Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = protein–monosaccharide recognition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8377 KB  
Review
Research Progress on Saccharide Molecule Detection Based on Nanopores
by Bohua Yin, Wanyi Xie, Shaoxi Fang, Shixuan He, Wenhao Ma, Liyuan Liang, Yajie Yin, Daming Zhou, Zuobin Wang and Deqiang Wang
Sensors 2024, 24(16), 5442; https://doi.org/10.3390/s24165442 - 22 Aug 2024
Cited by 2 | Viewed by 2203
Abstract
Saccharides, being one of the fundamental molecules of life, play essential roles in the physiological and pathological functions of cells. However, their intricate structures pose challenges for detection. Nanopore technology, with its high sensitivity and capability for single-molecule-level analysis, has revolutionized the identification [...] Read more.
Saccharides, being one of the fundamental molecules of life, play essential roles in the physiological and pathological functions of cells. However, their intricate structures pose challenges for detection. Nanopore technology, with its high sensitivity and capability for single-molecule-level analysis, has revolutionized the identification and structural analysis of saccharide molecules. This review focuses on recent advancements in nanopore technology for carbohydrate detection, presenting an array of methods that leverage the molecular complexity of saccharides. Biological nanopore techniques utilize specific protein binding or pore modifications to trigger typical resistive pulses, enabling the high-sensitivity detection of monosaccharides and oligosaccharides. In solid-state nanopore sensing, boronic acid modification and pH gating mechanisms are employed for the specific recognition and quantitative analysis of polysaccharides. The integration of artificial intelligence algorithms can further enhance the accuracy and reliability of analyses. Serving as a crucial tool in carbohydrate detection, we foresee significant potential in the application of nanopore technology for the detection of carbohydrate molecules in disease diagnosis, drug screening, and biosensing, fostering innovative progress in related research domains. Full article
Show Figures

Figure 1

10 pages, 13392 KB  
Article
Expression and Characterisation of the First Snail-Derived UDP-Gal: Glycoprotein-N-acetylgalactosamine β-1,3-Galactosyltransferase (T-Synthase) from Biomphalaria glabrata
by Marilica Zemkollari, Markus Blaukopf, Reingard Grabherr and Erika Staudacher
Molecules 2023, 28(2), 552; https://doi.org/10.3390/molecules28020552 - 5 Jan 2023
Cited by 5 | Viewed by 2775
Abstract
UDP-Gal: glycoprotein-N-acetylgalactosamine β-1,3-galactosyltransferase (T-synthase, EC 2.4.1.122) catalyses the transfer of the monosaccharide galactose from UDP-Gal to GalNAc-Ser/Thr, synthesizing the core 1 mucin type O-glycan. Such glycans play important biological roles in a number of recognition processes. The crucial role of these glycans is [...] Read more.
UDP-Gal: glycoprotein-N-acetylgalactosamine β-1,3-galactosyltransferase (T-synthase, EC 2.4.1.122) catalyses the transfer of the monosaccharide galactose from UDP-Gal to GalNAc-Ser/Thr, synthesizing the core 1 mucin type O-glycan. Such glycans play important biological roles in a number of recognition processes. The crucial role of these glycans is acknowledged for mammals, but a lot remains unknown regarding invertebrate and especially mollusc O-glycosylation. Although core O-glycans have been found in snails, no core 1 β-1,3-galactosyltransferase has been described so far. Here, the sequence of the enzyme was identified by a BlastP search of the NCBI Biomphalaria glabrata database using the human T-synthase sequence (NP_064541.1) as a template. The obtained gene codes for a 388 amino acids long transmembrane protein with two putative N-glycosylation sites. The coding sequence was synthesised and expressed in Sf9 cells. The expression product of the putative enzyme displayed core 1 β-1,3-galactosyltransferase activity using pNP-α-GalNAc as the substrate. The enzyme showed some sequence homology (49.40% with Homo sapiens, 53.69% with Drosophila melanogaster and 49.14% with Caenorhabditis elegans) and similar biochemical parameters with previously characterized T-synthases from other phyla. In this study we present the identification, expression and characterisation of the UDP-Gal: glycoprotein-N-acetylgalactosamine β-1,3-galactosyltransferase from the fresh-water snail Biomphalaria glabrata, which is the first cloned T-synthase from mollusc origin. Full article
(This article belongs to the Collection Advances in Glycosciences)
Show Figures

Figure 1

24 pages, 5401 KB  
Article
ArtinM Cytotoxicity in B Cells Derived from Non-Hodgkin’s Lymphoma Depends on Syk and Src Family Kinases
by Bruno Rafael Barboza, Sandra Maria de Oliveira Thomaz, Airton de Carvalho Junior, Enilza Maria Espreafico, Jackson Gabriel Miyamoto, Alexandre Keiji Tashima, Maurício Frota Camacho, André Zelanis, Maria Cristina Roque-Barreira and Thiago Aparecido da Silva
Int. J. Mol. Sci. 2023, 24(2), 1075; https://doi.org/10.3390/ijms24021075 - 5 Jan 2023
Cited by 3 | Viewed by 3193
Abstract
Receptors on the immune cell surface have a variety of glycans that may account for the immunomodulation induced by lectins, which have a carbohydrate recognition domain (CRD) that binds to monosaccharides or oligosaccharides in a specific manner. ArtinM, a D-mannose-binding lectin obtained from [...] Read more.
Receptors on the immune cell surface have a variety of glycans that may account for the immunomodulation induced by lectins, which have a carbohydrate recognition domain (CRD) that binds to monosaccharides or oligosaccharides in a specific manner. ArtinM, a D-mannose-binding lectin obtained from Artocarpus heterophyllus, has affinity for the N-glycans core. Immunomodulation by ArtinM toward the Th1 phenotype occurs via its interaction with TLR2/CD14 N-glycans on antigen-presenting cells, as well as recognition of CD3γ N-glycans on murine CD4+ and CD8+ T cells. ArtinM exerts a cytotoxic effect on Jurkat human leukemic T-cell line and human myeloid leukemia cell line (NB4). The current study evaluated the effects of ArtinM on murine and human B cells derived from non-Hodgkin’s lymphoma. We found that murine B cells are recognized by ArtinM via the CRD, and the ArtinM stimulus did not augment the proliferation rate or production of IL-2. However, murine B cell incubation with ArtinM augmented the rate of apoptosis, and this cytotoxic effect of ArtinM was also seen in human B cell-lines sourced from non-Hodgkin’s lymphoma Raji cell line. This cytotoxic effect was inhibited by the phosphatase activity of CD45 on Lck, and the protein kinases of the Src family contribute to cell death triggered by ArtinM. Full article
(This article belongs to the Special Issue New Insight into B Cell Biology)
Show Figures

Figure 1

15 pages, 3778 KB  
Article
The L-Rhamnose Biosynthetic Pathway in Trichomonas vaginalis: Identification and Characterization of UDP-D-Glucose 4,6-dehydratase
by Matteo Gaglianone, Maria Elena Laugieri, Adriana Lucely Rojas, Maria Rosaria Coppola, Francesco Piacente, Pier Luigi Fiori and Michela Giulia Tonetti
Int. J. Mol. Sci. 2022, 23(23), 14587; https://doi.org/10.3390/ijms232314587 - 23 Nov 2022
Cited by 3 | Viewed by 2425
Abstract
Trichomonas vaginalis is the causative agent of one of the most widespread sexually transmitted diseases in the world. The adhesion of the parasite to the vaginal epithelial cells is mediated by specific proteins and by a complex glycan structure, the lipoglycan (TvLG), which [...] Read more.
Trichomonas vaginalis is the causative agent of one of the most widespread sexually transmitted diseases in the world. The adhesion of the parasite to the vaginal epithelial cells is mediated by specific proteins and by a complex glycan structure, the lipoglycan (TvLG), which covers the pathogen surface. L-rhamnose is an important component of TvLG, comprising up to 40% of the monosaccharides. Thus, the inhibition of its production could lead to a severe alteration in the TvLG structure, making the L-rhamnose biosynthetic pathway an attractive pharmacologic target. We report the identification and characterization of the first committed and limiting step of the L-rhamnose biosynthetic pathway, UDP-D-glucose 4,6-dehydratase (UGD, EC 4.2.1.76). The enzyme shows a strong preference for UDP-D-glucose compared to dTDP-D-glucose; we propose that the mechanism underlying the higher affinity for the UDP-bound substrate is mediated by the differential recognition of ribose versus the deoxyribose of the nucleotide moiety. The identification of the enzymes responsible for the following steps of the L-rhamnose pathway (epimerization and reduction) was more elusive. However, sequence analyses suggest that in T. vaginalis L-rhamnose synthesis proceeds through a mechanism different from the typical eukaryotic pathways, displaying intermediate features between the eukaryotic and prokaryotic pathways and involving separate enzymes for the epimerase and reductase activities, as observed in bacteria. Altogether, these results form the basis for a better understanding of the formation of the complex glycan structures on TvLG and the possible use of L-rhamnose biosynthetic enzymes for the development of selective inhibitors. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

25 pages, 4007 KB  
Article
Full-Length Transcriptome Sequencing of the Scleractinian Coral Montipora foliosa Reveals the Gene Expression Profile of Coral–Zooxanthellae Holobiont
by Yunqing Liu, Xin Liao, Tingyu Han, Ao Su, Zhuojun Guo, Na Lu, Chunpeng He and Zuhong Lu
Biology 2021, 10(12), 1274; https://doi.org/10.3390/biology10121274 - 5 Dec 2021
Cited by 6 | Viewed by 4852
Abstract
Coral–zooxanthellae holobionts are one of the most productive ecosystems in the ocean. With global warming and ocean acidification, coral ecosystems are facing unprecedented challenges. To save the coral ecosystems, we need to understand the symbiosis of coral–zooxanthellae. Although some Scleractinia (stony corals) transcriptomes [...] Read more.
Coral–zooxanthellae holobionts are one of the most productive ecosystems in the ocean. With global warming and ocean acidification, coral ecosystems are facing unprecedented challenges. To save the coral ecosystems, we need to understand the symbiosis of coral–zooxanthellae. Although some Scleractinia (stony corals) transcriptomes have been sequenced, the reliable full-length transcriptome is still lacking due to the short-read length of second-generation sequencing and the uncertainty of the assembly results. Herein, PacBio Sequel II sequencing technology polished with the Illumina RNA-seq platform was used to obtain relatively complete scleractinian coral M. foliosa transcriptome data and to quantify M. foliosa gene expression. A total of 38,365 consensus sequences and 20,751 unique genes were identified. Seven databases were used for the gene function annotation, and 19,972 genes were annotated in at least one database. We found 131 zooxanthellae transcripts and 18,829 M. foliosa transcripts. A total of 6328 lncRNAs, 847 M. foliosa transcription factors (TFs), and 2 zooxanthellae TF were identified. In zooxanthellae we found pathways related to symbiosis, such as photosynthesis and nitrogen metabolism. Pathways related to symbiosis in M. foliosa include oxidative phosphorylation and nitrogen metabolism, etc. We summarized the isoforms and expression level of the symbiont recognition genes. Among the membrane proteins, we found three pathways of glycan biosynthesis, which may be involved in the organic matter storage and monosaccharide stabilization in M. foliosa. Our results provide better material for studying coral symbiosis. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

16 pages, 2882 KB  
Article
Glycan Epitopes and Potential Glycoside Antagonists of DC-SIGN Involved in COVID-19: In Silico Study
by Meina Gao, Hui Li, Chenghao Ye, Kaixian Chen, Hualiang Jiang and Kunqian Yu
Biomolecules 2021, 11(11), 1586; https://doi.org/10.3390/biom11111586 - 27 Oct 2021
Cited by 4 | Viewed by 3771
Abstract
Glycosylation is an important post-translational modification that affects a wide variety of physiological functions. DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) is a protein expressed in antigen-presenting cells that recognizes a variety of glycan epitopes. Until now, the binding of DC-SIGN to SARS-CoV-2 [...] Read more.
Glycosylation is an important post-translational modification that affects a wide variety of physiological functions. DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) is a protein expressed in antigen-presenting cells that recognizes a variety of glycan epitopes. Until now, the binding of DC-SIGN to SARS-CoV-2 Spike glycoprotein has been reported in various articles and is regarded to be a factor in systemic infection and cytokine storm. The mechanism of DC-SIGN recognition offers an alternative method for discovering new medication for COVID-19 treatment. Here, we discovered three potential pockets that hold different glycan epitopes by performing molecular dynamics simulations of previously reported oligosaccharides. The “EPN” motif, “NDD” motif, and Glu354 form the most critical pocket, which is known as the Core site. We proposed that the type of glycan epitopes, rather than the precise amino acid sequence, determines the recognition. Furthermore, we deduced that oligosaccharides could occupy an additional site, which adds to their higher affinity than monosaccharides. Based on our findings and previously described glycoforms on the SARS-CoV-2 Spike, we predicted the potential glycan epitopes for DC-SIGN. It suggested that glycan epitopes could be recognized at multiple sites, not just Asn234, Asn149 and Asn343. Subsequently, we found that Saikosaponin A and Liquiritin, two plant glycosides, were promising DC-SIGN antagonists in silico. Full article
Show Figures

Graphical abstract

9 pages, 1043 KB  
Article
Prebiotic Peptides Based on the Glycocodon Theory Analyzed with FRET
by Jozef Nahalka and Eva Hrabarova
Life 2021, 11(5), 380; https://doi.org/10.3390/life11050380 - 23 Apr 2021
Cited by 3 | Viewed by 2353
Abstract
In modern protein–carbohydrate interactions, carbohydrate–aromatic contact with CH–π interactions are used. Currently, they are considered driving forces of this complexation. In these contacts, tryptophan, tyrosine, and histidine are preferred. In this study, we focus on primary prebiotic chemistry when only glycine, alanine, aspartic [...] Read more.
In modern protein–carbohydrate interactions, carbohydrate–aromatic contact with CH–π interactions are used. Currently, they are considered driving forces of this complexation. In these contacts, tryptophan, tyrosine, and histidine are preferred. In this study, we focus on primary prebiotic chemistry when only glycine, alanine, aspartic acid, and valine are available in polypeptides. In this situation, when the aromatic acids are not available, hydrogen-bonding aspartic acid must be used for monosaccharide complexation. It is shown here that (DAA)n polypeptides play important roles in primary “protein”–glucose recognition, that (DGG)n plays an important role in “protein”–ribose recognition, and that (DGA)n plays an important role in “protein”–galactose recognition. Glucose oxidase from Aspergillus niger, which still has some ancient prebiotic sequences, is chosen here as an example for discussion. Full article
Show Figures

Figure 1

20 pages, 2737 KB  
Article
Rapid High-Yield Production of Functional SARS-CoV-2 Receptor Binding Domain by Viral and Non-Viral Transient Expression for Pre-Clinical Evaluation
by Omar Farnós, Alina Venereo-Sánchez, Xingge Xu, Cindy Chan, Shantoshini Dash, Hanan Chaabane, Janelle Sauvageau, Fouad Brahimi, Uri Saragovi, Denis Leclerc and Amine A. Kamen
Vaccines 2020, 8(4), 654; https://doi.org/10.3390/vaccines8040654 - 4 Nov 2020
Cited by 29 | Viewed by 6363
Abstract
Vaccine design strategies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are focused on the Spike protein or its subunits as the main antigen target of neutralizing antibodies. In this work, we propose rapid production methods of an extended segment of the Spike [...] Read more.
Vaccine design strategies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are focused on the Spike protein or its subunits as the main antigen target of neutralizing antibodies. In this work, we propose rapid production methods of an extended segment of the Spike Receptor Binding Domain (RBD) in HEK293SF cells cultured in suspension, in serum-free media, as a major component of a COVID-19 subunit vaccine under development. The expression of RBD, engineered with a sortase-recognition motif for protein-based carrier coupling, was achieved at high yields by plasmid transient transfection or human type-5-adenoviral infection of the cells, in a period of only two and three weeks, respectively. Both production methods were evaluated in 3L-controlled bioreactors with upstream and downstream bioprocess improvements, resulting in a product recovery with over 95% purity. Adenoviral infection led to over 100 µg/mL of RBD in culture supernatants, which was around 7-fold higher than levels obtained in transfected cultures. The monosaccharide and sialic acid content was similar in the RBD protein from the two production approaches. It also exhibited a proper conformational structure as recognized by monoclonal antibodies directed against key native Spike epitopes. Efficient direct binding to ACE2 was also demonstrated at similar levels in RBD obtained from both methods and from different production lots. Overall, we provide bioprocess-related data for the rapid, scalable manufacturing of low cost RBD based vaccines against SARS-CoV-2, with the added value of making a functional antigen available to support further research on uncovering mechanisms of virus binding and entry as well as screening for potential COVID-19 therapeutics. Full article
(This article belongs to the Special Issue Vectored Vaccines)
Show Figures

Figure 1

22 pages, 11211 KB  
Review
De Novo Structural Determination of the Oligosaccharide Structure of Hemocyanins from Molluscs
by Pavlina Dolashka, Asya Daskalova, Aleksandar Dolashki and Wolfgang Voelter
Biomolecules 2020, 10(11), 1470; https://doi.org/10.3390/biom10111470 - 22 Oct 2020
Cited by 8 | Viewed by 3482
Abstract
A number of studies have shown that glycosylation of proteins plays diverse functions in the lives of organisms, has crucial biological and physiological roles in pathogen–host interactions, and is involved in a large number of biological events in the immune system, and in [...] Read more.
A number of studies have shown that glycosylation of proteins plays diverse functions in the lives of organisms, has crucial biological and physiological roles in pathogen–host interactions, and is involved in a large number of biological events in the immune system, and in virus and bacteria recognition. The large amount of scientific interest in glycoproteins of molluscan hemocyanins is due not only to their complex quaternary structures, but also to the great diversity of their oligosaccharide structures with a high carbohydrate content (2–9%). This great variety is due to their specific monosaccharide composition and different side chain composition. The determination of glycans and glycopeptides was performed with the most commonly used methods for the analysis of biomolecules, including peptides and proteins, including Matrix Assisted Laser Desorption/Ionisation–Time of Flight (MALDI-TOF-TOF), Liquid Chromatography - Electrospray Ionization-Mass Spectrometry (LC/ESI-MS), Liquid Chromatography (LC-Q-trap-MS/MS) or Nano- Electrospray Ionization-Mass Spectrometry (nano-ESI-MS) and others. The molluscan hemocyanins have complex carbohydrate structures with predominant N-linked glycans. Of interest are identified structures with methylated hexoses and xyloses arranged at different positions in the carbohydrate moieties of molluscan hemocyanins. Novel acidic glycan structures with specific glycosylation positions, e.g., hemocyanins that enable a deeper insight into the glycosylation process, were observed in Rapana venosa, Helix lucorum, and Haliotis tuberculata. Recent studies demonstrate that glycosylation plays a crucial physiological role in the immunostimulatory and therapeutic effect of glycoproteins. The remarkable diversity of hemocyanin glycan content is an important feature of their immune function and provides a new concept in the antibody–antigen interaction through clustered carbohydrate epitopes. Full article
(This article belongs to the Special Issue Structural and Functional Approach to the Glycan Diversity)
Show Figures

Figure 1

10 pages, 1620 KB  
Article
Evaluation of the Impact of Imprinted Polymer Particles on Morphology and Motility of Breast Cancer Cells by Using Digital Holographic Cytometry
by Megha Patel, Marek Feith, Birgit Janicke, Kersti Alm and Zahra El-Schich
Appl. Sci. 2020, 10(3), 750; https://doi.org/10.3390/app10030750 - 21 Jan 2020
Cited by 17 | Viewed by 4066
Abstract
Breast cancer is the second most common cancer type worldwide and breast cancer metastasis accounts for the majority of breast cancer-related deaths. Tumour cells produce increased levels of sialic acid (SA) that terminates the monosaccharide on glycan chains of the glycosylated proteins. SA [...] Read more.
Breast cancer is the second most common cancer type worldwide and breast cancer metastasis accounts for the majority of breast cancer-related deaths. Tumour cells produce increased levels of sialic acid (SA) that terminates the monosaccharide on glycan chains of the glycosylated proteins. SA can contribute to cellular recognition, cancer invasiveness and increase the metastatic potential of cancer cells. SA-templated molecularly imprinted polymers (MIPs) have been proposed as promising reporters for specific targeting of cancer cells when deployed in nanoparticle format. The sialic acid-molecularly imprinted polymers (SA-MIPs), which use SA for the generation of binding sites through which the nanoparticles can target and stain breast cancer cells, opens new strategies for efficient diagnostic tools. This study aims at monitoring the effects of SA-MIPs on morphology and motility of the epithelial type MCF-7 and the highly metastatic MDAMB231 breast cancer cell lines, using digital holographic cytometry (DHC). DHC is a label-free technique that is used in cell morphology studies of e.g., cell volume, area and thickness as well as in motility studies. Here, we show that MCF-7 cells move slower than MDAMB231 cells. We also show that SA-MIPs have an effect on cell morphology, motility and viability of both cell lines. In conclusion, by using DH microscopy, we could detect SA-MIPs impact on different breast cancer cells regarding morphology and motility. Full article
(This article belongs to the Special Issue Applications of Digital Holography in Biomedical Engineering)
Show Figures

Figure 1

17 pages, 4248 KB  
Article
Unraveling Sugar Binding Modes to DC-SIGN by Employing Fluorinated Carbohydrates
by J. Daniel Martínez, Pablo Valverde, Sandra Delgado, Cecilia Romanò, Bruno Linclau, Niels C. Reichardt, Stefan Oscarson, Ana Ardá, Jesús Jiménez-Barbero and F. Javier Cañada
Molecules 2019, 24(12), 2337; https://doi.org/10.3390/molecules24122337 - 25 Jun 2019
Cited by 40 | Viewed by 6421
Abstract
A fluorine nuclear magnetic resonance (19F-NMR)-based method is employed to assess the binding preferences and interaction details of a library of synthetic fluorinated monosaccharides towards dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN), a lectin of biomedical interest, which is involved [...] Read more.
A fluorine nuclear magnetic resonance (19F-NMR)-based method is employed to assess the binding preferences and interaction details of a library of synthetic fluorinated monosaccharides towards dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN), a lectin of biomedical interest, which is involved in different viral infections, including HIV and Ebola, and is able to recognize a variety of self- and non-self-glycans. The strategy employed allows not only screening of a mixture of compounds, but also obtaining valuable information on the specific sugar–protein interactions. The analysis of the data demonstrates that monosaccharides Fuc, Man, Glc, and Gal are able to bind DC-SIGN, although with decreasing affinity. Moreover, a new binding mode between Man moieties and DC-SIGN, which might have biological implications, is also detected for the first time. The combination of the 19F with standard proton saturation transfer difference (1H-STD-NMR) data, assisted by molecular dynamics (MD) simulations, permits us to successfully define this new binding epitope, where Man coordinates a Ca2+ ion of the lectin carbohydrate recognition domain (CRD) through the axial OH-2 and equatorial OH-3 groups, thus mimicking the Fuc/DC-SIGN binding architecture. Full article
(This article belongs to the Special Issue Carbohydrates in Synthesis)
Show Figures

Figure 1

17 pages, 2486 KB  
Article
Synthesis of a Fluorous-Tagged Hexasaccharide and Interaction with Growth Factors Using Sugar-Coated Microplates
by Susana Maza, José L. de Paz and Pedro M. Nieto
Molecules 2019, 24(8), 1591; https://doi.org/10.3390/molecules24081591 - 22 Apr 2019
Cited by 6 | Viewed by 3242
Abstract
Here, we report the synthesis of a sulfated, fully protected hexasaccharide as a glycosaminoglycan mimetic and the study of its interactions with different growth factors: midkine, basic fibroblast growth factor (FGF-2) and nerve growth factor (NGF). Following a fluorous-assisted approach, monosaccharide building blocks [...] Read more.
Here, we report the synthesis of a sulfated, fully protected hexasaccharide as a glycosaminoglycan mimetic and the study of its interactions with different growth factors: midkine, basic fibroblast growth factor (FGF-2) and nerve growth factor (NGF). Following a fluorous-assisted approach, monosaccharide building blocks were successfully assembled and the target oligosaccharide was prepared in excellent yield. The use of more acid stable 4,6-O-silylidene protected glucosamine units was crucial for the efficiency of this strategy because harsh reaction conditions were needed in the glycosylations to avoid the formation of orthoester side products. Fluorescence polarization experiments demonstrated the strong interactions between the synthesized hexamer, and midkine and FGF-2. In addition, we have developed an alternative assay to analyse these molecular recognition events. The prepared oligosaccharide was non-covalently attached to a fluorous-functionalized microplate and the direct binding of the protein to the sugar-immobilized surface was measured, affording the corresponding KD,surf value. Full article
(This article belongs to the Special Issue Carbohydrates in Synthesis)
Show Figures

Graphical abstract

15 pages, 996 KB  
Article
Citrate-Linked Keto- and Aldo-Hexose Monosaccharide Cellulose Conjugates Demonstrate Selective Human Neutrophil Elastase-Lowering Activity in Cotton Dressings
by Judson V. Edwards and Sonya Caston-Pierre
J. Funct. Biomater. 2013, 4(2), 59-73; https://doi.org/10.3390/jfb4020059 - 17 May 2013
Cited by 1 | Viewed by 9388
Abstract
Sequestration of harmful proteases as human neutrophil elastase (HNE) from the chronic wound environment is an important goal of wound dressing design and function. Monosaccharides attached to cellulose conjugates as ester-appended aldohexoses and ketohexoses were prepared on cotton gauze as monosccharide-citrate-cellulose-esters for HNE [...] Read more.
Sequestration of harmful proteases as human neutrophil elastase (HNE) from the chronic wound environment is an important goal of wound dressing design and function. Monosaccharides attached to cellulose conjugates as ester-appended aldohexoses and ketohexoses were prepared on cotton gauze as monosccharide-citrate-cellulose-esters for HNE sequestration. The monosaccharide-cellulose analogs demonstrated selective binding when the derivatized cotton dressings were measured for sequestration of HNE. Each monosaccharide-cellulose conjugate was prepared as a cellulose citrate-linked monosaccharide ester on the cotton wound dressing, and assayed under wound exudate-mimicked conditions for elastase sequestration activity. A series of three aldohexose and four ketohexose ester cellulose conjugates were prepared on cotton gauze through citric acid-cellulose cross linking esterification. The monosaccharide portion of the conjugate was characterized by hydrolysis of the citrate-monosaccharide ester bond, and subsequent analysis of the free monosaccharide with high performance anion exchange chromatography. The ketohexose and aldohexose conjugate levels on cotton were quantified on cotton using chromatography and found to be present in milligram/gram amounts. The citrate-cellulose ester bonds were characterized with FTIR. Ketohexose-citrate-cellulose conjugates sequestered more elastase activity than aldohexose-citrate-cellulose conjugates. The monosaccharide cellulose conjugate families each gave distinctive profiles in elastase-lowering effects. Possible mechanisms of elastase binding to the monosaccharide-cellulose conjugates are discussed. Full article
Show Figures

Figure 1

Back to TopTop