Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = protein kinase Cδ

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2282 KB  
Article
Modelling the Full-Length Inactive PKC-δ Structure to Explore Regulatory Accessibility and Selective Targeting Opportunities
by Rasha Khader and Lodewijk V. Dekker
Pharmaceuticals 2025, 18(11), 1760; https://doi.org/10.3390/ph18111760 - 18 Nov 2025
Cited by 1 | Viewed by 494
Abstract
Background/Objectives: Protein kinase C-δ (PKC-δ) is a pivotal regulator of cellular signalling, and its dysregulation contributes to oncogenesis. While certain isolated PKC-δ domains have been crystallised, the full-length architecture and interdomain interactions remain largely unresolved, limiting mechanistic insight and the design of selective [...] Read more.
Background/Objectives: Protein kinase C-δ (PKC-δ) is a pivotal regulator of cellular signalling, and its dysregulation contributes to oncogenesis. While certain isolated PKC-δ domains have been crystallised, the full-length architecture and interdomain interactions remain largely unresolved, limiting mechanistic insight and the design of selective modulators. We aimed to define the full-length, inactive conformation of PKC-δ and identify accessible, functionally relevant binding sites for ligand discovery. Methods: We generated a consensus structural model of full-length inactive PKC-δ using multi-template comparative modelling guided by established inactivity markers. Molecular docking was used to predict ligands targeting the C2 domain, which were subsequently validated in breast cancer cell models, including wild-type and C2 domain-overexpressing lines. Results: Analysis of the model revealed the architecture of the C2/V5 interdomain space, providing a structural rationale for regulation of the nuclear localisation signal (NLS). Docking identified two ligand classes: ligand 1 engaged a C2 domain surface oriented toward the C2/V5 pocket, while ligand 2 targeted the C2 domain phosphotyrosine-binding domain (PTD). Experimental validation in breast cancer cell models demonstrated that both ligands reduced cell viability; ligand 1 showed enhanced effects in C2-overexpressing cells, consistent with predicted accessibility, whereas ligand 2 partially counteracted the C2 domain-induced viability phenotype, likely via interference with PTD-mediated interactions. Conclusions: Full-length structural context is essential for identifying accessible, functionally relevant binding sites and understanding context-dependent kinase regulation. Integrating computational modelling with phenotypic validation establishes a framework for selective PKC-δ modulation, offering insights to guide ligand discovery, improve isoform selectivity, and inform strategies to mitigate kinase inhibitor resistance in precision oncology. Full article
Show Figures

Graphical abstract

19 pages, 4582 KB  
Article
Anti-Allergic Effects of Lonicera caerulea L. Extract and Cyanidin-3-Glucoside on Degranulation and FcεRI Signaling Pathway of RBL-2H3 Cells
by Ye-Eun Choi, Jung-Mo Yang, Chae-Won Jeong, Sung-Hwan Park, Hee-Won Yoo, Hyun-Duck Jo and Ju-Hyun Cho
Appl. Sci. 2024, 14(24), 11722; https://doi.org/10.3390/app142411722 - 16 Dec 2024
Viewed by 2335
Abstract
(i) Background: The increasing prevalence of allergic diseases highlights the need for effective treatments. Lonicera caerulea fruit has been recognized for its anti-inflammatory, anti-cancer, and neuroprotective effects, but the mechanisms underlying its anti-allergic properties remain unclear. (ii) Objective: This study aims to evaluate [...] Read more.
(i) Background: The increasing prevalence of allergic diseases highlights the need for effective treatments. Lonicera caerulea fruit has been recognized for its anti-inflammatory, anti-cancer, and neuroprotective effects, but the mechanisms underlying its anti-allergic properties remain unclear. (ii) Objective: This study aims to evaluate the total phenolic, total flavonoid, and cyanidin-3-glucoside (C3G) contents of Lonicera caerulea extract (HR2302-30E) and to investigate its antioxidant and anti-allergic activities. (iii) Methods: Using an IgE-stimulated RBL-2H3 cell model, we assessed the effects of HR2302-30E and C3G on mast cell degranulation, β-hexosaminidase and histamine release. Western blot analysis was performed to evaluate the expression of high-affinity IgE receptor (FcεRI)β/γ and the phosphorylation of Src family kinases (Syk, Fyn). We also examined the phosphorylation of downstream factors phospholipase Cγ, protein kinase Cδ, and mitogen-activated protein kinase. (iv) Results: Total phenolic, flavonoid, and C3G contents of HR2302-30E were 18.73 mg GAE/g, 11.83 mg QE/g, and 7.02 mg/g, respectively. In IgE-activated mast cells, HR2302-30E and C3G inhibited β-hexosaminidase and histamine release. Western blot analysis revealed reduced expression of FcεRIβ/γ and decreased phosphorylation of key downstream signaling molecules. Conclusions: These findings suggest that HR2302-30E and C3G modulate FcεRI signaling, indicating their potential as natural anti-allergic agents. Full article
(This article belongs to the Special Issue Advances in Biological Activities and Application of Plant Extracts)
Show Figures

Figure 1

10 pages, 1217 KB  
Article
Regulatory Roles of Histone Deacetylation in Metabolic Stress-Induced Expression of Caspase Recruitment Domain-Containing Protein 9 (CARD9) in Pancreatic β-Cells
by Mirabela Hali, Nelson Pinto, Noah Gleason and Anjaneyulu Kowluru
Int. J. Mol. Sci. 2023, 24(21), 15994; https://doi.org/10.3390/ijms242115994 - 6 Nov 2023
Cited by 1 | Viewed by 2433
Abstract
CARD9, a scaffolding protein, has been implicated in the pathogenesis of metabolic diseases, including obesity and diabetes. We recently reported novel roles for CARD9 in islet β-cell dysregulation under duress of gluco (HG)- and glucolipotoxic (GLT) stress. CARD9 expression was also increased in [...] Read more.
CARD9, a scaffolding protein, has been implicated in the pathogenesis of metabolic diseases, including obesity and diabetes. We recently reported novel roles for CARD9 in islet β-cell dysregulation under duress of gluco (HG)- and glucolipotoxic (GLT) stress. CARD9 expression was also increased in β-cells following exposure to HG and GLT stress. The current study is aimed at understanding the putative roles of histone deacetylation in HG- and GLT-induced expression of CARD9. Using two structurally distinct inhibitors of histone deacetylases (HDACs), namely trichostatin (TSA) and suberoylanilide hydroxamic acid (SAHA), we provide the first evidence to suggest that the increased expression of CARD9 seen under duress of HG and GLT stress is under the regulatory control of histone deacetylation. Interestingly, the expression of protein kinase Cδ (PKCδ), a known upstream regulator of CARD9 activation, is also increased under conditions of metabolic stress. However, it is resistant to TSA and SAHA, suggesting that it is not regulated via histone deacetylation. Based on these data, we propose that targeting the appropriate HDACs, which mediate the expression (and function) of CARD9, might be the next step to further enhance our current understanding of the roles of CARD9 in islet dysfunction under metabolic stress and diabetes. Full article
Show Figures

Figure 1

19 pages, 5415 KB  
Article
Control of Mitochondrial Electron Transport Chain Flux and Apoptosis by Retinoic Acid: Raman Imaging In Vitro Human Bronchial and Lung Cancerous Cells
by Halina Abramczyk and Jakub Maciej Surmacki
Cancers 2023, 15(18), 4535; https://doi.org/10.3390/cancers15184535 - 13 Sep 2023
Cited by 6 | Viewed by 2749
Abstract
The multiple functions of cytochrome c (cyt c) and their regulation in life and death decisions of the mammalian cell go beyond respiration, apoptosis, ROS scavenging, and oxidation of cardiolipine. It has become increasingly evident that cyt c is involved in the [...] Read more.
The multiple functions of cytochrome c (cyt c) and their regulation in life and death decisions of the mammalian cell go beyond respiration, apoptosis, ROS scavenging, and oxidation of cardiolipine. It has become increasingly evident that cyt c is involved in the propagation of mitogenic signals. It has been proposed that the mitogenic signals occur via the PKCδ-retinoic acid signal complex comprising the protein kinase Cδ, the adapter protein Src homologous collagen homolog (p66Shc), and cyt c. We showed the importance of retinoic acid in regulating cellular processes monitored by the Raman bands of cyt c. To understand the role of retinoids in regulating redox status of cyt c, we recorded the Raman spectra and images of cells receiving redox stimuli by retinoic acid at in vitro cell cultures. For these purposes, we incubated bronchial normal epithelial lung (BEpC) and lung cancer cells (A549) with retinoic acid at concentrations of 1, 10, and 50 µM for 24 and 48 h of incubations. The new role of retinoic acid in a change of the redox status of iron ion in the heme group of cyt c from oxidized Fe3+ to reduced Fe2+ form may have serious consequences on ATPase effectiveness and aborting the activation of the conventional mitochondrial signaling protein-dependent pathways, lack of triggering programmed cell death through apoptosis, and lack of cytokine induction. To explain the effect of retinoids on the redox status of cyt c in the electron transfer chain, we used the quantum chemistry models of retinoid biology. It has been proposed that retinol catalyzes resonance energy transfer (RET) reactions in cyt c. The paper suggests that RET is pivotally important for mitochondrial energy homeostasis by controlling oxidative phosphorylation by switching between activation and inactivation of glycolysis and regulation of electron flux in the electron transport chain. The key role in this process is played by protein kinase C δ (PKCδ), which triggers a signal to the pyruvate dehydrogenase complex. The PKCδ-retinoic acid complex reversibly (at normal physiological conditions) or irreversibly (cancer) responds to the redox potential of cyt c that changes with the electron transfer chain flux. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

16 pages, 2726 KB  
Article
Effect of Photobiomodulation on Protein Kinase Cδ, Cytochrome C, and Mitochondria in U87 MG Cells
by Viktória Pevná, Georges Wagnières, Daniel Jancura and Veronika Huntošová
Cells 2023, 12(10), 1441; https://doi.org/10.3390/cells12101441 - 22 May 2023
Cited by 6 | Viewed by 4288
Abstract
Photobiomodulation (PBM) therapy is a relatively new modality for the combined treatment of cancer. Pre-treatment of certain types of cancer cells with PBM potentiates the treatment efficacy of photodynamic therapy (PDT). The mechanism of action of this synergetic effect is not yet fully [...] Read more.
Photobiomodulation (PBM) therapy is a relatively new modality for the combined treatment of cancer. Pre-treatment of certain types of cancer cells with PBM potentiates the treatment efficacy of photodynamic therapy (PDT). The mechanism of action of this synergetic effect is not yet fully understood. In the present study, we focused on protein kinase Cδ (PKCδ) as a proapoptotic agent that is highly expressed in U87MG cells. The distribution of PKCδ in the cytoplasm was changed and its concentration was increased by PBM using radiation at 808 nm (15 mW/cm2, 120 s). This process was accompanied by the organelle specific phosphorylation of PKCδ amino acids (serine/tyrosine). Enhanced phosphorylation of serine 645 in the catalytic domain of PKCδ was found in the cytoplasm, whereas the phosphorylation of tyrosine 311 was mainly localized in the mitochondria. Despite a local increase in the level of oxidative stress, only a small amount of cytochrome c was released from the mitochondria to cytosol. Although a partial inhibition of mitochondrial metabolic activity was induced in PBM-exposed cells, apoptosis was not observed. We hypothesized that PBM-induced photodamage of organelles was neutralized by autophagy maintained in these cells. However, photodynamic therapy may effectively exploit this behaviour to generate apoptosis in cancer treatment, which may increase the treatment efficacy and open up prospects for further applications. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Graphical abstract

11 pages, 1946 KB  
Article
The Infarct-Reducing Effect of the δ2 Opioid Receptor Agonist Deltorphin II: The Molecular Mechanism
by Sergey V. Popov, Alexandr V. Mukhomedzyanov, Leonid N. Maslov, Natalia V. Naryzhnaya, Boris K. Kurbatov, N. Rajendra Prasad, Nirmal Singh, Feng Fu and Viacheslav N. Azev
Membranes 2023, 13(1), 63; https://doi.org/10.3390/membranes13010063 - 4 Jan 2023
Cited by 15 | Viewed by 3411
Abstract
The search for novel drugs for the treatment of acute myocardial infarction and reperfusion injury of the heart is an urgent aim of modern pharmacology. Opioid peptides could be such potential drugs in this area. However, the molecular mechanism of the infarct-limiting effect [...] Read more.
The search for novel drugs for the treatment of acute myocardial infarction and reperfusion injury of the heart is an urgent aim of modern pharmacology. Opioid peptides could be such potential drugs in this area. However, the molecular mechanism of the infarct-limiting effect of opioids in reperfusion remains unexplored. The objective of this research was to study the signaling mechanisms of the cardioprotective effect of deltorphin II in reperfusion. Rats were subjected to coronary artery occlusion (45 min) and reperfusion (2 h). The ratio of infarct size/area at risk was determined. This study indicated that the cardioprotective effect of deltorphin II in reperfusion is mediated via the activation of peripheral δ2 opioid receptor (OR), which is most likely localized in cardiomyocytes. We studied the role of guanylyl cyclase, protein kinase Cδ (PKCδ), phosphatidylinositol-3-kinase (PI3-kinase), extracellular signal-regulated kinase-1/2 (ERK1/2-kinase), ATP-sensitive K+-channels (KATP channels), mitochondrial permeability transition pore (MPTP), NO synthase (NOS), protein kinase A (PKA), Janus 2 kinase, AMP-activated protein kinase (AMPK), the large conductance calcium-activated potassium channel (BKCa-channel), reactive oxygen species (ROS) in the cardioprotective effect of deltorphin II. The infarct-reducing effect of deltorphin II appeared to be mediated via the activation of PKCδ, PI3-kinase, ERK1/2-kinase, sarcolemmal KATP channel opening, and MPTP closing. Full article
(This article belongs to the Special Issue Membrane Permeability and Channels)
Show Figures

Figure 1

13 pages, 3151 KB  
Article
12-O-tetradecanoylphorbol-13-acetate Reduces Activation of Hepatic Stellate Cells by Inhibiting the Hippo Pathway Transcriptional Coactivator YAP
by Chang Wan Kim, Yongdae Yoon, Moon Young Kim, Soon Koo Baik, Hoon Ryu, Il Hwan Park and Young Woo Eom
Cells 2023, 12(1), 91; https://doi.org/10.3390/cells12010091 - 26 Dec 2022
Cited by 7 | Viewed by 3202
Abstract
Although protein kinase C (PKC) regulates various biological activities, including cell proliferation, differentiation, migration, tissue remodeling, gene expression, and cell death, the antifibrotic effect of PKC in myofibroblasts is not fully understood. We investigated whether 12-O-tetradecanoylphorbol-13-acetate (TPA), a PKC activator, reduced [...] Read more.
Although protein kinase C (PKC) regulates various biological activities, including cell proliferation, differentiation, migration, tissue remodeling, gene expression, and cell death, the antifibrotic effect of PKC in myofibroblasts is not fully understood. We investigated whether 12-O-tetradecanoylphorbol-13-acetate (TPA), a PKC activator, reduced the activation of hepatic stellate cells (HSCs) and explored the involvement of the Hippo pathway transcriptional coactivator YAP. We analyzed the effect of TPA on the proliferation and expression of α-smooth muscle actin (SMA) in the LX-2 HSC line. We also analyzed the phosphorylation of the Hippo pathway molecules YAP and LATS1 and investigated YAP nuclear translocation. We examined whether Gö 6983, a pan-PKC inhibitor, restored the TPA-inhibited activities of HSCs. Administration of TPA decreased the growth rate of LX-2 cells and inhibited the expression of α-SMA and collagen type I alpha 1 (COL1A1). In addition, TPA induced phosphorylation of PKCδ, LATS1, and YAP and inhibited the nuclear translocation of YAP compared with the control. These TPA-induced phenomena were mostly ameliorated by Gö 6983. Our results indicate that PKCδ exerts an antifibrotic effect by inhibiting the Hippo pathway in HSCs. Therefore, PKCδ and YAP can be used as therapeutic targets for the treatment of fibrotic diseases. Full article
Show Figures

Figure 1

10 pages, 2040 KB  
Article
Phosphodiesterase 5 Inhibitor Potentiates Epigallocatechin 3-O-Gallate-Induced Apoptotic Cell Death via Activation of the cGMP Signaling Pathway in Caco-2 Cells
by Jaehoon Bae, Kwanwoo Lee, Ji-Sun Park, Jinseok Jung, Hirofumi Tachibana, Yoshinori Fujimura, Motofumi Kumazoe, Jae Sung Lim, Young-Chang Cho, Seung-Jae Lee and Su-Jin Park
Curr. Issues Mol. Biol. 2022, 44(12), 6247-6256; https://doi.org/10.3390/cimb44120426 - 9 Dec 2022
Cited by 1 | Viewed by 3401
Abstract
Epigallocatechin 3-O-gallate (EGCG) is a predominant component in green tea with various health benefits. The 67 kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that is overexpressed in various types of cancer; 67LR was identified a cell surface EGCG [...] Read more.
Epigallocatechin 3-O-gallate (EGCG) is a predominant component in green tea with various health benefits. The 67 kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that is overexpressed in various types of cancer; 67LR was identified a cell surface EGCG target that plays a pivotal role in tumor growth, metastasis, and resistance to chemotherapy. However, the plasma concentration of EGCG is limited, and its molecular mechanisms remain unelucidated in colon cancer. In this study, we found that the phosphodiesterase 5 (PDE5) inhibitor, vardenafil (VDN), potentiates EGCG-induced apoptotic cell death in colon cancer cells. The combination of EGCG and VDN induced apoptosis via activation of the endothelial nitric oxide synthase/cyclic guanosine monophosphate/protein kinase Cδ signaling pathway. In conclusion, the PDE5 inhibitor, VDN, may reduce the intracellular PDE5 enzyme activity that potentiates EGCG-induced apoptotic cell death in Caco-2 cells. These results suggest that PDE5 inhibitors can be used to elevate cGMP levels to induce 67LR-mediated, cancer-specific cell death. Therefore, EGCG may be employed as a therapeutic candidate for colon cancer. Full article
(This article belongs to the Special Issue New Sight: Enzymes as Targets for Drug Development)
Show Figures

Figure 1

13 pages, 10273 KB  
Article
Protein Kinase C (Pkc)-δ Mediates Arginine-Induced Glucagon Secretion in Pancreatic α-Cells
by Norikiyo Honzawa, Kei Fujimoto, Masaki Kobayashi, Daisuke Kohno, Osamu Kikuchi, Hiromi Yokota-Hashimoto, Eri Wada, Yuichi Ikeuchi, Yoko Tabei, Gerald W. Dorn, Kazunori Utsunomiya, Rimei Nishimura and Tadahiro Kitamura
Int. J. Mol. Sci. 2022, 23(7), 4003; https://doi.org/10.3390/ijms23074003 - 4 Apr 2022
Cited by 7 | Viewed by 3768
Abstract
The pathophysiology of type 2 diabetes involves insulin and glucagon. Protein kinase C (Pkc)-δ, a serine–threonine kinase, is ubiquitously expressed and involved in regulating cell death and proliferation. However, the role of Pkcδ in regulating glucagon secretion in pancreatic α-cells remains unclear. Therefore, [...] Read more.
The pathophysiology of type 2 diabetes involves insulin and glucagon. Protein kinase C (Pkc)-δ, a serine–threonine kinase, is ubiquitously expressed and involved in regulating cell death and proliferation. However, the role of Pkcδ in regulating glucagon secretion in pancreatic α-cells remains unclear. Therefore, this study aimed to elucidate the physiological role of Pkcδ in glucagon secretion from pancreatic α-cells. Glucagon secretions were investigated in Pkcδ-knockdown InR1G9 cells and pancreatic α-cell-specific Pkcδ-knockout (αPkcδKO) mice. Knockdown of Pkcδ in the glucagon-secreting cell line InR1G9 cells reduced glucagon secretion. The basic amino acid arginine enhances glucagon secretion via voltage-dependent calcium channels (VDCC). Furthermore, we showed that arginine increased Pkcδ phosphorylation at Thr505, which is critical for Pkcδ activation. Interestingly, the knockdown of Pkcδ in InR1G9 cells reduced arginine-induced glucagon secretion. Moreover, arginine-induced glucagon secretions were decreased in αPkcδKO mice and islets from αPkcδKO mice. Pkcδ is essential for arginine-induced glucagon secretion in pancreatic α-cells. Therefore, this study may contribute to the elucidation of the molecular mechanism of amino acid-induced glucagon secretion and the development of novel antidiabetic drugs targeting Pkcδ and glucagon. Full article
(This article belongs to the Special Issue Fate of Pancreatic Islets in Type 2 Diabetes)
Show Figures

Figure 1

12 pages, 1304 KB  
Article
Signaling Pathway of Histamine H1 Receptor-Mediated Histamine H1 Receptor Gene Upregulation Induced by Histamine in U-373 MG Cells
by Hiroyuki Mizuguchi, Yuko Miyamoto, Takuma Terao, Haruka Yoshida, Wakana Kuroda, Yoshiaki Kitamura, Noriaki Takeda and Hiroyuki Fukui
Curr. Issues Mol. Biol. 2021, 43(3), 1243-1254; https://doi.org/10.3390/cimb43030088 - 24 Sep 2021
Cited by 9 | Viewed by 4658
Abstract
Histamine H1 receptor (H1R) is one of the targets of histamine in the nervous system and the peripheral tissues. Protein kinase Cδ (PKCδ) signaling is involved in histamine-induced upregulation of H1R gene expression in HeLa cells. Histamine also upregulates H1R gene expression [...] Read more.
Histamine H1 receptor (H1R) is one of the targets of histamine in the nervous system and the peripheral tissues. Protein kinase Cδ (PKCδ) signaling is involved in histamine-induced upregulation of H1R gene expression in HeLa cells. Histamine also upregulates H1R gene expression in U-373 MG cells. However, the molecular signaling of this upregulation is still unclear. Here, we investigated the molecular mechanism of histamine-induced H1R gene upregulation in U-373 MG cells. Histamine-induced H1R gene upregulation was inhibited by H1R antagonist d-chlorpheniramine, but not by ranitidine, ciproxifan, or JNJ77777120, and H2R, H3R, or H4R antagonists, respectively. Ro-31-8220 and Go6976 also suppressed this upregulation, however, the PKCδ selective inhibitor rottlerin and the PKCβ selective inhibitor Ly333531 did not. Time-course studies showed distinct kinetics of H1R gene upregulation in U-373 MG cells from that in HeLa cells. A promoter assay revealed that the promoter region responsible for H1R gene upregulation in U-373 MG cells was different from that of HeLa cells. These data suggest that the H1R-activated H1R gene expression signaling pathway in U-373 MG cells is different from that in HeLa cells, possibly by using different promoters. The involvement of PKCα also suggests that compounds that target PKCδ could work as peripheral type H1R-selective inhibitors without a sedative effect. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Graphical abstract

21 pages, 3274 KB  
Review
Emerging Approaches to Understanding Microvascular Endothelial Heterogeneity: A Roadmap for Developing Anti-Inflammatory Therapeutics
by Qingliang Yang, Harshani Wijerathne, Jordan C. Langston, Mohammad F. Kiani and Laurie E. Kilpatrick
Int. J. Mol. Sci. 2021, 22(15), 7770; https://doi.org/10.3390/ijms22157770 - 21 Jul 2021
Cited by 24 | Viewed by 6022
Abstract
The endothelium is the inner layer of all blood vessels and it regulates hemostasis. It also plays an active role in the regulation of the systemic inflammatory response. Systemic inflammatory disease often results in alterations in vascular endothelium barrier function, increased permeability, excessive [...] Read more.
The endothelium is the inner layer of all blood vessels and it regulates hemostasis. It also plays an active role in the regulation of the systemic inflammatory response. Systemic inflammatory disease often results in alterations in vascular endothelium barrier function, increased permeability, excessive leukocyte trafficking, and reactive oxygen species production, leading to organ damage. Therapeutics targeting endothelium inflammation are urgently needed, but strong concerns regarding the level of phenotypic heterogeneity of microvascular endothelial cells between different organs and species have been expressed. Microvascular endothelial cell heterogeneity in different organs and organ-specific variations in endothelial cell structure and function are regulated by intrinsic signals that are differentially expressed across organs and species; a result of this is that neutrophil recruitment to discrete organs may be regulated differently. In this review, we will discuss the morphological and functional variations in differently originated microvascular endothelia and discuss how these variances affect systemic function in response to inflammation. We will review emerging in vivo and in vitro models and techniques, including microphysiological devices, proteomics, and RNA sequencing used to study the cellular and molecular heterogeneity of endothelia from different organs. A better understanding of microvascular endothelial cell heterogeneity will provide a roadmap for developing novel therapeutics to target the endothelium. Full article
(This article belongs to the Special Issue Advances in Endothelial Cell Biology)
Show Figures

Graphical abstract

24 pages, 3023 KB  
Article
Ginsenoside Re Protects against Serotonergic Behaviors Evoked by 2,5-Dimethoxy-4-iodo-amphetamine in Mice via Inhibition of PKCδ-Mediated Mitochondrial Dysfunction
by Eun-Joo Shin, Ji Hoon Jeong, Bao-Trong Nguyen, Naveen Sharma, Seung-Yeol Nah, Yoon Hee Chung, Yi Lee, Jae Kyung Byun, Toshitaka Nabeshima, Sung Kwon Ko and Hyoung-Chun Kim
Int. J. Mol. Sci. 2021, 22(13), 7219; https://doi.org/10.3390/ijms22137219 - 5 Jul 2021
Cited by 10 | Viewed by 5024
Abstract
It has been recognized that serotonin 2A receptor (5-HT2A) agonist 2,5-dimethoxy-4-iodo-amphetamine (DOI) impairs serotonergic homeostasis. However, the mechanism of DOI-induced serotonergic behaviors remains to be explored. Moreover, little is known about therapeutic interventions against serotonin syndrome, although evidence suggests that ginseng [...] Read more.
It has been recognized that serotonin 2A receptor (5-HT2A) agonist 2,5-dimethoxy-4-iodo-amphetamine (DOI) impairs serotonergic homeostasis. However, the mechanism of DOI-induced serotonergic behaviors remains to be explored. Moreover, little is known about therapeutic interventions against serotonin syndrome, although evidence suggests that ginseng might possess modulating effects on the serotonin system. As ginsenoside Re (GRe) is well-known as a novel antioxidant in the nervous system, we investigated whether GRe modulates 5-HT2A receptor agonist DOI-induced serotonin impairments. We proposed that protein kinase Cδ (PKCδ) mediates serotonergic impairments. Treatment with GRe or 5-HT2A receptor antagonist MDL11939 significantly attenuated DOI-induced serotonergic behaviors (i.e., overall serotonergic syndrome behaviors, head twitch response, hyperthermia) by inhibiting mitochondrial translocation of PKCδ, reducing mitochondrial glutathione peroxidase activity, mitochondrial dysfunction, and mitochondrial oxidative stress in wild-type mice. These attenuations were in line with those observed upon PKCδ inhibition (i.e., pharmacologic inhibitor rottlerin or PKCδ knockout mice). Furthermore, GRe was not further implicated in attenuation mediated by PKCδ knockout in mice. Our results suggest that PKCδ is a therapeutic target for GRe against serotonergic behaviors induced by DOI. Full article
(This article belongs to the Special Issue Protein Kinases and Neurodegenerative Diseases)
Show Figures

Graphical abstract

18 pages, 3475 KB  
Article
Combination of PKCδ Inhibition with Conventional TKI Treatment to Target CML Models
by Fabien Muselli, Lucas Mourgues, Rita Morcos, Nathalie Rochet, Marielle Nebout, Agnès Guerci-Bresler, Douglas V Faller, Robert M William, Rana Mhaidly, Els Verhoeyen, Laurence Legros, Jean-François Peyron and Didier Mary
Cancers 2021, 13(7), 1693; https://doi.org/10.3390/cancers13071693 - 2 Apr 2021
Cited by 3 | Viewed by 3214
Abstract
Numerous combinations of signaling pathway blockades in association with tyrosine kinase inhibitor (TKI) treatment have been proposed for eradicating leukemic stem cells (LSCs) in chronic myeloid leukemia (CML), but none are currently clinically available. Because targeting protein kinase Cδ (PKCδ) was demonstrated to [...] Read more.
Numerous combinations of signaling pathway blockades in association with tyrosine kinase inhibitor (TKI) treatment have been proposed for eradicating leukemic stem cells (LSCs) in chronic myeloid leukemia (CML), but none are currently clinically available. Because targeting protein kinase Cδ (PKCδ) was demonstrated to eliminate cancer stem cells (CSCs) in solid tumors, we evaluated the efficacy of PKCδ inhibition in combination with TKIs for CML cells. We observed that inhibition of PKCδ by a pharmacological inhibitor, by gene silencing, or by using K562 CML cells expressing dominant-negative (DN) or constitutively active (CA) PKCδ isoforms clearly points to PKCδ as a regulator of the expression of the stemness regulator BMI1. As a consequence, inhibition of PKCδ impaired clonogenicity and cell proliferation for leukemic cells. PKCδ targeting in K562 and LAMA-84 CML cell lines clearly enhanced the apoptotic response triggered by any TKI. A strong synergism was observed for apoptosis induction through an increase in caspase-9 and caspase-3 activation and significantly decreased expression of the Bcl-xL Bcl-2 family member. Inhibition of PKCδ did not modify BCR-ABL phosphorylation but acted downstream of the oncogene by downregulating BMI1 expression, decreasing clonogenicity. PKCδ inhibition interfered with the clonogenicity of primary CML CD34+ and BCR-ABL-transduced healthy CD34+ cells as efficiently as any TKI while it did not affect differentiation of healthy CD34+ cells. LTC-IC experiments pinpointed that PKCδ inhibition strongly decreased the progenitors/LSCs frequency. All together, these results demonstrate that targeting of PKCδ in combination with a conventional TKI could be a new therapeutic opportunity to affect for CML cells. Full article
(This article belongs to the Special Issue Protein Kinase in Leukemia)
Show Figures

Figure 1

10 pages, 1752 KB  
Article
Characterization of Integrin αIIbβ3-Mediated Outside-in Signaling by Protein Kinase Cδ in Platelets
by Preeti Kumari Chaudhary, Sanggu Kim, Youngheun Jee, Seung-Hun Lee and Soochong Kim
Int. J. Mol. Sci. 2020, 21(18), 6563; https://doi.org/10.3390/ijms21186563 - 8 Sep 2020
Cited by 5 | Viewed by 3322
Abstract
Engagement of integrin αIIbβ3 promotes platelet–platelet interaction and stimulates outside-in signaling that amplifies activation. Protein kinase Cδ (PKCδ) is known to play an important role in platelet activation, but its role in outside-in signaling has not been established. In the present study, we [...] Read more.
Engagement of integrin αIIbβ3 promotes platelet–platelet interaction and stimulates outside-in signaling that amplifies activation. Protein kinase Cδ (PKCδ) is known to play an important role in platelet activation, but its role in outside-in signaling has not been established. In the present study, we determined the role of PKCδ and its signaling pathways in integrin αIIbβ3-mediated outside-in signaling in platelets using PKCδ-deficient platelets. Platelet spreading to immobilized fibrinogen resulted in PKCδ phosphorylation, suggesting that αIIbβ3 activation caused PKCδ activation. αIIbβ3-mediated phosphorylation of Akt was significantly inhibited in PKCδ -/- platelets, indicating a role of PKCδ in outside-in signaling. αIIbβ3-mediated PKCδ phosphorylation was inhibited by proline-rich tyrosine kinase 2 (Pyk2) selective inhibitor, suggesting that Pyk2 contributes to the regulation of PKCδ phosphorylation in outside-in signaling. Additionally, Src-family kinase inhibitor PP2 inhibited integrin-mediated Pyk2 and PKCδ phosphorylation. Lastly, platelet spreading was inhibited in PKCδ -/- platelets compared to the wild-type (WT) platelets, and clot retraction from PKCδ -/- platelets was markedly delayed, indicating that PKCδ is involved in the regulation of αIIbβ3-dependent interactivities with cytoskeleton elements. Together, these results provide evidence that PKCδ plays an important role in outside-in signaling, which is regulated by Pyk2 in platelets. Full article
(This article belongs to the Special Issue Physiology of Platelets in Humans and Animals)
Show Figures

Figure 1

14 pages, 1954 KB  
Article
Role of GRK6 in the Regulation of Platelet Activation through Selective G Protein-Coupled Receptor (GPCR) Desensitization
by Preeti Kumari Chaudhary, Sanggu Kim, Youngheun Jee, Seung-Hun Lee, Kyung-Mee Park and Soochong Kim
Int. J. Mol. Sci. 2020, 21(11), 3932; https://doi.org/10.3390/ijms21113932 - 30 May 2020
Cited by 16 | Viewed by 4520
Abstract
Platelet G protein-coupled receptors (GPCRs) regulate platelet function by mediating the response to various agonists, including adenosine diphosphate (ADP), thromboxane A2, and thrombin. Although GPCR kinases (GRKs) are considered to have the crucial roles in most GPCR functions, little is known [...] Read more.
Platelet G protein-coupled receptors (GPCRs) regulate platelet function by mediating the response to various agonists, including adenosine diphosphate (ADP), thromboxane A2, and thrombin. Although GPCR kinases (GRKs) are considered to have the crucial roles in most GPCR functions, little is known regarding the regulation of GPCR signaling and mechanisms of GPCR desensitization by GRKs in platelets. In this study, we investigated the functional role of GRK6 and the molecular basis for regulation of specific GPCR desensitization by GRK6 in platelets. We used GRK6 knockout mice to evaluate the functional role of GRK6 in platelet activation. Platelet aggregation, dense- and α-granule secretion, and fibrinogen receptor activation induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in GRK6−/− platelets compared to the wild-type (WT) platelets. However, collagen-related peptide (CRP)-induced platelet aggregation and secretion were not affected in GRK6−/− platelets. Interestingly, platelet aggregation induced by co-stimulation of serotonin and epinephrine which activate Gq-coupled 5HT2A and Gz-coupled α2A adrenergic receptors, respectively, was not affected in GRK6−/− platelets, suggesting that GRK6 was involved in specific GPCR regulation. In addition, platelet aggregation in response to the second challenge of ADP and AYPGKF was restored in GRK6−/− platelets whereas re-stimulation of the agonist failed to induce aggregation in WT platelets, indicating that GRK6 contributed to P2Y1, P2Y12, and PAR4 receptor desensitization. Furthermore, 2-MeSADP-induced Akt phosphorylation and AYPGKF-induced Akt, extracellular signal-related kinase (ERK), and protein kinase Cδ (PKCδ) phosphorylation were significantly potentiated in GRK6−/− platelets. Finally, GRK6−/− mice exhibited an enhanced and stable thrombus formation after FeCl3 injury to the carotid artery and shorter tail bleeding times, indicating that GRK6−/− mice were more susceptible to thrombosis and hemostasis. We conclude that GRK6 plays an important role in regulating platelet functional responses and thrombus formation through selective GPCR desensitization. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop