Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,527)

Search Parameters:
Keywords = product completion time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 245 KiB  
Article
Examining the Relationship Between Increased Vegetable Consumption and Lifestyle Characteristics Among School-Aged Children: A Descriptive Study
by Konstantinos D. Tambalis, Dimitris Tampalis, Demosthenes B. Panagiotakos and Labros S. Sidossis
Appl. Sci. 2025, 15(15), 8665; https://doi.org/10.3390/app15158665 (registering DOI) - 5 Aug 2025
Abstract
The purpose of this study was to examine vegetable consumption and its relationship with lifestyle characteristics among children and adolescents. Data from a health survey administered to a representative sample of 177,091 schoolchildren between the ages of 8 and 17 were employed in [...] Read more.
The purpose of this study was to examine vegetable consumption and its relationship with lifestyle characteristics among children and adolescents. Data from a health survey administered to a representative sample of 177,091 schoolchildren between the ages of 8 and 17 were employed in this observational, cross-sectional investigation. Physical activity level, screen time, and sleeping patterns were assessed using self-completed questionnaires. Vegetable consumption and dietary habits were analyzed using the Mediterranean Diet Quality Index for Children and Adolescents. Participants consuming vegetables more than once daily were categorized as consumers vs. non-consumers. Physical education teachers measured anthropometric and physical fitness factors. Descriptive statistics and binary logistic regression analysis were conducted, and the odds ratio with the corresponding 95% confidence interval was calculated and adjusted for confounders. Vegetables were consumed once or more times a day by more females than males (25.5% vs. 24.0%, p < 0.001). In both sexes, vegetable consumers slept more, ate healthier, spent less time on screens, and had better anthropometric and aerobic fitness measurements than non-consumers. Healthy eating practices, such as regularly consuming fruits, legumes, nuts, and dairy products, were strongly correlated with vegetable intake. For every one-year increase in age, the odds of being a vegetable consumer decreased by 8% and 10% in boys and girls, respectively. Overweight/obese participants had lower odds of being a vegetable consumer by 20%. Increased screen time, inadequate physical activity, and insufficient sleeping hours decreased the odds of being a vegetable consumer by 22%, 30%, and 25%, respectively (all p-values < 0.001). Overall, a healthier lifestyle profile was associated with higher vegetable intake for both sexes among children and adolescents. Full article
(This article belongs to the Special Issue Potential Health Benefits of Fruits and Vegetables—4th Edition)
27 pages, 1491 KiB  
Article
Spent Nuclear Fuel—Waste to Resource, Part 1: Effects of Post-Reactor Cooling Time and Novel Partitioning Strategies in Advanced Reprocessing on Highly Active Waste Volumes in Gen III(+) UOx Fuel Systems
by Alistair F. Holdsworth, Edmund Ireland and Harry Eccles
J. Nucl. Eng. 2025, 6(3), 29; https://doi.org/10.3390/jne6030029 - 5 Aug 2025
Abstract
Some of nuclear power’s primary detractors are the unique environmental challenges and impacts of radioactive wastes generated during fuel cycle operations. Key benefits of spent fuel reprocessing (SFR) are reductions in primary high active waste (HAW) masses, volumes, and lengths of radiotoxicity at [...] Read more.
Some of nuclear power’s primary detractors are the unique environmental challenges and impacts of radioactive wastes generated during fuel cycle operations. Key benefits of spent fuel reprocessing (SFR) are reductions in primary high active waste (HAW) masses, volumes, and lengths of radiotoxicity at the expense of secondary waste generation and high capital and operational costs. By employing advanced waste management and resource recovery concepts in SFR beyond the existing standard PUREX process, such as minor actinide and fission product partitioning, these challenges could be mitigated, alongside further reductions in HAW volumes, masses, and duration of radiotoxicity. This work assesses various current and proposed SFR and fuel cycle options as base cases, with further options for fission product partitioning of the high heat radionuclides (HHRs), rare earths, and platinum group metals investigated. A focus on primary waste outputs and the additional energy that could be generated by the reprocessing of high-burnup PWR fuel from Gen III(+) reactors using a simple fuel cycle model is used; the effects of 5- and 10-year spent fuel cooling times before reprocessing are explored. We demonstrate that longer cooling times are preferable in all cases except where short-lived isotope recovery may be desired, and that the partitioning of high-heat fission products (Cs and Sr) could allow for the reclassification of traditional raffinates to intermediate level waste. Highly active waste volume reductions approaching 50% vs. PUREX raffinate could be achieved in single-target partitioning of the inactive and low-activity rare earth elements, and the need for geological disposal could potentially be mitigated completely if HHRs are separated and utilised. Full article
Show Figures

Figure 1

15 pages, 1010 KiB  
Article
A First Report on Planting Arrangements for Alfalfa as an Economic Nurse Crop During Kura Clover Establishment
by Leonard M. Lauriault and Mark A. Marsalis
Agriculture 2025, 15(15), 1677; https://doi.org/10.3390/agriculture15151677 - 2 Aug 2025
Viewed by 151
Abstract
Alfalfa (Medicago sativa) persists for several years but must be rotated to another crop before replanting. Kura clover (T. ambiguum M. Bieb) is a perennial legume that can persist indefinitely without replanting; however, establishment is slow, which limits economic returns [...] Read more.
Alfalfa (Medicago sativa) persists for several years but must be rotated to another crop before replanting. Kura clover (T. ambiguum M. Bieb) is a perennial legume that can persist indefinitely without replanting; however, establishment is slow, which limits economic returns during the process. Two studies, each with four randomized complete blocks, were planted in two consecutive years at New Mexico State University’s Rex E. Kirksey Agricultural Science Center at Tucumcari, NM, USA, as the first known assessment evaluating alfalfa as an economic nurse crop during kura clover establishment using various kura clover–alfalfa drilled and broadcast planting arrangements. Irrigation termination due to drought limited yield measurements to three years after seeding. In that time, kura clover–alfalfa mixtures generally yielded equally to monoculture alfalfa, except for alternate row planting. After 5 years, the alfalfa stand percentage remained >80%, except for the alternate row treatment (69% stand). Kura clover monocultures attained about 40% stand, and the mixtures had a <25% stand. Alfalfa may persist for more than 5 years before relinquishing dominance to kura clover in mixtures, but the alfalfa would continue to provide economic returns as kura clover continues stand development with minimal production, but develops its root system to maximize production when released from the alfalfa nurse crop. Full article
(This article belongs to the Special Issue Advances in the Cultivation and Production of Leguminous Plants)
Show Figures

Figure 1

36 pages, 699 KiB  
Article
A Framework of Indicators for Assessing Team Performance of Human–Robot Collaboration in Construction Projects
by Guodong Zhang, Xiaowei Luo, Lei Zhang, Wei Li, Wen Wang and Qiming Li
Buildings 2025, 15(15), 2734; https://doi.org/10.3390/buildings15152734 - 2 Aug 2025
Viewed by 231
Abstract
The construction industry has been troubled by a shortage of skilled labor and safety accidents in recent years. Therefore, more and more robots are introduced to undertake dangerous and repetitive jobs, so that human workers can concentrate on higher-value and creative problem-solving tasks. [...] Read more.
The construction industry has been troubled by a shortage of skilled labor and safety accidents in recent years. Therefore, more and more robots are introduced to undertake dangerous and repetitive jobs, so that human workers can concentrate on higher-value and creative problem-solving tasks. Nevertheless, although human–robot collaboration (HRC) shows great potential, most existing evaluation methods still focus on the single performance of either the human or robot, and systematic indicators for a whole HRC team remain insufficient. To fill this research gap, the present study constructs a comprehensive evaluation framework for HRC team performance in construction projects. Firstly, a detailed literature review is carried out, and three theories are integrated to build 33 indicators preliminarily. Afterwards, an expert questionnaire survey (N = 15) is adopted to revise and verify the model empirically. The survey yielded a Cronbach’s alpha of 0.916, indicating excellent internal consistency. The indicators rated highest in importance were task completion time (µ = 4.53) and dynamic separation distance (µ = 4.47) on a 5-point scale. Eight indicators were excluded due to mean importance ratings falling below the 3.0 threshold. The framework is formed with five main dimensions and 25 concrete indicators. Finally, an AHP-TOPSIS method is used to evaluate the HRC team performance. The AHP analysis reveals that Safety (weight = 0.2708) is prioritized over Productivity (weight = 0.2327) by experts, establishing a safety-first principle for successful HRC deployment. The framework is demonstrated through a case study of a human–robot plastering team, whose team performance scored as fair. This shows that the framework can help practitioners find out the advantages and disadvantages of HRC team performance and provide targeted improvement strategies. Furthermore, the framework offers construction managers a scientific basis for deciding robot deployment and team assignment, thus promoting safer, more efficient, and more creative HRC in construction projects. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

11 pages, 378 KiB  
Entry
The Application of Viscoelastic Testing in Patient Blood Management
by Mordechai Hershkop, Behnam Rafiee and Mark T. Friedman
Encyclopedia 2025, 5(3), 110; https://doi.org/10.3390/encyclopedia5030110 - 31 Jul 2025
Viewed by 179
Definition
Patient blood management (PBM) is a multidisciplinary approach aimed at improving patient outcomes through targeted anemia treatment that minimizes allogeneic blood transfusions, employs blood conservation techniques, and avoids inappropriate use of blood product transfusions. Viscoelastic testing (VET) techniques, such as thromboelastography (TEG) and [...] Read more.
Patient blood management (PBM) is a multidisciplinary approach aimed at improving patient outcomes through targeted anemia treatment that minimizes allogeneic blood transfusions, employs blood conservation techniques, and avoids inappropriate use of blood product transfusions. Viscoelastic testing (VET) techniques, such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM), have led to significant advancements in PBM. These techniques offer real-time whole-blood assessment of hemostatic function. This provides the clinician with a more complete hemostasis perspective compared to that provided by conventional coagulation tests (CCTs), such as the prothrombin time (PT) and the activated partial thromboplastin time (aPTT), which only assess plasma-based coagulation. VET does this by mapping the complex processes of clot formation, stability, and breakdown (i.e., fibrinolysis). As a result of real-time whole-blood coagulation assessment during hemorrhage, hemostasis can be achieved through targeted transfusion therapy. This approach helps fulfill an objective of PBM by helping to reduce unnecessary transfusions. However, challenges remain that limit broader adoption of VET, particularly in hospital settings. Of these, standardization and the high cost of the devices are those that are faced the most. This discussion highlights the potential of VET application in PBM to guide blood-clotting therapies and improve outcomes in patients with coagulopathies from various causes that result in hemorrhage. Another aim of this discussion is to highlight the limitations of implementing these technologies so that appropriate measures can be taken toward their wider integration into clinical use. Full article
(This article belongs to the Section Medicine & Pharmacology)
Show Figures

Figure 1

18 pages, 8520 KiB  
Article
Cross-Layer Controller Tasking Scheme Using Deep Graph Learning for Edge-Controlled Industrial Internet of Things (IIoT)
by Abdullah Mohammed Alharthi, Fahad S. Altuwaijri, Mohammed Alsaadi, Mourad Elloumi and Ali A. M. Al-Kubati
Future Internet 2025, 17(8), 344; https://doi.org/10.3390/fi17080344 - 30 Jul 2025
Viewed by 129
Abstract
Edge computing (EC) plays a critical role in advancing the next-generation Industrial Internet of Things (IIoT) by enhancing production, maintenance, and operational outcomes across heterogeneous network boundaries. This study builds upon EC intelligence and integrates graph-based learning to propose a Cross-Layer Controller Tasking [...] Read more.
Edge computing (EC) plays a critical role in advancing the next-generation Industrial Internet of Things (IIoT) by enhancing production, maintenance, and operational outcomes across heterogeneous network boundaries. This study builds upon EC intelligence and integrates graph-based learning to propose a Cross-Layer Controller Tasking Scheme (CLCTS). The scheme operates through two primary phases: task grouping assignment and cross-layer control. In the first phase, controller nodes executing similar tasks are grouped based on task timing to achieve monotonic and synchronized completions. The second phase governs controller re-tasking both within and across these groups. Graph structures connect the groups to facilitate concurrent tasking and completion. A learning model is trained on inverse outcomes from the first phase to mitigate task acceptance errors (TAEs), while the second phase focuses on task migration learning to reduce task prolongation. Edge nodes interlink the groups and synchronize tasking, migration, and re-tasking operations across IIoT layers within unified completion periods. Departing from simulation-based approaches, this study presents a fully implemented framework that combines learning-driven scheduling with coordinated cross-layer control. The proposed CLCTS achieves an 8.67% reduction in overhead, a 7.36% decrease in task processing time, and a 17.41% reduction in TAEs while enhancing the completion ratio by 13.19% under maximum edge node deployment. Full article
Show Figures

Figure 1

18 pages, 2563 KiB  
Article
Ripening Kinetics and Grape Chemistry of Virginia Petit Manseng
by Joy H. Ting, Alicia A. Surratt, Lauren E. Moccio, Ann M. Sandbrook, Elizabeth A. Chang and Dennis P. Cladis
Beverages 2025, 11(4), 108; https://doi.org/10.3390/beverages11040108 - 30 Jul 2025
Viewed by 297
Abstract
Petit Manseng is a variety of Vitis vinifera gaining popularity in Virginia, USA because it consistently produces high quality grapes under variable growing conditions. However, its high sugar and acid levels complicate dry wine production. The goal of this study was to characterize [...] Read more.
Petit Manseng is a variety of Vitis vinifera gaining popularity in Virginia, USA because it consistently produces high quality grapes under variable growing conditions. However, its high sugar and acid levels complicate dry wine production. The goal of this study was to characterize Petit Manseng ripening kinetics from veraison to harvest to identify optimal harvest timing for producing dry white wines, using Chardonnay as a comparator because of its popularity in Virginia, well-known ripening kinetics, and ability to produce high quality dry white wines. A total of 74 samples of Petit Manseng and Chardonnay grapes were collected from five commercial sites over 2 years and evaluated for berry weight, pH, titratable acidity (TA), malic acid, total soluble solids (TSS), glucose, and fructose, with ripening kinetics modeled using segmented regressions. Results indicated that harvest timing and grape variety were the primary factors influencing ripening kinetics. In contrast, growing location and vintage had limited impact. In Chardonnay grapes, TA declined from 21 to 7.1 g/L and TSS increased from 6.1 to 19.5 g/L. In Petit Manseng, TA declined from 25 to 10.8 g/L and TSS increased from 8.0 to 23.6 g/L. Acid depletion plateaued ~2 weeks after sugar accumulation plateaued in Petit Manseng grapes, though the plateaus were similar in Chardonnay grapes. Linear discriminant analysis (LDA) completely separated grapes based on pH or TA vs. sugars, but not malic acid vs. sugars, suggesting that tartaric acid is driving acidity differences between cultivars. These data indicate that regardless of when grapes are harvested, winemakers may need to employ targeted acid management strategies with Petit Manseng because of its ripening kinetics. Full article
Show Figures

Figure 1

12 pages, 2396 KiB  
Article
Helical Airflow Synthesis of Quinoxalines: A Continuous and Efficient Mechanochemical Approach
by Jiawei Zhang, Zeli Xiao, Qi Huang, Yang Zhao, Bo Jin and Rufang Peng
Chemistry 2025, 7(4), 121; https://doi.org/10.3390/chemistry7040121 - 29 Jul 2025
Viewed by 202
Abstract
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents [...] Read more.
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents while significantly reducing reaction time. The structures of the synthesized compounds were characterized using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV–Vis) absorption spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-performance liquid chromatography (HPLC). Using the synthesis of 2,3-diphenylquinoxaline (1) as a model reaction, the synthetic process was investigated with UV–Vis spectroscopy. The results demonstrate that when the total feed amount was 2 g with a carrier gas pressure of 0.8 MPa, the reaction completed within 2 min, achieving a yield of 93%. Furthermore, kinetic analysis of the reaction mechanism was performed by monitoring the UV–Vis spectra of the products at different time intervals. The results indicate that the synthesis of 1 follows the A4 kinetic model, which describes a two-dimensional diffusion-controlled product growth process following decelerated nucleation. Full article
Show Figures

Figure 1

11 pages, 205 KiB  
Article
Toward Standardized Massive Transfusion Protocols: A Multicenter Evaluation of Practice Variability Within a National Trauma System
by Dongmin Seo, Junsik Kwon, Inhae Heo, Younghwan Kim, Jae Hun Kim, Taegyun Kim, Hangjoo Cho and Kyoungwon Jung
Healthcare 2025, 13(15), 1848; https://doi.org/10.3390/healthcare13151848 - 29 Jul 2025
Viewed by 274
Abstract
Background/Objectives: Hemorrhage remains a leading cause of early mortality in trauma patients, and timely transfusion guided by a structured massive transfusion protocol (MTP) is critical for improving outcomes. Although regional trauma centers have been established, standardized MTPs remain insufficiently developed in many [...] Read more.
Background/Objectives: Hemorrhage remains a leading cause of early mortality in trauma patients, and timely transfusion guided by a structured massive transfusion protocol (MTP) is critical for improving outcomes. Although regional trauma centers have been established, standardized MTPs remain insufficiently developed in many settings. This study aimed to evaluate current MTP practices across five major trauma centers within a national trauma care system. Methods: Participating institutions provided written protocols and completed a structured survey addressing key domains, including activation criteria, transfusion strategies, laboratory monitoring, adjunct therapies, termination processes, and performance improvement measures. Findings were analyzed and compared against established international recommendations. Results: All centers had implemented MTPs and were capable of delivering initial blood products within 15 min. However, considerable variation was observed in activation triggers, transfusion ratios, and laboratory monitoring protocols. None of these centers maintained thawed plasma or whole blood in immediate readiness. Only one of five centers had a formal performance improvement monitoring system. Tranexamic acid was included in all institutional protocols. Conclusions: This review highlights significant variability and critical gaps in MTP implementation across trauma centers. Inconsistent activation criteria, the absence of essential components, and limited quality monitoring may compromise the efficacy of current practices. To improve patient outcomes, a standardized, evidence-based MTP framework should be developed and implemented nationwide. Full article
26 pages, 27333 KiB  
Article
Gest-SAR: A Gesture-Controlled Spatial AR System for Interactive Manual Assembly Guidance with Real-Time Operational Feedback
by Naimul Hasan and Bugra Alkan
Machines 2025, 13(8), 658; https://doi.org/10.3390/machines13080658 - 27 Jul 2025
Viewed by 259
Abstract
Manual assembly remains essential in modern manufacturing, yet the increasing complexity of customised production imposes significant cognitive burdens and error rates on workers. Existing Spatial Augmented Reality (SAR) systems often operate passively, lacking adaptive interaction, real-time feedback and a control system with gesture. [...] Read more.
Manual assembly remains essential in modern manufacturing, yet the increasing complexity of customised production imposes significant cognitive burdens and error rates on workers. Existing Spatial Augmented Reality (SAR) systems often operate passively, lacking adaptive interaction, real-time feedback and a control system with gesture. In response, we present Gest-SAR, a SAR framework that integrates a custom MediaPipe-based gesture classification model to deliver adaptive light-guided pick-to-place assembly instructions and real-time error feedback within a closed-loop interaction instance. In a within-subject study, ten participants completed standardised Duplo-based assembly tasks using Gest-SAR, paper-based manuals, and tablet-based instructions; performance was evaluated via assembly cycle time, selection and placement error rates, cognitive workload assessed by NASA-TLX, and usability test by post-experimental questionnaires. Quantitative results demonstrate that Gest-SAR significantly reduces cycle times with an average of 3.95 min compared to Paper (Mean = 7.89 min, p < 0.01) and Tablet (Mean = 6.99 min, p < 0.01). It also achieved 7 times less average error rates while lowering perceived cognitive workload (p < 0.05 for mental demand) compared to conventional modalities. In total, 90% of the users agreed to prefer SAR over paper and tablet modalities. These outcomes indicate that natural hand-gesture interaction coupled with real-time visual feedback enhances both the efficiency and accuracy of manual assembly. By embedding AI-driven gesture recognition and AR projection into a human-centric assistance system, Gest-SAR advances the collaborative interplay between humans and machines, aligning with Industry 5.0 objectives of resilient, sustainable, and intelligent manufacturing. Full article
(This article belongs to the Special Issue AI-Integrated Advanced Robotics Towards Industry 5.0)
Show Figures

Figure 1

19 pages, 1292 KiB  
Article
Enhancing Biomass Production and Biodesulfurization Efficiency of Rhodococcus qingshengii IGTS8: Evaluation of Batch, Repeated Batch and Fed-Batch Cultivation Techniques
by Konstantinos Dimos, Styliani Kalantzi, George Prasoulas, Panagiotis D. Gklekas, Olga Martzoukou, Dimitris G. Hatzinikolaou, Dimitris Kekos and Diomi Mamma
Appl. Sci. 2025, 15(15), 8349; https://doi.org/10.3390/app15158349 - 27 Jul 2025
Viewed by 326
Abstract
The batch, repeated batch and fed-batch cultivation strategies, in stirred tank bioreactors, were evaluated to maximize biomass production and the cells’ desulfurization activity (CDA) of Rhodococcus qingshengii IGTS8. The batch culture reached 2.62 g DCW/L biomass, with a productivity of 0.03 g DCW·L [...] Read more.
The batch, repeated batch and fed-batch cultivation strategies, in stirred tank bioreactors, were evaluated to maximize biomass production and the cells’ desulfurization activity (CDA) of Rhodococcus qingshengii IGTS8. The batch culture reached 2.62 g DCW/L biomass, with a productivity of 0.03 g DCW·L−1·h−1 and only 26% glycerol consumption. The repeated batch strategy reduced cultivation time during the first cycle, increasing biomass production by 15%, with 30% glycerol consumed and productivity 2.3 times higher than the batch process; however, subsequent cycles showed no further improvement. CDA peaked early in both modes but declined to 12–13 U/mg DCW by the end of the exponential growth phase. Fed-batch cultivation achieved 8.35 g DCW/L with 87% glycerol consumption, resulting in a threefold increase in volumetric productivity and a 1.7-fold higher specific growth rate compared with the batch mode. CDA remained stable during the fed-batch process and was approximately 40% higher compared with the batch and repeated batch processes. The fed-batch culture was used directly in a two-phase bubble column bioreactor for the desulfurization of dibenzothiophene (DBT), 4-methyl-dibenzothiophene (4-MDBT) and their mixture. The complete desulfurization of 1.4 mM DBT was achieved at a rate of 21.6 mmol DBT/kg DCW/h, while 0.9 mM 4-MDBT was fully converted but at a 2.5-fold lower rate. The simultaneous conversion of the DBT/4-MDBT mixture showed reduced efficiencies of 59.6% and 41.2%, respectively. Full article
Show Figures

Figure 1

10 pages, 220 KiB  
Article
Surface Application of Different Insecticides Against Two Coleopteran Pests of Stored Products
by Paraskevi Agrafioti, Marina Gourgouta, Dimitrios Kateris and Christos G. Athanassiou
Appl. Sci. 2025, 15(15), 8306; https://doi.org/10.3390/app15158306 - 25 Jul 2025
Viewed by 163
Abstract
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: [...] Read more.
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: the red flour beetle and the tobacco beetle. Alpha-cypermethrin and spinosad exhibited rapid and high efficacy, particularly on non-porous surfaces such as metal and ceramic, whereas pirimiphos-methyl was less effective initially and required extended exposure to achieve complete mortality, especially against Tribolium castaneum. In contrast, Lasioderma serricorne showed greater susceptibility across all insecticides and surfaces. Spinosad maintained high efficacy across all surface types, suggesting broader applicability under variable conditions. The reduced performance of insecticides on concrete surfaces underscores the influence of substrate porosity on insecticide bioavailability. Additionally, the observed delayed mortality effect in all treatments indicates that even brief exposure can result in lethal outcomes, emphasizing the long-term potential of these applications. These findings underscore the need for surface-specific application strategies and support the integration of surface treatments into comprehensive pest management programs. Further research is warranted under simulated field conditions to assess residual efficacy over time and in the presence of food, thereby enhancing the relevance of laboratory findings to real-world storage environments. Full article
(This article belongs to the Special Issue Advanced Computational Techniques for Plant Disease Detection)
15 pages, 2112 KiB  
Article
Development of a Method for Blocking Polysodiumoxy(methyl)siloxane Obtained in an Alcohol Medium
by Marina A. Obrezkova, Alina A. Nesterkina and Aziz M. Muzafarov
Polymers 2025, 17(15), 2023; https://doi.org/10.3390/polym17152023 - 24 Jul 2025
Viewed by 233
Abstract
Polysodiumoxy(methyl)siloxane is a highly functional polymer matrix that can be used for the preparation of both functional and non-functional polymers, including molecular brushes. To determine the molecular weight parameters of the matrix, as well as its chemical structure, it is necessary to develop [...] Read more.
Polysodiumoxy(methyl)siloxane is a highly functional polymer matrix that can be used for the preparation of both functional and non-functional polymers, including molecular brushes. To determine the molecular weight parameters of the matrix, as well as its chemical structure, it is necessary to develop an effective method of blocking functional (in our case, sodiumoxy) groups due to their high reactivity. At the same time, the blocking product should represent a complete non-functionalized replica of polysodiumoxy(methyl)siloxane. Since the obtained polysodiumoxy(methyl)siloxane can contain both sodium- and hydroxy groups in its composition, the presence of both types of functional groups should be considered in the blocking process. In this work, we investigated the blocking process of polysodiumoxy(methyl)siloxane and the influence of blocking conditions on the blocked product. We carried out several variants of blocking, which differed in the order and method of introduction of reagents, as well as in the temperature regime. The chemical structure and molecular weight characteristics of the obtained polymers were analyzed by 1H NMR spectroscopy and gel permeation chromatography (GPC), respectively. According to the blocking results, only in one case, complete non-functionalized replicas of polysodiumoxy(methyl)siloxane were obtained, which allows this technique to be used as a tool for the analysis of complex, highly functionalized organosilicon systems. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

22 pages, 3950 KiB  
Article
A Deep Reinforcement Learning-Based Concurrency Control of Federated Digital Twin for Software-Defined Manufacturing Systems
by Rubab Anwar, Jin-Woo Kwon and Won-Tae Kim
Appl. Sci. 2025, 15(15), 8245; https://doi.org/10.3390/app15158245 - 24 Jul 2025
Viewed by 232
Abstract
Modern manufacturing demands real-time, scalable coordination that legacy manufacturing management systems cannot provide. Digital transformation encompasses the entire manufacturing infrastructure, which can be represented by digital twins for facilitating efficient monitoring, prediction, and optimization of factory operations. A Federated Digital Twin (FDT) emerges [...] Read more.
Modern manufacturing demands real-time, scalable coordination that legacy manufacturing management systems cannot provide. Digital transformation encompasses the entire manufacturing infrastructure, which can be represented by digital twins for facilitating efficient monitoring, prediction, and optimization of factory operations. A Federated Digital Twin (FDT) emerges by combining heterogeneous digital twins, enabling real-time collaboration, data sharing, and collective decision-making. However, deploying FDTs introduces new concurrency control challenges, such as priority inversion and synchronization failures, which can potentially cause process delays, missed deadlines, and reduced customer satisfaction. Traditional concurrency control approaches in the computing domain, due to their reliance on static priority assignments and centralized control, are inadequate for managing dynamic, real-time conflicts effectively in real production lines. To address these challenges, this study proposes a novel concurrency control framework combining Deep Reinforcement Learning with the Priority Ceiling Protocol. Using SimPy-based discrete-event simulations, which accurately model the asynchronous nature of FDT interactions, the proposed approach adaptively optimizes resource allocation and effectively mitigates priority inversion. The results demonstrate that against the rule-based PCP controller, our hybrid DRLCC enhances completion time maximum of 24.27% to a minimum of 1.51%, urgent-job delay maximum of 6.65% and a minimum of 2.18%, while preserving lower-priority inversions. Full article
Show Figures

Figure 1

16 pages, 2308 KiB  
Article
Reconstructing of Satellite-Derived CO2 Using Multiple Environmental Variables—A Case Study in the Provinces of Huai River Basin, China
by Yuxin Zhu, Ying Zhang, Linping Zhu and Jinzong Zhang
Atmosphere 2025, 16(8), 903; https://doi.org/10.3390/atmos16080903 - 24 Jul 2025
Viewed by 212
Abstract
The introduction of the ”dual carbon” target has increased the need for products that can accurately measure carbon dioxide levels, reflecting the rising demand. Due to challenges in achieving the required spatiotemporal resolution, accuracy, and spatial continuity with current carbon dioxide concentration products, [...] Read more.
The introduction of the ”dual carbon” target has increased the need for products that can accurately measure carbon dioxide levels, reflecting the rising demand. Due to challenges in achieving the required spatiotemporal resolution, accuracy, and spatial continuity with current carbon dioxide concentration products, it is essential to explore methods for obtaining carbon dioxide concentration products with completeness in space and time. Based on the 2018 OCO-2 carbon dioxide products and environmental variables such as vegetation coverage (FVC, LAI), net primary productivity (NPP), relative humidity (RH), evapotranspiration (ET), temperature (T) and wind (U, V), this study constructed a multiple regression model to obtain the spatial continuous carbon dioxide concentration products in the provinces of Huai River Basin. Using indicators such as correlation coefficient, root mean square error (RMSE), local variance, and percentage of valid pixels, the performance of model was validated. The validation results are shown as follows: (1) Among the selected environmental variables, the primary factors affecting the spatiotemporal distribution of carbon dioxide concentration are ET, LAI, FVC, NPP, T, U, and RH. (2) Compared with the OCO-2 carbon dioxide products, the percentage of valid pixels of the reconstructed carbon dioxide concentration data increased from less than 1% to over 90%. (3) The local variance in reconstructed data was significantly larger than that of original OCO-2 CO2 products. (4) The average monthly RMSE is 2.69. Therefore, according to the model developed in this study, we can obtain a carbon dioxide concentration dataset that is spatially complete, meets precision requirements, and is rich in local detail information, which can better reflect the spatial pattern of carbon dioxide concentration and can be used to examine the carbon cycle between the terrestrial environment, biosphere, and atmosphere. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

Back to TopTop