Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (466)

Search Parameters:
Keywords = production pruning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3146 KB  
Article
Compost and Vermicompost from Vine Pruning and Sewage Sludge as Peat Alternatives in Cucumber Seedling Production
by Maria Cristina Morais, Tiago Azevedo, Henda Lopes, Ana Maria Coimbra, João Ricardo Sousa, Marta Roboredo, Paula Alexandra Oliveira and Elisabete Nascimento-Gonçalves
Agronomy 2025, 15(11), 2519; https://doi.org/10.3390/agronomy15112519 - 29 Oct 2025
Viewed by 96
Abstract
The replacement of peat in horticultural substrates is a priority for sustainable plant production. This study evaluated compost and vermicompost, derived from vine pruning and sewage sludge, as partial peat substitutes in cucumber (Cucumis sativus L.) seedling production. Germination, early growth traits, [...] Read more.
The replacement of peat in horticultural substrates is a priority for sustainable plant production. This study evaluated compost and vermicompost, derived from vine pruning and sewage sludge, as partial peat substitutes in cucumber (Cucumis sativus L.) seedling production. Germination, early growth traits, growth efficiency indices, and leaf nutrient contents were assessed, and the relationships among variables were explored using correlation analysis and principal component analysis. Five substrates were tested: peat-perlite alone (control) and mixtures containing 10%, 20%, or 40% compost or vermicompost as peat replacements. Results showed that incorporating 10% vermicompost significantly improved germination, seedling vigor, and biomass accumulation, with performance comparable to, or exceeding, the control. In contrast, higher proportions of compost or vermicompost negatively affected germination and seedling quality. Nutrient analysis revealed that 10% vermicompost enhanced Ca and K accumulation, traits positively correlated with growth, whereas 20% compost and 20% vermicompost were associated with higher P and Mg contents but reduced seedling performance. Overall, these promising findings demonstrate that a low proportion of vermicompost (10%) is sufficient to successfully partially replace peat in cucumber seedling production, benefiting both performance and sustainability, whereas higher compost or vermicompost levels disrupt nutrient balance and limit this species’ growth. Full article
Show Figures

Figure 1

13 pages, 1053 KB  
Article
Comparison of the Performance of Vertical Trellising Systems in Grapevine Rootstock Mother Fields
by Ana Villa-Llop, Nazareth Torres, Maite Loidi, Maider Velaz, Mónica Galar-Martínez and Luis Gonzaga Santesteban
Horticulturae 2025, 11(11), 1299; https://doi.org/10.3390/horticulturae11111299 - 29 Oct 2025
Viewed by 241
Abstract
Rootstock mother fields supply the cuttings used in the grafted grapevine propagation process, and their productivity is essential for the nursery production. In southern Europe, mother fields are usually managed with a ground-level pruning system, which provides high yields but increases sanitary and [...] Read more.
Rootstock mother fields supply the cuttings used in the grafted grapevine propagation process, and their productivity is essential for the nursery production. In southern Europe, mother fields are usually managed with a ground-level pruning system, which provides high yields but increases sanitary and management risks. Dense canopies favour humid microclimates and large pruning wounds increase the incidence of trunk diseases. Trellis systems have been proposed as alternatives to mitigate these risks, but their productive performance remains unclear. The aim of this study was to evaluate the vegetative growth of three vertical trellis systems: elevated crown, alternate crown, and vertical axis, in two rootstock mother fields, and to compare their cutting productivity with that of the traditional ground-level system once the trellis vines were fully established. The trial was conducted from 2022 to 2024 in a commercial rootstock mother field in Soria, Spain, using two Vitis berlandieri × V. rupestris hybrids (110 Richter and 140 Ruggeri). The experimental design consisted of three trellis systems arranged in four replicates of 12 vines each, following a randomised block design. Pruning weight increased significantly with vine age but was unaffected by trellis system. Cutting yield differed between rootstocks, with 140 Ruggeri producing about twice as many cuttings as 110 Richter. The comparison between trellis and ground-level systems showed that the former increased labour requirements and reduced cutting yields. Although trellis systems challenge their adoption for commercial rootstock propagation under the dry-summer conditions of this study, their potential to reduce fungal disease incidence and improve canopy management may offer advantages in a transition towards a more sustainable nursery process. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Graphical abstract

22 pages, 9138 KB  
Article
Low-Power Radix-22 FFT Processor with Hardware-Optimized Fixed-Width Multipliers and Low-Voltage Memory Buffers
by Gennaro Di Meo, Camillo Perna, Davide De Caro and Antonio G. M. Strollo
Electronics 2025, 14(21), 4217; https://doi.org/10.3390/electronics14214217 - 28 Oct 2025
Viewed by 110
Abstract
In this paper, we propose a novel low-power implementation of the radix-22 Fast Fourier Transform (FFT) processor that exploits optimized multiplications and low-voltage memory buffers. The FFT computation requires complex products between input samples and precomputed coefficients, known as twiddle factors, as [...] Read more.
In this paper, we propose a novel low-power implementation of the radix-22 Fast Fourier Transform (FFT) processor that exploits optimized multiplications and low-voltage memory buffers. The FFT computation requires complex products between input samples and precomputed coefficients, known as twiddle factors, as well as a large number of memory elements to store intermediate signals. To reduce power consumption, we bypass multiplications when twiddle factors are equal to zero or one. Furthermore, we introduce a fixed-width technique that lowers multiplier complexity for non-trivial coefficients by pruning the least significant columns of the partial product matrix and discarding the most significant partial products with low activation probability. To further minimize power consumption, we lower the supply voltage of memory buffers, creating two power domains in the design. Post-synthesis analysis in 28 nm technology shows that the proposed FFT achieves superior SNR and MSE compared to existing implementations, with reductions of 33% in power consumption and 30% in the power-delay product. In an OFDM receiver, the design also achieves optimal bit error rate performance under various levels of channel noise. Full article
Show Figures

Figure 1

13 pages, 1161 KB  
Article
Effects of Mechanical Pruning on Tree Growth, Yield, and Fruit Quality of ‘Arisoo’ Apple Trees
by Nay Myo Win, Juhyeon Park, Seonae Kim, Youngsuk Lee, Van Giap Do, Jung-Geun Kwon, Soon-Il Kwon, Jingi Yoo, In-Kyu Kang and Hun-Joong Kweon
Agriculture 2025, 15(20), 2118; https://doi.org/10.3390/agriculture15202118 - 11 Oct 2025
Viewed by 404
Abstract
Pruning is labor-intensive and increases production costs, while mechanical pruning offers a promising alternative. However, research on its effectiveness remains limited. To address this gap, we evaluated the effects of mechanical pruning over two consecutive years (2023 and 2024) on tree growth, yield, [...] Read more.
Pruning is labor-intensive and increases production costs, while mechanical pruning offers a promising alternative. However, research on its effectiveness remains limited. To address this gap, we evaluated the effects of mechanical pruning over two consecutive years (2023 and 2024) on tree growth, yield, and fruit quality of ‘Arisoo’ apple trees. The treatment included hand (manual) pruning (HP), mechanical pruning (MP), and combined mechanical and hand pruning (MP + HP) applied during winter pruning in a super-spindle-slender-shaped apple orchard. MP significantly reduced pruning time; however, the amount of plant biomass removed was lower in the MP treatment than in the HP and MP + HP treatments. Canopy volume was higher in the HP treatment than in MP and MP + HP treatments; however, the pruning treatments did not affect trunk cross-sectional area or tree yield. Leaf chlorophyll and nitrogen contents were slightly lower in the MP treatment than in the HP treatment in 2023 but were not affected in 2024. The MP treatment also noticeably reduced light penetration within the canopy and produced smaller fruits with lower soluble solids content and poorer coloration at harvest compared to the HP and MP + HP treatments. In contrast, the HP and MP + HP treatments showed similar effects on light penetration, yield, fruit size, and fruit quality; however, the MP + HP treatment significantly reduced the pruning time compared with the HP treatment. Overall, this study found that MP reduced light penetration and produced smaller and poorly colored fruits, whereas a follow-up combination of HP after MP improved pruning efficiency, light penetration, fruit size, and fruit quality. Full article
(This article belongs to the Special Issue Advanced Cultivation Technologies for Horticultural Crops Production)
Show Figures

Figure 1

16 pages, 1993 KB  
Article
Determination of the Pyrolytic Characteristics of Various Biomass Pellets
by Sefai Bilgin, Hasan Yılmaz, Mehmet Topakcı, Gürkan Alp Kağan Gürdil, Murad Çanakcı and Davut Karayel
Sustainability 2025, 17(20), 9003; https://doi.org/10.3390/su17209003 - 11 Oct 2025
Viewed by 350
Abstract
Biomass pellets are widely used for combustion but can also serve as sustainable feedstocks for pyrolysis. This study examined wood (WP), palm-pruning (PP), reed (RD), and daphne (DP) pellets. We present a compact framework linking composition (proximate/ultimate and lignocellulosic fractions) with TG/DTG, FTIR, [...] Read more.
Biomass pellets are widely used for combustion but can also serve as sustainable feedstocks for pyrolysis. This study examined wood (WP), palm-pruning (PP), reed (RD), and daphne (DP) pellets. We present a compact framework linking composition (proximate/ultimate and lignocellulosic fractions) with TG/DTG, FTIR, TGA-derived indices (CPI, Ddev, Rw), Tpmax and Rav to predict product selectivity and temperature ranges. TG/DTG showed the following sequence: hemicellulose (≈200–315 °C) first, cellulose (≈315–400 °C) with a sharp maximum, and lignin ≈200–600 °C. Low-ash WP and DP had sharper, higher peaks, favoring concentrated devolatilization and condensables. Mineral-rich PP and RD began earlier and showed depressed peaks from AAEM catalysis, shifting toward gases and ash-richer chars. Composition shaped these patterns: higher cellulose increased Rav and CPI; links to Tpmax were moderated by ash. Lignin strengthened a high-T shoulder, while hemicellulose promoted early deacetylation (RD’s 1730 cm−1 acetyl C=O) and release of CO2 and acids. Correlations (|r| ≥ 0.70) supported these links: VM with total (m) and second stage mass loss; cellulose with Rav and CPI (Tpmax moderated by ash); lignin and O/C with Tf and last stage mass loss; ash negatively with Ti, Tpmax, and m. The obtained results guide the sustainable valorization of biomass pellets by selecting temperatures for liquids, H2/CO-rich gases or low-ash aromatic chars. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Graphical abstract

18 pages, 4806 KB  
Article
Solarized Auger Reactor for Organic Waste Upgrading Through Pyrolysis
by Ernesto Anguera Romero, Nidia Aracely Cisneros-Cárdenas, Arturo Aspiazu-Méndez, Heidi Isabel Villafán Vidales, Pablo Pizarro Medina and Claudio A. Estrada
Processes 2025, 13(10), 3216; https://doi.org/10.3390/pr13103216 - 9 Oct 2025
Viewed by 413
Abstract
This study reports the initial thermal and thermochemical performance of a novel solarized Auger-type reactor for Pyrolysis (SARP), specifically developed for the valorization of organic solid waste into solar-derived fuels. A key innovation of this system lies in its integration with a high-flux, [...] Read more.
This study reports the initial thermal and thermochemical performance of a novel solarized Auger-type reactor for Pyrolysis (SARP), specifically developed for the valorization of organic solid waste into solar-derived fuels. A key innovation of this system lies in its integration with a high-flux, point-focus solar concentrator that enables controlled delivery of concentrated solar radiation to drive endothermic processes. At the front of the reactor, the thermal evaluation under solar irradiation shows that surface temperatures reached up to approximately 750 °C on the exterior, while the hottest section of the interior briefly reached approximately 700 °C, in the pyrolysis zone. In contrast, the preheating zone inside the reactor exhibits temperatures ranging from 160 °C to 306 °C, indicating a non-uniform thermal profile for the incoming feedstock. The campaign focused on thermochemical pyrolysis, in which pecan walnut tree pruning residue biomass was processed under controlled semicontinuous operation. Batches of 600 g were pyrolyzed, yielding approximately 390 g of biochar and achieving a peak hydrogen concentration of 14.5% vol in the product gases. These findings demonstrate the reactor’s potential for solar-driven waste-to-fuel conversion. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design (2nd Edition))
Show Figures

Figure 1

32 pages, 12099 KB  
Article
Hardware–Software System for Biomass Slow Pyrolysis: Characterization of Solid Yield via Optimization Algorithms
by Ismael Urbina-Salas, David Granados-Lieberman, Juan Pablo Amezquita-Sanchez, Martin Valtierra-Rodriguez and David Aaron Rodriguez-Alejandro
Computers 2025, 14(10), 426; https://doi.org/10.3390/computers14100426 - 5 Oct 2025
Viewed by 433
Abstract
Biofuels represent a sustainable alternative that supports global energy development without compromising environmental balance. This work introduces a novel hardware–software platform for the experimental characterization of biomass solid yield during the slow pyrolysis process, integrating physical experimentation with advanced computational modeling. The hardware [...] Read more.
Biofuels represent a sustainable alternative that supports global energy development without compromising environmental balance. This work introduces a novel hardware–software platform for the experimental characterization of biomass solid yield during the slow pyrolysis process, integrating physical experimentation with advanced computational modeling. The hardware consists of a custom-designed pyrolizer equipped with temperature and weight sensors, a dedicated control unit, and a user-friendly interface. On the software side, a two-step kinetic model was implemented and coupled with three optimization algorithms, i.e., Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Nelder–Mead (N-M), to estimate the Arrhenius kinetic parameters governing biomass degradation. Slow pyrolysis experiments were performed on wheat straw (WS), pruning waste (PW), and biosolids (BS) at a heating rate of 20 °C/min within 250–500 °C, with a 120 min residence time favoring biochar production. The comparative analysis shows that the N-M method achieved the highest accuracy (100% fit in estimating solid yield), with a convergence time of 4.282 min, while GA converged faster (1.675 min), with a fit of 99.972%, and PSO had the slowest convergence time at 6.409 min and a fit of 99.943%. These results highlight both the versatility of the system and the potential of optimization techniques to provide accurate predictive models of biomass decomposition as a function of time and temperature. Overall, the main contributions of this work are the development of a low-cost, custom MATLAB-based experimental platform and the tailored implementation of optimization algorithms for kinetic parameter estimation across different biomasses, together providing a robust framework for biomass pyrolysis characterization. Full article
Show Figures

Figure 1

15 pages, 3480 KB  
Article
Graphics-Guided Interactive Farmland Layout Design
by Guanlin Liu and Huijun Yang
Appl. Syst. Innov. 2025, 8(5), 140; https://doi.org/10.3390/asi8050140 - 25 Sep 2025
Viewed by 648
Abstract
The spatial layout of farmland involves coordinated planning across diverse functional zones. Irregular land boundaries and functional demands pose challenges to traditional CAD-based workflows and general optimization algorithms. To address these limitations, we propose an interactive farmland layout system based on the Graphic-Guided [...] Read more.
The spatial layout of farmland involves coordinated planning across diverse functional zones. Irregular land boundaries and functional demands pose challenges to traditional CAD-based workflows and general optimization algorithms. To address these limitations, we propose an interactive farmland layout system based on the Graphic-Guided Evolutionary Layout (GGEL) algorithm. GGEL not only introduces a graph-based spatial pruning and encoding strategy to improve search efficiency, but also performs real-time spatial overlap detection based on functional region boundaries to ensure layout feasibility. Additionally, an interactive module enables real-time user customization to accommodate specific planning needs. Experimental results demonstrate that the system can efficiently generate complete multi-region layouts, significantly enhancing design productivity. A user study with 20 agricultural park experts confirms the system’s usability and effectiveness. This study highlights the potential of integrating evolutionary algorithms with topological graph representations to address the complex spatial planning requirements of digital agricultural parks. Full article
(This article belongs to the Section Human-Computer Interaction)
Show Figures

Figure 1

22 pages, 793 KB  
Review
Resin Production in Pinus: A Review of the Relevant Influencing Factors and Silvicultural Practices
by Dalila Lopes, André Sandim, José Luís Louzada and Maria Emília Silva
Forests 2025, 16(9), 1470; https://doi.org/10.3390/f16091470 - 16 Sep 2025
Viewed by 1172
Abstract
Resin is a renewable non-timber forest product that is used as a raw material in a wide range of goods, thereby holding significant socioeconomic importance and relevance across multiple industrial sectors. This study aims to provide a comprehensive review of the main factors [...] Read more.
Resin is a renewable non-timber forest product that is used as a raw material in a wide range of goods, thereby holding significant socioeconomic importance and relevance across multiple industrial sectors. This study aims to provide a comprehensive review of the main factors influencing natural resin production in Pinus stands, as well as to address the effects of these factors on tree growth dynamics and resin yield optimization. Among these factors, dendrometric characteristics, environmental conditions, and silvicultural practices, such as thinning, pruning, and prescribed burning, are particularly relevant. However, the scientific literature presents conflicting results regarding the influence of these factors on resin yield, as well as the impacts of resin tapping on tree growth and wood quality. These divergences highlight the complexity of the process and reinforce the need for further studies to clarify the interactions between silvicultural practices in Pinus stands and resin production. Understanding these practices is essential for the development and implementation of efficient silvicultural models aimed at optimizing resin tapping that are properly tailored to the specific conditions of each site. In this context, the development of management models that integrate both timber and resin production is fundamental for simulating management scenarios, generating yield forecasts, and supporting decision-making processes. It is worth noting that management models focused on maximizing resin production may differ from conventional approaches intended for pulpwood or sawtimber production. Nevertheless, integrating resin tapping with timber harvesting holds significant potential to increase the profitability of forest operations. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Graphical abstract

12 pages, 1911 KB  
Article
Agrivoltaic Impact on Some Lettuce Quality Attributes and Photovoltaic Power Generation
by Yasin Gunhan and Onur Taskin
Plants 2025, 14(18), 2853; https://doi.org/10.3390/plants14182853 - 12 Sep 2025
Viewed by 565
Abstract
Agrivoltaics represent an innovative approach that enables the simultaneous production of both agriculture and energy on limited lands. The purpose of this study is to evaluate the feasibility of using pruning residues as a sustainable construction material for Agrivoltaic structures and to investigate [...] Read more.
Agrivoltaics represent an innovative approach that enables the simultaneous production of both agriculture and energy on limited lands. The purpose of this study is to evaluate the feasibility of using pruning residues as a sustainable construction material for Agrivoltaic structures and to investigate the different irrigation conditions (control group (open field) with 100% irrigation (I), 60% I, 80% I, 100% I, and 120% I under the Agrivoltaic) on some lettuce (Lactuca sativa L.) quality parameters and PV (photovoltaic) power generation. As a result of the study, the Agrivoltaic system resulted in a 2.92% power loss compared to a conventional PV panel. The average light intensity under the PV panels was recorded as 6500 lux, while it was 47,700 lux in the control group. Therefore, the mean SPAD values of lettuce plants were found at 24.94 SPAD under the Agrivoltaic system, in contrast to 32.49 SPAD measured in the control group. Among the conditions tested, the 100% irrigation (I) condition under the Agrivoltaic system was found to be the most favorable method for lettuce quality in terms of the a* color value, head weight, marketable head weight, head height, head diameter, root length, root width, and root collar diameter. In conclusion, Agrivoltaic systems demonstrate significant potential in the agricultural and energy sectors, contributing to environmental and economic sustainability. Full article
Show Figures

Figure 1

29 pages, 8161 KB  
Article
Dense Time Series of Harmonized Landsat Sentinel-2 and Ensemble Machine Learning to Map Coffee Production Stages
by Taya Cristo Parreiras, Claudinei de Oliveira Santos, Édson Luis Bolfe, Edson Eyji Sano, Victória Beatriz Soares Leandro, Gustavo Bayma, Lucas Augusto Pereira da Silva, Danielle Elis Garcia Furuya, Luciana Alvim Santos Romani and Douglas Morton
Remote Sens. 2025, 17(18), 3168; https://doi.org/10.3390/rs17183168 - 12 Sep 2025
Cited by 1 | Viewed by 1336
Abstract
Coffee demand continues to rise, while producing countries face increasing challenges and yield losses due to climate change. In response, farmers are adopting agricultural practices capable of boosting productivity. However, these practices increase intercrop variability, making coffee mapping more challenging. In this study, [...] Read more.
Coffee demand continues to rise, while producing countries face increasing challenges and yield losses due to climate change. In response, farmers are adopting agricultural practices capable of boosting productivity. However, these practices increase intercrop variability, making coffee mapping more challenging. In this study, a novel approach is proposed to identify coffee cultivation considering four phenological stages: planting (PL), producing (PR), skeleton pruning (SK), and renovation with stumping (ST). A hierarchical classification framework was designed to isolate coffee pixels and identify their respective stages in one of Brazil’s most important coffee-producing regions. A dense time series of multispectral bands, spectral indices, and texture metrics derived from Harmonized Landsat Sentinel-2 (HLS) imagery, with an average revisit time of ~3 days, was employed. This data was combined with an ensemble learning approach based on decision-tree algorithms, specifically Random Forest (RF) and Extreme Gradient Boosting (XGBoost). The results achieved unprecedented sensitivity and specificity for coffee plantation detection with RF, consistently exceeding 95%. The classification of coffee phenological stages showed balanced accuracies of 77% (ST) and from 93% to 95% for the other classes. These findings are promising and provide a scalable framework to monitor climate-resilient coffee management practices. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

25 pages, 2277 KB  
Article
Circular Economy Assessment of Biochar-Enhanced Compost in Viticulture Using Ecocanvas
by Alexy Apolo-Romero, Nieves García-Casarejos and Pilar Gargallo
Agriculture 2025, 15(18), 1932; https://doi.org/10.3390/agriculture15181932 - 11 Sep 2025
Viewed by 736
Abstract
This study evaluates the application of circular economy principles in the wine sector through a demonstrative case developed within the LIFE Climawin project. The initiative focuses on the local valorization of vineyard residues by producing biochar from vine pruning and using it to [...] Read more.
This study evaluates the application of circular economy principles in the wine sector through a demonstrative case developed within the LIFE Climawin project. The initiative focuses on the local valorization of vineyard residues by producing biochar from vine pruning and using it to enrich compost derived from winemaking by-products and sheep manure. The combined application of these soil amendments aims to improve soil structure, enhance carbon sequestration, and reduce reliance on synthetic fertilizers. A systemic evaluation was conducted using the Ecocanvas methodology—a conceptual framework for mapping circular business models across environmental, economic, and social dimensions. The analysis integrated a targeted literature review, examination of technical data, direct field observations of composting and biochar production, and semi-structured interviews with key stakeholders. Results indicate multiple benefits from localized residue valorization, including improved compost quality, reduced greenhouse gas emissions, potential contributions to long-term soil health, and enhanced resource efficiency. The analysis also highlights economic opportunities, such as reduced dependency on external inputs, and social value creation through local stakeholder engagement. Furthermore, the study identifies factors that enable or constrain the replication and scaling of this model. These findings contribute to frameworks for advancing circular, economically viable, and socially inclusive climate-resilient agricultural systems. Full article
Show Figures

Figure 1

18 pages, 1101 KB  
Article
Innovative and Healthy Cookies Enriched with Blueberry Leaf Powder
by Francesco Antonio Santuccione, Marina Soazo, Emilce Llopart, Matías Rossi, Roxana Andrea Verdini, Paola Pittia and Leonardo Martín Pérez
Molecules 2025, 30(18), 3671; https://doi.org/10.3390/molecules30183671 - 9 Sep 2025
Viewed by 733
Abstract
Blueberry (Vaccinium spp.) leaves, a residual biomass of pruning, are a rich source of polyphenols, fiber, and minerals. In this study, blueberry leaf powder (BBLP) was incorporated into wheat/soy flour-based cookies to develop antioxidant- and fiber-enriched bakery products. BBLP exhibited 8.2% protein, [...] Read more.
Blueberry (Vaccinium spp.) leaves, a residual biomass of pruning, are a rich source of polyphenols, fiber, and minerals. In this study, blueberry leaf powder (BBLP) was incorporated into wheat/soy flour-based cookies to develop antioxidant- and fiber-enriched bakery products. BBLP exhibited 8.2% protein, 44% dietary fiber (predominantly insoluble), and high antioxidant activity (2109 ± 20 mg gallic acid equivalents/100 g sample; 6251 ± 42 µmol Trolox equivalents/100 g). Four cookies’ formulations were prepared by replacing 0%, 2.5%, 5.0%, and 7.5% of the flour blend with BBLP. The total phenolic content, total antioxidant content, physical properties (weight, diameter, thickness, volume, hardness, and color), chemical composition (moisture, ash, minerals, protein, carbohydrate, fat, and fiber content), and sensory properties (taste, texture, aroma, and overall acceptability) were analyzed. All BBLP-enriched cookies qualified as a “source of fiber” according to Codex Alimentarius guidelines and EU Regulation (EC) No 1924/2006 on nutrition and health claims for foods. The addition of BBLP significantly affected the cookies’ diameter, thickness, volume, and hardness, likely due to its high insoluble fiber content. Moreover, as BBLP levels increased, the surface color darkened progressively, with increased redness and decreased yellowness attributed to the presence of anthocyanins. Accordingly, BBLP-enriched cookies showed increased antioxidant capacity, proportional to the amount of BBLP added, indicating good retention of the bioactive compounds after baking. Sensory evaluation using Quantitative Descriptive Analysis revealed that cookies with 2.5% BBLP were rated with the highest acceptability scores, whereas higher concentrations imparted noticeable herbal notes and a darker color, decreasing overall acceptability. In conclusion, BBLP can be effectively incorporated at 2.5% to enhance the nutritional quality and antioxidant potential of cookies without compromising sensory appeal, contributing to sustainable food innovation by valorizing residual agricultural biomass. Full article
Show Figures

Figure 1

21 pages, 13169 KB  
Article
Automated Rice Seedling Segmentation and Unsupervised Health Assessment Using Segment Anything Model with Multi-Modal Feature Analysis
by Hassan Rezvan, Mohammad Javad Valadan Zoej, Fahimeh Youssefi and Ebrahim Ghaderpour
Sensors 2025, 25(17), 5546; https://doi.org/10.3390/s25175546 - 5 Sep 2025
Cited by 1 | Viewed by 1328
Abstract
This research presents a fully automated two-step method for segmenting rice seedlings and assessing their health by integrating spectral, morphological, and textural features. Driven by the global need for increased food production, the proposed method enhances monitoring and control in agricultural processes. Seedling [...] Read more.
This research presents a fully automated two-step method for segmenting rice seedlings and assessing their health by integrating spectral, morphological, and textural features. Driven by the global need for increased food production, the proposed method enhances monitoring and control in agricultural processes. Seedling locations are first identified by the excess green minus excess red index, which enables automated point-prompt inputs for the segment anything model to achieve precise segmentation and masking. Morphological features are extracted from the generated masks, while spectral and textural features are derived from corresponding red–green–blue imagery. Health assessment is conducted through anomaly detection using a one-class support vector machine, which identifies seedlings exhibiting abnormal morphology or spectral signatures suggesting stress. The proposed method is validated by visual inspection and Silhouette score, confirming effective separation of anomalies. For segmentation, the proposed method achieved mean dice scores ranging from 72.6 to 94.7. For plant health assessment, silhouette scores ranged from 0.31 to 0.44 across both datasets and various growth stages. Applied across three consecutive rice growth stages, the framework facilitates temporal monitoring of seedling health. The findings highlight the potential of advanced segmentation and anomaly detection techniques to support timely interventions, such as pruning or replacing unhealthy seedlings, to optimize crop yield. Full article
Show Figures

Figure 1

26 pages, 2535 KB  
Article
Pharmacognosy and Antioxidant Activity of Pruned Leaves from the Unexplored Olea europaea L. ‘Lavagnina’ (Liguria, Italy)
by Federica Betuzzi, Paola Malaspina, Flavio Polito, Giovanni Bottino, Vincenzo De Feo, Laura De Martino and Laura Cornara
Molecules 2025, 30(17), 3605; https://doi.org/10.3390/molecules30173605 - 3 Sep 2025
Viewed by 1138
Abstract
Olea europaea L. ‘Lavagnina’ is cultivated in the Eastern Ligurian coast (Italy), and during the pruning process a huge amount of pruning residues is produced. This by-product is generally disposed of by burning, despite still containing bioactive compounds. In particular, olive leaves are [...] Read more.
Olea europaea L. ‘Lavagnina’ is cultivated in the Eastern Ligurian coast (Italy), and during the pruning process a huge amount of pruning residues is produced. This by-product is generally disposed of by burning, despite still containing bioactive compounds. In particular, olive leaves are indeed rich in secondary metabolites, which can vary both in quality and quantity in relation to the cultivar considered and the area of cultivation. For this reason, we aimed to carry out a pharmacognostic study of the pruned leaves of the unexplored local cultivar ‘Lavagnina’, evaluating the possibility of reusing this by-product for new health applications. The micromorphological characterization was conducted by light and scanning electron microscopy. ‘Lavagnina’ leaf was micromorphologically similar to that of other olive cultivars; however, it differed in terms of midrib structure. Leaf extracts were obtained using solvents of increasing polarity (petroleum ether, chloroform, methanol) and the food-grade solvent, 70% ethanol. A high antioxidant activity was found only for the methanolic (ME) and hydroalcoholic (HAE) extracts, and, therefore, they were then characterized from a phytochemical point of view by LC-ESI-HR-MS. Such analysis allowed the identification of secondary metabolites belonging mainly to secoiridoids, flavonoids, and iridoids. Overall, the HAE had the highest antioxidant activity (17.3 ± 0.6 μg/mL), and it is, therefore, the best candidate for health applications related to a protective effect on a variety of inflammation-related diseases, also considering that inflammation may play a role in cancer progression. Full article
(This article belongs to the Special Issue Chemopreventive Activity of Natural Products)
Show Figures

Figure 1

Back to TopTop