B-rings showed an IC90 value of 28 µM. Aryl-chalcones were generally less toxic to HepG2 cells compared to pyridyl-chalcones. Dose-dependent antiproliferative activity against MDA468 cells was observed for trimethoxy-phenyl (16) and anthracene-9-yl (19) pyridyl-chalcones with IC50 values of 0.7 and 0.3 µM, respectively. Docking studies revealed that chalone 20 was predicted to bind to the M. tuberculosis protein tyrosine phosphatases B (PtpB) with higher affinity compared to a previously reported PtpB inhibitor. Full article
Show Figures

Figure 1

22 pages, 1950 KiB  
Review
Enzyme Is the Name—Adapter Is the Game
by Michael Huber and Tilman Brummer
Cells 2024, 13(15), 1249; https://doi.org/10.3390/cells13151249 - 25 Jul 2024
Viewed by 1868
Abstract
Signaling proteins in eukaryotes usually comprise a catalytic domain coupled to one or several interaction domains, such as SH2 and SH3 domains. An additional class of proteins critically involved in cellular communication are adapter or scaffold proteins, which fulfill their purely non-enzymatic functions [...] Read more.
Signaling proteins in eukaryotes usually comprise a catalytic domain coupled to one or several interaction domains, such as SH2 and SH3 domains. An additional class of proteins critically involved in cellular communication are adapter or scaffold proteins, which fulfill their purely non-enzymatic functions by organizing protein–protein interactions. Intriguingly, certain signaling enzymes, e.g., kinases and phosphatases, have been demonstrated to promote particular cellular functions by means of their interaction domains only. In this review, we will refer to such a function as "the adapter function of an enzyme". Though many stories can be told, we will concentrate on several proteins executing critical adapter functions in cells of the immune system, such as Bruton´s tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and SH2-containing inositol phosphatase 1 (SHIP1), as well as in cancer cells, such as proteins of the rat sarcoma/extracellular signal-regulated kinase (RAS/ERK) mitogen-activated protein kinase (MAPK) pathway. We will also discuss how these adaptor functions of enzymes determine or even undermine the efficacy of targeted therapy compounds, such as ATP-competitive kinase inhibitors. Thereby, we are highlighting the need to develop pharmacological approaches, such as proteolysis-targeting chimeras (PROTACs), that eliminate the entire protein, and thus both enzymatic and adapter functions of the signaling protein. We also review how genetic knock-out and knock-in approaches can be leveraged to identify adaptor functions of signaling proteins. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

10 pages, 1425 KiB  
Review
Trackins (Trk-Targeting Drugs): A Novel Therapy for Different Diseases
by George N. Chaldakov, Luigi Aloe, Stanislav G. Yanev, Marco Fiore, Anton B. Tonchev, Manlio Vinciguerra, Nikolai T. Evtimov, Peter Ghenev and Krikor Dikranian
Pharmaceuticals 2024, 17(7), 961; https://doi.org/10.3390/ph17070961 - 19 Jul 2024
Cited by 2 | Viewed by 3250
Abstract
Many routes may lead to the transition from a healthy to a diseased phenotype. However, there are not so many routes to travel in the opposite direction; that is, therapy for different diseases. The following pressing question thus remains: what are the pathogenic [...] Read more.
Many routes may lead to the transition from a healthy to a diseased phenotype. However, there are not so many routes to travel in the opposite direction; that is, therapy for different diseases. The following pressing question thus remains: what are the pathogenic routes and how can be they counteracted for therapeutic purposes? Human cells contain >500 protein kinases and nearly 200 protein phosphatases, acting on thousands of proteins, including cell growth factors. We herein discuss neurotrophins with pathogenic or metabotrophic abilities, particularly brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), pro-NGF, neurotrophin-3 (NT-3), and their receptor Trk (tyrosine receptor kinase; pronounced “track”). Indeed, we introduced the word trackins, standing for Trk-targeting drugs, that play an agonistic or antagonistic role in the function of TrkBBDNF, TrkCNT−3, TrkANGF, and TrkApro-NGF receptors. Based on our own published results, supported by those of other authors, we aim to update and enlarge our trackins concept, focusing on (1) agonistic trackins as possible drugs for (1a) neurotrophin-deficiency cardiometabolic disorders (hypertension, atherosclerosis, type 2 diabetes mellitus, metabolic syndrome, obesity, diabetic erectile dysfunction and atrial fibrillation) and (1b) neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis), and (2) antagonistic trackins, particularly TrkANGF inhibitors for prostate and breast cancer, pain, and arrhythmogenic right-ventricular dysplasia. Altogether, the druggability of TrkANGF, TrkApro-NGF, TrkBBDNF, and TrkCNT−3 receptors via trackins requires a further translational pursuit. This could provide rewards for our patients. Full article
(This article belongs to the Special Issue Synthetic Inhibitors of Nucleoside Monophosphate-Kinases)
Show Figures

Figure 1

21 pages, 1745 KiB  
Review
From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond
by Yu Zhou, Zhimeng Yao, Yusheng Lin and Hao Zhang
Pharmaceutics 2024, 16(7), 888; https://doi.org/10.3390/pharmaceutics16070888 - 1 Jul 2024
Cited by 3 | Viewed by 2220
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are [...] Read more.
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as “undruggable” targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development. Full article
(This article belongs to the Special Issue Cancer Therapy Resistance: Choosing Kinase Inhibitors, 2nd Edition)
Show Figures

Figure 1

16 pages, 1397 KiB  
Review
Recent Developments in the Role of Protein Tyrosine Phosphatase 1B (PTP1B) as a Regulator of Immune Cell Signalling in Health and Disease
by Neve E. Read and Heather M. Wilson
Int. J. Mol. Sci. 2024, 25(13), 7207; https://doi.org/10.3390/ijms25137207 - 29 Jun 2024
Cited by 6 | Viewed by 2841
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor tyrosine phosphatase best known for its role in regulating insulin and leptin signalling. Recently, knowledge on the role of PTP1B as a major regulator of multiple signalling pathways involved in cell growth, proliferation, viability and [...] Read more.
Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor tyrosine phosphatase best known for its role in regulating insulin and leptin signalling. Recently, knowledge on the role of PTP1B as a major regulator of multiple signalling pathways involved in cell growth, proliferation, viability and metabolism has expanded, and PTP1B is recognised as a therapeutic target in several human disorders, including diabetes, obesity, cardiovascular diseases and hematopoietic malignancies. The function of PTP1B in the immune system was largely overlooked until it was discovered that PTP1B negatively regulates the Janus kinase—a signal transducer and activator of the transcription (JAK/STAT) signalling pathway, which plays a significant role in modulating immune responses. PTP1B is now known to determine the magnitude of many signalling pathways that drive immune cell activation and function. As such, PTP1B inhibitors are being developed and tested in the context of inflammation and autoimmune diseases. Here, we provide an up-to-date summary of the molecular role of PTP1B in regulating immune cell function and how targeting its expression and/or activity has the potential to change the outcomes of immune-mediated and inflammatory disorders. Full article
(This article belongs to the Special Issue Advances in Protein Tyrosine Phosphatases)
Show Figures

Figure 1

24 pages, 3902 KiB  
Review
Protein Tyrosine Phosphatase 1B (PTP1B): A Comprehensive Review of Its Role in Pathogenesis of Human Diseases
by Dominika Kołodziej-Sobczak, Łukasz Sobczak and Krzysztof Z. Łączkowski
Int. J. Mol. Sci. 2024, 25(13), 7033; https://doi.org/10.3390/ijms25137033 - 27 Jun 2024
Cited by 15 | Viewed by 6025
Abstract
Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative [...] Read more.
Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction. Full article
Show Figures

Figure 1

Back to TopTop