De Novo Structural Determination of the Oligosaccharide Structure of Hemocyanins from Molluscs
Abstract
:1. Introduction
2. Carbohydrate Structures of Hemocyanins
3. Carbohydrate Structure of Hemocyanins from the Marine Snail Rapana venosa
3.1. First Approach for Determination of the Carbohydrate Structure of RvH
3.1.1. Isolation and Characterization of Glycopeptides of FUs from RvH
3.1.2. Structures of Glycopeptides from RvH, Determined Through LC/ESI-MS, Nano-ESI-MS and Q-trap LC/MS/MS Systems
3.2. Second Approach for Determination of Carbohydrate Structure of RvH
3.2.1. Analysis of N-Glycans from RvH by Capillary Electrophoresis Combined with MS Analysis
3.2.2. Analysis of Glycans from RvH by 3-AP- and APTS-Labeled Glycans
3.2.3. Determination of Hexuronic Acid in the Structure of RvH1 After Amidation and Permethylation of the Glycans
3.2.4. Structures of the N-Glycans of RvH1 and RvH2 Determined by the Q-trap System
4. Carbohydrate Structure of Hemocyanins from Helix lucorum
5. Carbohydrate Structure of Hemocyanins from Haliotis tuberculata
6. Glycosylated Sites of Hemocyanins from Molluscs
6.1. Glycosylation Sites in Helix lucorum Hemocyanins
- Edman degradation of glycopeptides;
- Analysis of the peptides after de-glycosylation with specific glycosidases;
- Separation of glycopeptides on the columns and determination of AAS after MS/MS analyses.
6.2. Glycosylation Sites in RvH
6.2.1. Glycosylation Sites in RvH Determined by nano-ESI-MS and Q-trap-LC/MS/MS Systems
6.2.2. Glycosylation Sites in RvH Determined After 18O-Labelling of Peptides
6.2.3. Glycosylation Sites in RvH, Determined After Fragmentation of the Genome
7. Conclusions and Future Direction
Author Contributions
Funding
Conflicts of Interest
References
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef] [PubMed]
- Arancibia, S.; Espinoza, C.; Salazar, F.; Del Campo, M.; Tampe, R.; Zhong, T.Y.; De Ioannes, P.; Moltedo, B.; Ferreira, J.; Lavelle, E.C.; et al. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma. PLoS ONE 2014, 9, e87240. [Google Scholar] [CrossRef] [PubMed]
- Ayyagari, S.V.; Sreerama, K. Spectroscopic Studies on the Conformational Stability of Hemocyanin of Pila virens (Lamarck, 1822) in the Presence of Temperature and Detergents. Proc. Zool. Soc. 2019, 73, 302–311. [Google Scholar] [CrossRef]
- Ulagesan, S.; Kim, H.J. Antibacterial and Antifungal Activities of Proteins Extracted from Seven Different Snails. Appl. Sci. 2018, 8, 1362. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Porras, O.; Kamath, S.; Harris, J.O.; Colgrave, M.L.; Huerlimann, R.; Lopata, A.L.; Wade, N.M. Resolving hemocyanin isoform complexity in haemolymph of black tiger shrimp Penaeus monodon—implications in aquaculture, medicine and food safety. J. Proteom. 2020, 218, 103689. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, F.; Chen, C.; Zheng, Z.; Aweya, J.J.; Zhang, Y. Glycosylation of hemocyanin in Litopenaeus vannameiis an antibacterial response feature. Immunol. Lett. 2017, 192, 42–47. [Google Scholar] [CrossRef]
- Gatsogiannis, C.; Markl, J. Keyhole limpet hemocyanin: 9Å CryoEM structure and molecular model of the KLH1 didecamer reveal the interfaces and intricate topology of the 160 functional units. J. Mol. Biol. 2009, 385, 963–983. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kato, S.; Stabrin, M.; Raunser, S.; Matsui, T.; Gatsogiannis, C. Cryo-EM reveals the asymmetric assembly of squid hemocyanin. IUCrJ 2019, 6, 426–437. [Google Scholar] [CrossRef]
- Gai, Z.; Matsuno, A.; Kato, K.; Kato, S.; Khan, M.R.I.; Shimizu, T.; Yoshioka, T.; Kato, Y.; Kishimura, H.; Kanno, G.; et al. Crystal Structure of the 3.8-MDa Respiratory Supermolecule Hemocyanin at 3.0Å Resolution. Structure 2015, 23, 2204–2212. [Google Scholar] [CrossRef] [Green Version]
- Lommerse, J.P.M.; Thomas-Oates, J.E.; Gielens, C.; Préaux, G.; Kamerling, J.P.; Vliegenthart, J.F.G. Primary Structure of 21 Novel Monoantennary and Diantennary N-Linked Carbohydrate Chains from αD-Hemocyanin of Helix pomatia. Eur. J. Biochem. 1997, 249, 195–222. [Google Scholar] [CrossRef]
- Gielens, C.; Idakieva, K.; Van Den Bergh, V.; Siddiqui, N.I.; Parvanova, K.; Compernolle, F. Mass spectral evidence for N-glycans with branching on fucose in a molluscan hemocyanin. Biochem. Biophys. Res. Commun. 2005, 331, 562–570. [Google Scholar] [CrossRef]
- Gutternigg, M.; Bürgmayr, S.; Pöltl, G.; Rudolf, J.; Staudacher, E. Neutral N-glycan patterns of the gastropods Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica. Glycoconj. J. 2007, 24, 475–489. [Google Scholar] [CrossRef]
- Wuhrer, M.; Robijn, M.L.; Koeleman, C.A.; Balog, C.I.; Geyer, R.; Deelder, A.M.; Hokke, C.H. A novel Gal(β1-4)Gal(β1-4)Fuc(α1-6)-core modification attached to the proximal N-acetylglucosamine of keyhole limpet haemocyanin (KLH) N-glycans. Biochem. J. 2004, 378, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurokawa, T.; Wuhrer, M.; Lochnit, G.; Geyer, H.; Markl, J.; Geyer, R. Hemocyanin from the keyhole limpet Megathura crenulata (KLH) carries a novel type of N-glycans with Gal(beta1-6)Man-motifs. Eur. J. Biochem. 2002, 269, 5459–5473. [Google Scholar] [CrossRef]
- Eckmair, B.; Jin, C.; Abed-Navandi, D.; Paschinger, K. Multistep Fractionation and Mass Spectrometry Reveal Zwitterionic and Anionic Modifications of the N- and O-glycans of a Marine Snail. Mol. Cell. Proteom. 2016, 15, 573–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, R.L.; Wood, E.J.; Kamberling, J.P.; Gerwig, G.J.; Vliegenthart, F.G. 3-O-methyl sugars as constituents of glycoproteins. Identification of 3-O-methylgalactose and 3-O- methylmannose in pulmonate gastropod haemocyanins. Biochem. J. 1977, 165, 173–176. [Google Scholar] [CrossRef]
- Wuhrer, M.; Dennis, R.D.; Doenhoff, M.J.; Geyer, R. A fucose-containing epitope is shared by keyhole limpet haemocyanin and Schistosoma mansoni glycosphingolipids. Mol. Biochem. Parasitol. 2000, 110, 237–246. [Google Scholar] [CrossRef]
- Gielens, C.; De Geest, N.; Compernolle, F.; Préaux, G. Glycosylation sites of hemocyanins of Helix pomatia and Sepia officinalis. Micron 2004, 35, 99–100. [Google Scholar] [CrossRef] [PubMed]
- Gutternigg, M.; Ahrer, K.; Grabher-Meier, H.; Bürgmayr, S.; Staudacher, E. Neutral N-glycans of the gastropod Arion lusitanicus. Eur. J. Biochem. 2004, 271, 1348–1356. [Google Scholar] [CrossRef]
- Stoeva, S.; Idakieva, K.; Betzel, C.; Genov, N.; Voelter, W. Amino Acid Sequence and Glycosylation of Functional Unit RtH2-e from Rapana thomasiana (Gastropod) Hemocyanin. Arch. Biochem. Biophys. 2002, 399, 149–158. [Google Scholar] [CrossRef]
- Stepan, H.; Pabst, M.; Altmann, F.; Geyer, H.; Geyer, R. O-Glycosylation of snails. Glycoconju-gate J. 2012, 29, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Gatsogiannis, C.; Moeller, A.; Depoix, F.; Meissner, U.; Markl, J. Nautilus pompilius hemocyanin: 9 A cryo-EM structure and molecular model reveal the subunit pathway and the interfaces between the 70 functional units. J. Mol. Biol. 2007, 374, 465–486. [Google Scholar] [CrossRef]
- Stoeva, S.; Schütz, J.; Gebauer, W.; Hundsdörfer, T.; Manz, C.; Markl, J.; Voelter, W. Primary structure and unusual carbohydrate moiety of functional unit 2-c of keyhole limpet hemocyanin (KLH). Biochim. Biophys. Acta 1999, 1435, 94–109. [Google Scholar] [CrossRef]
- Lieb, B.; Boisguérin, V.; Gebauer, W.; Markl, J. cDNA sequence, protein structure, and evolution of the single hemocyanin from Aplysia californica, an opisthobranch gastropod. J. Mol. Evol. 2004, 59, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Lieb, B.; Altenhein, B.; Markl, J. The sequence of a gastropod hemocyanin (HtH1 from Haliotis tuberculata). J. Biol. Chem. 2000, 275, 5675–5681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolashka-Angelova, P.; Beck, A.; Dolashki, A.; Stevanovic, S.; Beltramini, M.; Salvato, B.; Hristova, R.; Velkova, L.; Voelter, W. Carbohydrate moieties of molluscan Rapana venosa hemocyanin. Micron 2004, 35, 101–104. [Google Scholar] [CrossRef]
- Idakieva, K.; Stoeva, S.; Voelter, W.; Gielens, C. Glycosylation of Rapana thomasiana hemocyanin. Comparison with other prosobranch (gastropod) hemocyanins. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 138, 221–228. [Google Scholar] [CrossRef]
- Beck, A.; Hillen, N.; Dolashki, A.; Stevanovic, S.; Salvato, B.; Voelter, W.; Dolashka-Angelova, P. Oligosaccharide structure of a functional unit RvH1-b of Rapana venosa hemocyanin using HPLC/electrospray ionization mass spectrometry. Biochimie 2007, 89, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Dolashka-Angelova, P.; Beck, A.; Dolashki, A.; Beltramini, M.; Stevanovic, S.; Salvato, B.; Voelter, W. Characterization of the carbohydrate moieties of the functional unit RvH1-a of Rapana venosa haemocyanin using HPLC/electrospray ionization MS and glycosidase digestion. Biochem. J. 2003, 374, 185–192. [Google Scholar] [CrossRef]
- Dolashka-Angelova, P.; Stevanovic, S.; Dolashki, A.; Devreese, B.; Tzvetkova, B.; Voelter, W.; Van Beeumen, J.; Salvato, B. A challenging insight on the structural unit 1 of molluscan Rapana venosa hemocyanin. Arch. Biochem. Biophys. 2007, 459, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Dolashka-Angelova, P.; Lieb, B.; Velkova, L.; Heilen, N.; Sandra, K.; Nikolaeva-Glomb, L.; Dolashki, A.; Galabov, A.S.; Van Beeumen, J.; Stevanovic, S.; et al. Identification of glycosylated sites in Rapana hemocyanin by mass spectrometry and gene sequence, and their antiviral effect. Bioconjugate Chem. 2009, 20, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Dolashka, P.; Velkova, L.; Shishkov, S.; Kostova, K.; Dolashki, A.; Dimitrov, I.; Atanasov, B.; Devreese, B.; Voelter, W.; Van Beeumen, J. Glycan structures and antiviral effect of the structural subunit RvH2 of Rapana hemocyanin. Carbohydr. Res. 2010, 345, 2361–2367. [Google Scholar] [CrossRef] [PubMed]
- Sandra, K.; Dolashka-Angelova, P.; Devreese, B.; Van Beeumen, J. New insights in Rapana venosa hemocyanin N-glycosylation resulting from on-line mass spectrometric analyses. Glycobiology 2007, 17, 141–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolashka, P. Tandem Mass Spectrometry and Glycoproteins. In Tandem Mass Spectrometry—Applications and Principles; Prasain, J.K., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 6; pp. 105–127. [Google Scholar]
- Dolashka-Angelova, P.; Schwarz, H.; Dolashki, A.; Stevanovic, S.; Fecker, M.; Saeed, M.; Voelter, W. Oligomeric stability of Rapana venosa hemocyanin (RvH) and its structural subunits. Biochim. Biophys. Acta Proteins Proteom. 2003, 1646, 77–85. [Google Scholar] [CrossRef]
- Velkova, L.; Dolashki, A.; Dolashka, P. Analysis of a glycopeptide from structural subunit (βc-HlH) of Helix lucorum hemocyanin by mass spectrometry. In Proceedings of the Thirty-Third European Peptide Symposium, Sofia, Bulgaria, 31 August–5 September 2014; pp. 288–289. [Google Scholar]
- Velkova, L.; Dolashki, A.; Dolashka, P. Carbohydrate structure of molluscan hemocyanins from snails Helix lucorum and Rapana venosa, determined by mass spectrometry. J. Biosci. Biotechnol. 2015, SE/ONLINE, 75–85. [Google Scholar]
- Velkova, L.; Dolashka, P.; Van Beeumen, J.; Devreese, B. N-glycan structures of β- HlH subunit of Helix lucorum hemocyanin. Carbohydr. Res. 2017, 449, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Velkova, L.; Dolashka, P.; Lieb, B.; Dolashki, A.; Voelter, W.; Van Beeumen, J.; Devreese, B. Glycan structures of the structural subunit (HtH1) of Haliotis tuberculata hemocyanin. Glycoconj. J. 2011, 28, 385–395. [Google Scholar] [CrossRef]
- De Smet, L.; Dimitrov, I.; Debyser, G.; Dolashka-Angelova, P.; Dolashki, A.; Van Beeumen, J.; Devreese, B. The cDNA sequence of three hemocyanin subunits from the garden snail Helix lucorum. Gene 2011, 487, 118–128. [Google Scholar] [CrossRef]
- Kostadinova, E.; Dolashka, P.; Velkova, L.; Dolashki, A.; Stevanovic, S.; Voelter, W. Positions of the glycans in molluscan hemocyanin, determined by fluorescence spectroscopy. J. Fluoresc. 2013, 23, 753–760. [Google Scholar] [CrossRef]
- Cuff, M.E.; Miller, K.I.; van Holde, K.E.; Hendrickson, W.A. Crystal structure of a functional unit from Octopus hemocyanin. J. Mol. Biol. 1998, 278, 855–870. [Google Scholar] [CrossRef]
- Perbandt, M.; Guthöhrlein, E.W.; Rypniewski, W.; Idakieva, K.; Stoeva, S.; Voelter, W.; Genov, N.; Betzel, C. The structure of a functional unit from the wall of a gastropod hemocyanin offers a possible mechanism for cooperativity. Biochemistry 2003, 42, 6341–6346. [Google Scholar] [CrossRef]
- Altenhein, B.; Markl, J.; Lieb, B. Gene structure and hemocyaninisoform HtH2 from the mollusc Haliotis tuberculata indicate early and late intron hot spots. Gene 2002, 301, 53–60. [Google Scholar] [CrossRef]
- Bergmann, S.; Lieb, B.; Ruth, P.; Markl, J. The hemocyanin from a living fossil, the cephalopod Nautilus pompilius: Protein structure, gene organization, and evolution. J. Mol. Evol. 2006, 62, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Salazar, L.M.; Jiménez, M.J.; Villar, J.; Rivera, M.; Báez, M.; Manubens, A.; Inés Becker, M. N-glycosylation of mollusk hemocyanins contributes to their structural stability and immunomodulatory properties in mammals. J. Biol. Chem. 2019, 294, 19546–19564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ioannes, P.; Moltedo, B.; Oliva, H.; Pacheco, R.; Faunes, F.; De Ioannes, E.A.; Becker, M.I. Hemocyanin of the molluscan Concholepas concholepas exhibits an unusual heterodecameric array of subunits. J. Biol. Chem. 2004, 279, 26134–26142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
№ | Structure | MALDI [M-H]+ | № | Structure | MALDI [M−H]+ |
---|---|---|---|---|---|
1 | FucMan2GlcNAc2 | 917.3 | 12 | Man7GlcNAc2 | 1581.7 |
2 | Man3GlcNAc2 | 933.3 | 13 | Fuc2HexNAc2Man3GlcNAc2 | 1631.8 |
3 | FucMan3GlcNAc2 | 1079.5 | 14 | FucHexAHexNAc2Man3GlcNAc2 | 1661.7 |
4 | Man4GlcNAc2 | 1095.5 | 15 | FucHexNAc3Man3GlcNAc2 | 1688.8 |
5 | HexNAcMan3GlcNAc2 | 1136.5 | 16 | Man8GlcNAc2 | 1743.7 |
6 | FucMan4GlcNAc2 | 1241.6 | 17 | Fuc2HexAHexNAc2Man3GlcNAc2 | 1807.8 |
7 | Man5GlcNAc2 | 1257.6 | 18 | Fuc2HexNAc3Man3GlcNAc2 | 1834. |
8 | FucHexNAcMan3GlcNAc2 | 1282.6 | 19 | FucHexAHexNAc3Man3GlcNAc2 | 1864.8 |
9 | HexNAc2Man3GlcNAc2 | 1339.6 | 20 | Man9GlcNAc2 | 1905.8 |
10 | Man6GlcNAc2 | 1419.6 | 21 | Fuc2HexAHexNAc3Man3GlcNAc2 | 2010.8 |
11 | FucHexNAc2Man3GlcNAc2 | 1485.7 | - |
Glycopeptides | Glycans | Mass/Charge | |
---|---|---|---|
(m/z) | |||
CE | |||
1 | XVYSVNGTLLGAHVLGSR | Man3GlcNAc2 HexA HexNAc2 Fuc2 Man3GlcNAc2 | 941 [M+3H]3+ 1233 [M+3H]3+ |
2 | X—XFSWVDGHNTSR | GlcNAcMan3GlcNAc2 FucMan3GlcNAc2 Man3GlcNAc2 | 1168 [M+3H]3+ 1149 [M+3H]3+ 1104 [M+3H]3+ |
3 | FQNDTSLDGYQAVAEFHGLPAK | FucMan3GlcNAc2 | 1153 [M+3H]3+ |
4 | FQNDTSLDGFQAVAEFHGLPPK | GlcNAcMan3GlcNAc2 | 1010 [M+4H]4+ |
5 | LHSYSGSYLNASLLHX—X | Man3GlcNAc2 | 968 [M+2H]2+ |
6 | XNGTELSPR / XNASELSPR | Hex5Man3GlcNAc2 | 1373 [M+2H]2+ |
ESI-MS | |||
7 | [QK]AENLTTTR | FucMan3GlcNAc2 | 1036 [M+2H]2+ |
8 | AENLTTTR | Fuc Man3GlcNAc2 | 972 [M+2H]2+ |
9 | HHGHV[...K...N...]R | Fuc Man3GlcNAc2 | 1396 [M+2H]2+ |
10 | FSWVDGHNTSR | Man3GlcNAc2 | 1099 [M+2H]2+ |
11 | YE[IL]HAVNGST[IL]AA[IL] | Hex3Man3GlcNAc2 | 1339 [M+2H]2+ |
12 | YE[IL]HAVNGST[IL]AA[IL] | Hex3Man3GlcNAc2 | 1419 [M+2H]2+ |
Q trap-LC/MS/MS | |||
13 | MGQYGDLSTNNTR | Hex Man3HexNAc2 | 837.9[M+2H]3+ |
14 | SVNGTLLGSQILGKPY | Fuc Man3GlcNAc2 | 896 [M+3H]3+ |
15 | FSWVDGHNTSR | Man3GlcNAc2 | 1099 [M+2H]2+ |
16 | AENITTTR | Fuc Man3GlcNAc2 | 972 [M+2H]2+ |
17 | FANATSIDGPNA | SO4 MeHexAMeHexNAc2Man3GlcNAc2 | 2786 [M+H]+ |
18 | EMLTLNGTNLA | MeHex2AHexNAc2Man3GlcNAc2 | 2846 [M+H]+ |
19 | IHSYSGSYINASLLHGPSII | MeManMan2GlcNAc2 | 2848 [M+H]+ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolashka, P.; Daskalova, A.; Dolashki, A.; Voelter, W. De Novo Structural Determination of the Oligosaccharide Structure of Hemocyanins from Molluscs. Biomolecules 2020, 10, 1470. https://doi.org/10.3390/biom10111470
Dolashka P, Daskalova A, Dolashki A, Voelter W. De Novo Structural Determination of the Oligosaccharide Structure of Hemocyanins from Molluscs. Biomolecules. 2020; 10(11):1470. https://doi.org/10.3390/biom10111470
Chicago/Turabian StyleDolashka, Pavlina, Asya Daskalova, Aleksandar Dolashki, and Wolfgang Voelter. 2020. "De Novo Structural Determination of the Oligosaccharide Structure of Hemocyanins from Molluscs" Biomolecules 10, no. 11: 1470. https://doi.org/10.3390/biom10111470
APA StyleDolashka, P., Daskalova, A., Dolashki, A., & Voelter, W. (2020). De Novo Structural Determination of the Oligosaccharide Structure of Hemocyanins from Molluscs. Biomolecules, 10(11), 1470. https://doi.org/10.3390/biom10111470