Circular Economy Assessment of Biochar-Enhanced Compost in Viticulture Using Ecocanvas
Abstract
1. Introduction
2. Theoretical Framework
2.1. Circular Economy in the Wine Sector
2.2. Biochar-Enhanced Compost: Scientific Evidence and Benefits in Vineyards
2.3. The Ecocanvas Methodology for the Analysis of Circular Models
3. Materials and Methods
3.1. Case Study
3.2. Methodological Structure and Operational Tools of Ecocanvas
3.3. Practical Application of Ecocanvas in the Pilot Case: Bosque de Matasnos Winery
4. Results of Applying the Ecocanvas Methodology to the Biochar-Enhanced Compost Measure
4.1. Agronomic Results and Key Performance Indicators (KPIs)
4.2. Ecocanvas-Based Systemic Analysis and Circular Business Model
4.2.1. Needs and Challenges
4.2.2. PESTEL Analysis
4.2.3. Unique Circular Value Proposition
4.2.4. Customer Segment
4.2.5. Key Resources
4.2.6. Circular Value Chain
4.2.7. Stakeholders Relationship
4.2.8. Environmental Foresight and Impact
4.2.9. Social Foresight and Impact
4.2.10. Communication and Sales
4.2.11. Cost Structure
4.2.12. Revenue Streams
4.2.13. Circular Business Model and Innovation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Provenzano, M.; Pacchera, F.; Silvestri, C.; Ruggieri, A. From Vineyard to Value: A Circular Economy Approach to Viticulture Waste. Resources 2024, 13, 172. [Google Scholar] [CrossRef]
- Mujtaba, G.; Hayat, R.; Hussain, Q.; Ahmed, M. Physio-Chemical Characterization of Biochar, Compost and Co-Composted Biochar Derived from Green Waste. Sustainability 2021, 13, 4628. [Google Scholar] [CrossRef]
- Kovacs, E.; Hoaghia, M.A.; Senila, L.; Scurtu, D.A.; Varaticeanu, C.; Roman, C.; Dumitras, D.E. Life Cycle Assessment of Biofuels Production Processes in Viticulture in the Context of Circular Economy. Agronomy 2022, 12, 1320. [Google Scholar] [CrossRef]
- Liu, X.; Ren, X.; Dong, J.; Wang, B.; Gao, J.; Wang, R.; Yao, J.; Cao, W. Preparation and Physicochemical Properties of Biochar from the Pyrolysis of Pruning Waste of Typical Fruit Tree in North China. BioResources 2023, 18, 8536–8556. [Google Scholar] [CrossRef]
- Abbate, S.; Centobelli, P.; Di Gregorio, M. Wine Waste Valorisation: Crushing the Research Domain. Rev. Manag. Sci. 2025, 19, 963–998. [Google Scholar] [CrossRef]
- Daou, A.; Mallat, C.; Chammas, G.; Cerantola, N.; Kayed, S.; Saliba, N.A. The Ecocanvas as a Business Model Canvas for a Circular Economy. J. Clean. Prod. 2020, 258, 120938. [Google Scholar] [CrossRef]
- Ririh, K.R.; Sundana, S.; Kusumawati, A.; Ningtyas, D.R. The Development of the Triple-Helix Role Model on the Development of a Cleantech Startup Ecocanvas Based on Green Innovation & Technology Adoption. Barometer 2022, 7, 107–116. [Google Scholar] [CrossRef]
- Bálint, L.P.; Várallyai, L.; Botos, S. Evaluation of Data-Driven Sustainability Potential at SMEs Using an Altered Ecocanvas Model. Economies 2025, 13, 49. [Google Scholar] [CrossRef]
- Rajković, M.B.; Popović, M.D.; Milinčić, D.; Zdravković, M. Circular Economy in Food Industry. Zast. Mater. 2020, 61, 229–250. [Google Scholar] [CrossRef]
- Matrapazi, V.K.; Zabaniotou, A. Experimental and Feasibility Study of Spent Coffee Grounds Upscaling via Pyrolysis towards Proposing an Eco-Social Innovation Circular Economy Solution. Sci. Total Environ. 2020, 718, 137316. [Google Scholar] [CrossRef]
- Dora, M.; Biswas, S.; Choudhary, S.; Nayak, R.; Irani, Z. A System-Wide Interdisciplinary Conceptual Framework for Food Loss and Waste Mitigation Strategies in the Supply Chain. Ind. Mark. Manag. 2021, 93, 492–508. [Google Scholar] [CrossRef]
- Kounani, A.; Sotiropoulou, E.; Seleventi, M. Implementing Circular Economy in Wineries: The Case of Greece. In Proceedings of the 17th International Conference on Environmental Science and Technology, Athens, Greece, 1–4 September 2021. [Google Scholar] [CrossRef]
- Mirabella, N.; Castellani, V.; Sala, S. Current Options for the Valorization of Food Manufacturing Waste: A Review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef]
- Mura, R.; Vicentini, F.; Botti, L.M.; Chiriacò, M.V. Achieving the Circular Economy Through Environmental Policies: Packaging Strategies for More Sustainable Business Models in the Wine Industry. Bus. Strategy Environ. 2024, 33, 1497–1514. [Google Scholar] [CrossRef]
- García-García, J.; García-Castellanos, B.; García García, B. Economic and Environmental Assessment of the Wine Chain in Southeastern Spain. Agronomy 2023, 13, 1478. [Google Scholar] [CrossRef]
- Marques, C.; Güneş, S.; Vilela, A.; Gomes, R. Life-Cycle Assessment in Agri-Food Systems and the Wine Industry—A Circular Economy Perspective. Foods 2025, 14, 1553. [Google Scholar] [CrossRef]
- Berardi, P.C.; Dias, J.M. How Has the Wine Sector Incorporated the Premises of Circular Economy? J. Environ. Sci. Eng. B 2019, 8, 108–117. [Google Scholar] [CrossRef]
- Destefanis, R.; Cela, N.; Torri, L.; Fassio, F. Systemic Approach Applied to the “R” Paradigm of the Circular Economy: A Critical Reading of the Winemaking Process Through Case Studies from Northwest Italy. Sustainability 2024, 16, 8960. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.D.; Novara, A.; Cerdà, A. The Immediate Effectiveness of Barley Straw Mulch in Reducing Soil Erodibility and Surface Runoff in Mediterranean Vineyards. Sci. Total. Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef]
- O’Brien, F.; Nesbitt, A.; Sykes, R.; Kemp, B. Regenerative Viticulture and Climate Change Resilience. OENO One 2025, 59, e8089. [Google Scholar] [CrossRef]
- Ghiglieno, I.; Simonetto, A.; Facciano, L.; Tonni, M.; Donna, P.; Valenti, L.; Gilioli, G. Comparing the Carbon Footprint of Conventional and Organic Vineyards in Northern Italy. Sustainability 2023, 15, 5252. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Mandal, S.; Niazi, N.K.; Vithanage, M.; Parikh, S.J.; Mukome, F.N.; Rizwan, M.; Oleszczuk, P.; Al-Wabel, M.; Bolan, N.; et al. Advances and Future Directions of Biochar Characterization Methods and Applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2275–2330. [Google Scholar] [CrossRef]
- Giagnoni, L.; Maienza, A.; Baronti, S.; Vaccari, F.P.; Genesio, L.; Taiti, C.; Martellini, T.; Scodellini, R.; Cincinelli, A.; Costa, C.; et al. Long-Term Soil Biological Fertility, Volatile Organic Compounds and Chemical Properties in a Vineyard Soil after Biochar Amendment. Geoderma 2019, 344, 127–136. [Google Scholar] [CrossRef]
- Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bhartiraja, B. Green Processing and Biotechnological Potential of Grape Pomace: Current Trends and Opportunities for Sustainable Biorefinery. Bioresour. Technol. 2020, 314, 123771. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. A Review: Soil Management, Sustainable Strategies and Approaches to Improve the Quality of Modern Viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- Thakur, A.; Kumar, A.; Somya, A. Forestry and Agricultural Residues-Based Wastes: Fundamentals, Classification, Properties, and Applications. In Biomass Wastes for Sustainable Industrial Applications; CRC Press: Boca Raton, FL, USA, 2025; pp. 95–139. [Google Scholar]
- Baronti, S.; Vaccari, F.P.; Miglietta, F.; Calzolari, C.; Lugato, E.; Orlandini, S.; Pini, R.; Zulian, C.; Genesio, L. Impact of Biochar Application on Plant Water Relations in Vitis vinifera (L.). Eur. J. Agron. 2014, 53, 38–44. [Google Scholar] [CrossRef]
- Genesio, L.; Miglietta, F.; Baronti, S.; Vaccari, F.P. Biochar Increases Vineyard Productivity Without Affecting Grape Quality: Results from a Four Years Field Experiment in Tuscany. Agric. Ecosyst. Environ. 2015, 201, 20–25. [Google Scholar] [CrossRef]
- Rombolà, A.G.; Meredith, W.; Snape, C.E.; Baronti, S.; Genesio, L.; Vaccari, F.P.; Miglietta, F.; Fabbri, D. Fate of Soil Organic Carbon and Polycyclic Aromatic Hydrocarbons in a Vineyard Soil Treated with Biochar. Environ. Sci. Technol. 2015, 49, 11037–11044. [Google Scholar] [CrossRef]
- Maienza, A.; Baronti, S.; Cincinelli, A.; Martellini, T.; Grisolia, A.; Miglietta, F.; Renella, G.; Stazi, S.R.; Vaccari, F.P.; Genesio, L. Biochar Improves the Fertility of a Mediterranean Vineyard without Toxic Impact on the Microbial Community. Agron. Sustain. Dev. 2017, 37, 45. [Google Scholar] [CrossRef]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Alami, I.T. Composting Parameters and Compost Quality: A Literature Review. Org. Agric. 2018, 8, 141–158. [Google Scholar] [CrossRef]
- Caponio, G.R.; Minervini, F.; Tamma, G.; Gambacorta, G.; De Angelis, M. Promising application of grape pomace and its agri-food valorization: Source of bioactive molecules with beneficial effects. Sustainability 2023, 15, 9075. [Google Scholar] [CrossRef]
- Karastergiou, A.; Gancel, A.L.; Jourdes, M.; Teissedre, P.L. Valorization of grape pomace: A review of phenolic composition, bioactivity, and therapeutic potential. Antioxidants 2024, 13, 1131. [Google Scholar] [CrossRef]
- Constantin, O.E.; Stoica, F.; Rațu, R.N.; Stănciuc, N.; Bahrim, G.E.; Râpeanu, G. Bioactive components, applications, extractions, and health benefits of winery by-products from a circular bioeconomy perspective: A review. Antioxidants 2024, 13, 100. [Google Scholar] [CrossRef]
- Lopes, J.D.C.; Madureira, J.; Margaça, F.M.; Cabo Verde, S. Grape pomace: A review of its bioactive phenolic compounds, health benefits, and applications. Molecules 2025, 30, 362. [Google Scholar] [CrossRef]
- Ferrari, V.; Taffarel, S.R.; Espinosa-Fuentes, E.; Oliveira, M.L.; Saikia, B.K.; Oliveira, L.F. Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. J. Clean. Prod. 2019, 208, 297–306. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Lores, M.; Insam, H.; Domínguez, J. Strategies for recycling and valorization of grape marc. Crit. Rev. Biotechnol. 2019, 39, 437–450. [Google Scholar] [CrossRef]
- Perra, M.; Cuena-Lombraña, A.; Bacchetta, G.; Manca, M.L.; Manconi, M.; Maroun, R.G.; De Gioannis, G. Combining different approaches for grape pomace valorization: Polyphenols extraction and composting of the exhausted biomass. Sustainability 2022, 14, 10690. [Google Scholar] [CrossRef]
- Gabur, G.D.; Teodosiu, C.; Fighir, D.; Cotea, V.V.; Gabur, I. From waste to value in circular economy: Valorizing grape pomace waste through vermicomposting. Agriculture 2024, 14, 1529. [Google Scholar] [CrossRef]
- Nascimento-Gonçalves, E.; Azevedo, T.; Lopes, H.; Sousa, J.R.; Oliveira, P.A.; Roboredo, M.; Morais, M.C. Vermicomposting as a valorization solution to the winery sector by-products. Agronomy 2024, 14, 1111. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Sánchez-García, M.; Vandecasteele, B.; D’Hose, T.; López, G.; Martínez-Gaitán, C.; Kuikman, P.J.; Sinicco, T.; Mondini, C. Agronomic Evaluation of Biochar, Compost and Biochar-Blended Compost across Different Cropping Systems: Perspective from the European Project FERTIPLUS. Agronomy 2019, 9, 225. [Google Scholar] [CrossRef]
- Ronga, D.; Francia, E.; Allesina, G.; Pedrazzi, S.; Zaccardelli, M.; Pane, C.; Tava, A.; Bignami, C. Valorization of Vineyard By-Products to Obtain Composted Digestate and Biochar Suitable for Nursery Grapevine (Vitis vinifera L.). Prod. Agron. 2019, 9, 420. [Google Scholar] [CrossRef]
- Garau, M.; Pinna, M.V.; Nieddu, M.; Castaldi, P.; Garau, G. Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements. Plants 2024, 13, 284. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, M.; Hajiaghaei-Kamrani, M. Biochar–Compost Mixture and Cover Crop Effects on Soil Carbon and Nitrogen Dynamics, Yield, and Fruit Quality in an Irrigated Vineyard. Can. J. Soil Sci. 2023, 103, 200–212. [Google Scholar] [CrossRef]
- Bello, A.; Wang, B.; Zhao, Y.; Yang, W.; Ogundeji, A.; Deng, L.; Egbeagu, U.U.; Yu, S.; Zhao, L.; Li, D.; et al. Composted Biochar Affects Structural Dynamics, Function and Co-Occurrence Network Patterns of Fungi Community. Sci. Total Environ. 2021, 775, 145672. [Google Scholar] [CrossRef] [PubMed]
- Zahra, M.B.; Fayyaz, B.; Aftab, Z.E.H.; Haider, M.S. Mitigation of Degraded Soils by Using Biochar and Compost: A Systematic Review. J. Soil Sci. Plant Nutr. 2021, 21, 2856–2873. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N. Role of Biochar as an Additive in Organic Waste Composting. Bioresour. Technol. 2018, 247, 1155–1164. [Google Scholar] [CrossRef]
- Oldfield, T.L.; Sikirica, N.; Mondini, C.; López, G.; Kuikman, P.J.; Holden, N.M. Biochar, Compost and Biochar–Compost Blend as Options to Recover Nutrients and Sequester Carbon. J. Environ. Manag. 2018, 218, 465–476. [Google Scholar] [CrossRef]
- Osterwalder, A.; Pigneur, Y. Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Alfarizi, M.; Sari, R.K. Micro Business Study of Traditional Health Drink Products “Telang limao bangkak” (Green Business Canvas Study “Ecocanvas”). Food Sci. Tech. J. 2021, 3, 127. [Google Scholar] [CrossRef]
- Pepin, M.; Tremblay, M.; Audebrand, L.K.; Chassé, S. The responsible business model canvas: Designing and assessing a sustainable business modeling tool for students and start-up entrepreneurs. Int. J. Sustain. High. Educ. 2024, 25, 514–538. [Google Scholar] [CrossRef]
- Islam, M.T.; Iyer-Raniga, U. Circular business model value dimension canvas: Tool redesign for innovation and validation through an Australian case study. Sustainability 2023, 15, 11553. [Google Scholar] [CrossRef]
- Jamadagni, A.; Aurisicchio, M.; Nybom, L. Modelling an ecosystem of business models in a circular value chain: The circular business ecosystem model canvas. Proc. Des. Soc. 2024, 4, 1309–1318. [Google Scholar] [CrossRef]
- Rochani, R.; Sutopo, W. The eco-canvas of green business vehicle-electrification: A case study of electric motorcycle circular-economy business model in Indonesia. In Proceedings of the International Conference on Energy Transition and Exhibition, Miri, Malaysia, 5–7 September 2024; Springer Nature: Singapore, 2024; pp. 45–54. [Google Scholar] [CrossRef]
- Kim, C.H.; Wood, J.; Thirumaran, K. How to Implement a Circular Business Model for Achieving Low-Carbon Tourism: Lessons from Resorts World Sentosa, Singapore. In The Business of Low-Carbon Tourism; Routledge: London, UK, 2025; pp. 36–51. [Google Scholar] [CrossRef]
- Epstein, E. The Science of Composting; Technomic Publishing Company: Lancaster, PA, USA, 1997. [Google Scholar]
- Sommer, S.G.; Kjellerup, V.; Kristjansen, O. Determination of Total Ammonium Nitrogen in Pig and Cattle Slurry: Sam-ple Preparation and Analysis. Acta Agric. Scand. Sect. B Soil Plant Sci. 1992, 42, 146–151. [Google Scholar] [CrossRef]
- Zucconi, F.; Monaco, A.; Forte, M.; De Bertoldi, M. Biological evaluation of compost maturity. BioCycle 1981, 22, 27–29. [Google Scholar]
- Harrison, B.; Gao, S.; Gonzales, M.; Thao, T.; Bischak, E.; Ghezzehei, T.A.; Berhe, A.A.; Diaz, G.; Ryals, R.A. Dairy Manure Co-Composting with Wood Biochar Plays a Critical Role in Meeting Global Methane Goals. Environ. Sci. Technol. 2022, 56, 10987–10996. [Google Scholar] [CrossRef]
- Rizwan, M.; Murtaza, G.; Zulfiqar, F.; Moosa, A.; Iqbal, R.; Ahmed, Z.; Irshad, S.; Khan, I.; Li, T.; Chen, J.; et al. Sustainable Manufacture and Application of Biochar to Improve Soil Properties and Remediate Soil Contaminated with Organic Impurities: A Systematic Review. Front. Environ. Sci. 2023, 11, 1277240. [Google Scholar] [CrossRef]
- Qian, S.; Zhou, X.; Fu, Y.; Song, B.; Yan, H.; Chen, Z.; Sun, Q.; Ye, H.; Qin, L.; Lai, C. Biochar–Compost as a New Option for Soil Improvement: Application in Various Problem Soils. Sci. Total Environ. 2023, 870, 162024. [Google Scholar] [CrossRef] [PubMed]
- Mikajlo, I.; Lerch, T.Z.; Louvel, B.; Hynšt, J.; Záhora, J.; Pourrut, B. Composted Biochar versus Compost with Biochar: Effects on Soil Properties and Plant Growth. Biochar 2024, 6, 12. [Google Scholar] [CrossRef]
- Ali, M.; Ahmed, O.H.; Jalloh, M.B.; Primus, W.C.; Musah, A.A.; Ng, J.F. Co-Composted Chicken Litter Biochar Increases Soil Nutrient Availability and Yield of Oryza sativa L. Land 2023, 12, 233. [Google Scholar] [CrossRef]
Methodological Stage | Applied Tools | Main Ecocanvas Blocks Addressed |
---|---|---|
A. Strategic Diagnosis | A1. Needs and Challenges A2. Mission, Vision, and Values A3. Selection of Product or System A4. KPIs | I. Needs/Challenges |
B. Circular Value Proposition | B. Unique Circular Value Proposition | X. Unique Circular Value Proposition II. Customer Segments |
C. Environmental Analysis | C. PESTEL Analysis | V. Environmental Anticipation VII. Social Anticipation |
D. Life Cycle and Stakeholders | D0. Stakeholder Map D1. Life Cycle Flows D2. Life Cycle Assessment (LCA) | VIII. Stakeholder Relationships IV. Circular Value Chain III. Key Resources |
E. Circular Opportunities | E. Identification of Circular Opportunities | IV. Circular Value Chain |
F. Strategies and Definition | F0. Circularity Strategies F1. Definition of Proposal F2. Proposal Evaluation | IX. Communication and Sales XI. Revenue Streams VI. Cost Structure XII. Circular Business Innovation |
G. Implementation | G. Roadmap for Circular Transformation | Integrates and consolidates all blocks |
Parameter | Compost Without Biochar Mean ± Standard Deviation | Compost + Biochar (20%) Mean ± Standard Deviation |
---|---|---|
pH | 10.09 ± 0.01 | 10.11 ± 0.02 |
Electrical conductivity (mS cm−1) | 2.18 ± 0.06 | 2.91 ± 0.04 |
Total organic carbon (%) | 13.7 ± 0.31 | 25.30 ± 0.51 |
Total nitrogen (%) | 0.92 ± 0.01 | 1.38 ± 0.03 |
Potassium (g kg−1) | 23.46 ± 1.06 | 27.51 ± 0.73 |
Phosphorus (g kg−1) | 2.97 ± 0.08 | 3.96 ± 0.04 |
Ammonium NH4+-N (mg kg−1) | 35.10 ± 18.90 | 16.00 ± 1.50 |
Nitrate NO3−-N (mg kg−1) | 8.00 ± 0.40 | 98.20 ± 8.80 |
Phosphate (PO43−) (mg kg−1) | 36.80 ± 1.60 | 31.00 ± 4.30 |
Germination index (%) | 59.40 ± 3.40 | 59.40 ± 3.80 |
Maturity time (days) | ~90 | <65 |
Property | Value |
---|---|
Origin | Local forest residues |
Production method | Slow pyrolysis, >600 °C |
Bulk density | 330 g L−1 |
pH | 8.10 |
Electrical conductivity (mS cm−1) | 0.65 |
Total organic carbon (%) | 73.30 |
Total nitrogen (%) | 1.00 |
Moisture content (%) | 6.00 |
Indicator | Compost Without Biochar | Compost with Biochar | Difference/ Improvement |
---|---|---|---|
Annual CH4 emission (kg per year) | 972 | 240 | −75% |
Annual CO2-eq emission (kg per year) | 81,648 | 20,160 | −75% |
CO2-eq avoided per bottle (g per bottle) * | — | — | 307 |
KPI | Value (2024) | Interpretation/Significance |
---|---|---|
CH4 emissions reduction during composting (%) | −75% | Major reduction in GHG emissions |
CO2-eq avoided per bottle of wine (g per bottle) 1 | 307 | Lower cradle-to-grave carbon footprint |
Increase in compost organic carbon (%) | +84% | Compost with biochar contains 84% more OC than compost without biochar at the end of the process (per Table 2 calculation) |
Reduction in maturation time (days) | −25 | Compost reaches maturity 25 days faster with biochar (per Table 2) |
Rural job creation (monitoring, operation) | Not quantified | Considered as a potential co-benefit |
Responsible sourcing: PEFC certificate for forest management | Achieved (2025) | Ensures sustainable, certified biomass for biochar; enhances landscape and biodiversity value; market differentiation |
Factor | Key Aspects and Local Context |
---|---|
Political | Strong institutional support for the circular economy at EU and national levels (CAP, NextGen EU, incentives for regenerative practices). National and regional strategies for reducing chemical inputs and valorizing agricultural waste. The Ribera del Duero D.O. promotes viticultural sustainability, the use of native grape varieties, and yield limitations. |
Economic | Cost savings on external inputs through in-house compost and biochar production. Initial infrastructure investment offset by internal resources (manure, prunings, forest biomass). Access to premium niches due to traceability and a low carbon footprint. Potential revenues from carbon credits and climate-related programs (e.g., CAP). |
Social | Rising demand from conscious consumers (organic, local wines with sustainability narratives) Rural employment generation and community strengthening. Positive recognition of regenerative practices via wine tourism, environmental education, and customer loyalty linked to transparency. |
Technological | Innovation in composting and pyrolysis supported by European funding. Ongoing need for training in regenerative technologies. Challenges in scaling production, adapting equipment to available residues, and ensuring quality control in biochar and compost. Growing interest in digital tools for environmental traceability. |
Environmental | Climate change threats in Ribera del Duero (drought, water stress, early ripening). Soil resilience, water retention, and carbon sequestration improved through compost and biochar. Integration of sustainable forest management in a protected landscape. Potential risks from emissions and leachate if not properly managed. |
Legal | Increasingly strict EU and national regulations on agricultural and livestock waste (manure, prunings, GHG emissions). Rules on the use of organic amendments and fertilizers. Tighter restrictions on plant protection products and growing traceability requirements for organic certification and D.O. schemes. |
Stakeholder | Role | Influence |
---|---|---|
Bosque de Matasnos (Winery) | Central actor: manages vineyard, composting, and integrated sheep system | High (strategic + operational) |
CEBAS-CSIC | Scientific partner: methodology, validation, and monitoring | High technical influence |
Technical and agricultural staff | Operational implementation of regenerative practices | Execution level |
Sustainable consumers | Demand authenticity, traceability, and low-carbon products | Reputational and economic |
Public institutions (PAC, NextGen) | Provide financial, legal, and regulatory frameworks | Structural enablers |
Input/machinery suppliers | Technological support (e.g., pyrolysis equipment) | Technical facilitators |
Peer wineries and networks | Potential replicators and amplifiers of the model | Sectoral scale-up agents |
SDG | Model Action | Indicator or Evidence |
---|---|---|
2 Zero Hunger | Application of biochar-enhanced compost in vineyards | Improved soil fertility and nutrient availability |
6 Clean Water and Sanitation | Improved soil structure and water retention | Reduced leaching and increased water-holding capacity |
7 Affordable and Clean Energy | Biochar production from agricultural and forestry residues | Low-emission pyrolysis; potential for energy valorization of by-products |
8 Decent Work and Economic Growth | Local value creation from agro-livestock waste | Rural employment, technical training, and product diversification |
12 Responsible Consumption and Production | On-site composting and biochar production | Waste minimization, closed-loop nutrient cycling, and reduced dependency on external fertilizers |
13 Climate Action | Carbon sequestration in soils and methane reduction | Up to 61 kg CO2-eq per year avoided; 307 g CO2-eq per bottle |
15 Life on Land | Soil regeneration and promotion of microbial biodiversity | Improved soil structure and increased microbial activity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apolo-Romero, A.; García-Casarejos, N.; Gargallo, P. Circular Economy Assessment of Biochar-Enhanced Compost in Viticulture Using Ecocanvas. Agriculture 2025, 15, 1932. https://doi.org/10.3390/agriculture15181932
Apolo-Romero A, García-Casarejos N, Gargallo P. Circular Economy Assessment of Biochar-Enhanced Compost in Viticulture Using Ecocanvas. Agriculture. 2025; 15(18):1932. https://doi.org/10.3390/agriculture15181932
Chicago/Turabian StyleApolo-Romero, Alexy, Nieves García-Casarejos, and Pilar Gargallo. 2025. "Circular Economy Assessment of Biochar-Enhanced Compost in Viticulture Using Ecocanvas" Agriculture 15, no. 18: 1932. https://doi.org/10.3390/agriculture15181932
APA StyleApolo-Romero, A., García-Casarejos, N., & Gargallo, P. (2025). Circular Economy Assessment of Biochar-Enhanced Compost in Viticulture Using Ecocanvas. Agriculture, 15(18), 1932. https://doi.org/10.3390/agriculture15181932