Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = principle of least potential energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3675 KiB  
Article
Gibbs Quantum Fields Computed by Action Mechanics Recycle Emissions Absorbed by Greenhouse Gases, Optimising the Elevation of the Troposphere and Surface Temperature Using the Virial Theorem
by Ivan R. Kennedy, Migdat Hodzic and Angus N. Crossan
Thermo 2025, 5(3), 25; https://doi.org/10.3390/thermo5030025 - 22 Jul 2025
Viewed by 219
Abstract
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow [...] Read more.
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow with coupled work processes in the atmosphere? Using statistical action mechanics to describe Carnot’s cycle, the maximum rate of work possible can be integrated for the working gases as equal to variations in the absolute Gibbs energy, estimated as sustaining field quanta consistent with Carnot’s definition of heat as caloric. His treatise of 1824 even gave equations expressing work potential as a function of differences in temperature and the logarithm of the change in density and volume. Second, Carnot’s mechanical principle of cooling caused by gas dilation or warming by compression can be applied to tropospheric heat–work cycles in anticyclones and cyclones. Third, the virial theorem of Lagrange and Clausius based on least action predicts a more accurate temperature gradient with altitude near 6.5–6.9 °C per km, requiring that the Gibbs rotational quantum energies of gas molecules exchange reversibly with gravitational potential. This predicts a diminished role for the radiative transfer of energy from the atmosphere to the surface, in contrast to the Trenberth global radiative budget of ≈330 watts per square metre as downwelling radiation. The spectral absorptivity of greenhouse gas for surface radiation into the troposphere enables thermal recycling, sustaining air masses in Lagrangian action. This obviates the current paradigm of cooling with altitude by adiabatic expansion. The virial-action theorem must also control non-reversible heat–work Carnot cycles, with turbulent friction raising the surface temperature. Dissipative surface warming raises the surface pressure by heating, sustaining the weight of the atmosphere to varying altitudes according to latitude and seasonal angles of insolation. New predictions for experimental testing are now emerging from this virial-action hypothesis for climate, linking vortical energy potential with convective and turbulent exchanges of work and heat, proposed as the efficient cause setting the thermal temperature of surface materials. Full article
Show Figures

Figure 1

21 pages, 5046 KiB  
Article
Samarium-Doped PbO2 Electrocatalysts for Environmental and Energy Applications: Theoretical Insight into the Mechanisms of Action Underlying Their Carbendazim Degradation and OER Properties
by Milica Kaluđerović, Slađana Savić, Danica Bajuk-Bogdanović, Aleksandar Z. Jovanović, Lazar Rakočević, Filip Vlahović, Jadranka Milikić and Dalibor Stanković
Processes 2025, 13(5), 1459; https://doi.org/10.3390/pr13051459 - 10 May 2025
Viewed by 894
Abstract
This study presents the fabrication of a samarium-doped Ti/Sb-SnO2/PbO2 electrode and investigates its applications in polluted water treatment and energy conversion. Physicochemical properties were characterized by scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray powder diffraction analysis, and Raman spectroscopy. [...] Read more.
This study presents the fabrication of a samarium-doped Ti/Sb-SnO2/PbO2 electrode and investigates its applications in polluted water treatment and energy conversion. Physicochemical properties were characterized by scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray powder diffraction analysis, and Raman spectroscopy. The Ti/Sb-SnO2/Sm-PbO2 electrode showed 2.5 times higher oxygen evolution potential activity than the Ti/Sb-SnO2/PbO2 electrode. Density Functional Theory was used to conduct first-principles calculations, and the obtained results indicated that Sm doping enhances the production of reactive oxygen species. The application of the Ti/Sb-SnO2/Sm-PbO2 electrode in carbendazim (CBZ) removal was investigated, since CBZ is a fungicide whose presence in the environment, including food, water, and soil, poses a threat. After 60 min of the treatment under optimized working parameters, the degradation rate of CBZ reached 94.2% in the presence of 7.2 g/L Na2SO4 with an applied current density of 10 mA/cm2 in an acidic medium (pH 4). Of the four investigated parameters, the current density had the most significant influence on the degradation process. At the same time, the initial pH value of the solution was shown to have the least impact on degradation efficiency. These results imply a potential use of the proposed treatment for CBZ removal from wastewater. Full article
Show Figures

Figure 1

72 pages, 7015 KiB  
Article
Modeling and Predicting Self-Organization in Dynamic Systems out of Thermodynamic Equilibrium: Part 1: Attractor, Mechanism and Power Law Scaling
by Matthew Brouillet and Georgi Yordanov Georgiev
Processes 2024, 12(12), 2937; https://doi.org/10.3390/pr12122937 - 23 Dec 2024
Cited by 2 | Viewed by 2745
Abstract
Self-organization in complex systems is a process associated with reduced internal entropy and the emergence of structures that may enable the system to function more effectively and robustly in its environment and in a more competitive way with other states of the system [...] Read more.
Self-organization in complex systems is a process associated with reduced internal entropy and the emergence of structures that may enable the system to function more effectively and robustly in its environment and in a more competitive way with other states of the system or with other systems. This phenomenon typically occurs in the presence of energy gradients, facilitating energy transfer and entropy production. As a dynamic process, self-organization is best studied using dynamic measures and principles. The principles of minimizing unit action, entropy, and information while maximizing their total values are proposed as some of the dynamic variational principles guiding self-organization. The least action principle (LAP) is the proposed driver for self-organization; however, it cannot operate in isolation; it requires the mechanism of feedback loops with the rest of the system’s characteristics to drive the process. Average action efficiency (AAE) is introduced as a potential quantitative measure of self-organization, reflecting the system’s efficiency as the ratio of events to total action per unit of time. Positive feedback loops link AAE to other system characteristics, potentially explaining power–law relationships, quantity–AAE transitions, and exponential growth patterns observed in complex systems. To explore this framework, we apply it to agent-based simulations of ants navigating between two locations on a 2D grid. The principles align with observed self-organization dynamics, and the results and comparisons with real-world data appear to support the model. By analyzing AAE, this study seeks to address fundamental questions about the nature of self-organization and system organization, such as “Why and how do complex systems self-organize? What is organization and how organized is a system?”. We present AAE for the discussed simulation and whenever no external forces act on the system. Given so many specific cases in nature, the method will need to be adapted to reflect their specific interactions. These findings suggest that the proposed models offer a useful perspective for understanding and potentially improving the design of complex systems. Full article
(This article belongs to the Special Issue Non-equilibrium Processes and Structure Formation)
Show Figures

Graphical abstract

19 pages, 3563 KiB  
Article
Free Vibration of Graphene Nanoplatelet-Reinforced Porous Double-Curved Shells of Revolution with a General Radius of Curvature Based on a Semi-Analytical Method
by Aiwen Wang and Kairui Zhang
Mathematics 2024, 12(19), 3060; https://doi.org/10.3390/math12193060 - 30 Sep 2024
Cited by 1 | Viewed by 1063
Abstract
Based on domain decomposition, a semi-analytical method (SAM) is applied to analyze the free vibration of double-curved shells of revolution with a general curvature radius made from graphene nanoplatelet (GPL)-reinforced porous composites. The mechanical properties of the GPL-reinforced composition are assessed with the [...] Read more.
Based on domain decomposition, a semi-analytical method (SAM) is applied to analyze the free vibration of double-curved shells of revolution with a general curvature radius made from graphene nanoplatelet (GPL)-reinforced porous composites. The mechanical properties of the GPL-reinforced composition are assessed with the Halpin–Tsai model. The double-curvature shell of revolution is broken down into segments along its axis in accordance with first-order shear deformation theory (FSDT) and the multi-segment partitioning technique, to derive the shell’s functional energy. At the same time, interfacial potential is used to ensure the continuity of the contact surface between neighboring segments. By applying the least-squares weighted residual method (LWRM) and modified variational principle (MVP) to relax and achieve interface compatibility conditions, a theoretical framework for analyzing vibrations is developed. The displacements and rotations are described through Fourier series and Chebyshev polynomials, accordingly, converting a two-dimensional issue into a suite of decoupled one-dimensional problems. The obtained solutions are contrasted with those achieved using the finite element method (FEM) and other existing results, and the current formulation’s validity and precision are confirmed. Example cases are presented to demonstrate the free vibration of GPL-reinforced porous composite double-curved paraboloidal, elliptical, and hyperbolical shells of revolution. The findings demonstrate that the natural frequency of the shell is related to pore coefficients, porosity, the mass fraction of the GPLs, and the distribution patterns of the GPLs. Full article
(This article belongs to the Special Issue Applied Mathematics in Nonlinear Dynamics and Chaos)
Show Figures

Figure 1

31 pages, 459 KiB  
Article
Multiple Solutions to the Fractional p-Laplacian Equations of Schrödinger–Hardy-Type Involving Concave–Convex Nonlinearities
by Yun-Ho Kim
Fractal Fract. 2024, 8(7), 426; https://doi.org/10.3390/fractalfract8070426 - 20 Jul 2024
Cited by 1 | Viewed by 925
Abstract
This paper is concerned with nonlocal fractional p-Laplacian Schrödinger–Hardy-type equations involving concave–convex nonlinearities. The first aim is to demonstrate the L-bound for any possible weak solution to our problem. As far as we know, the global a priori bound for [...] Read more.
This paper is concerned with nonlocal fractional p-Laplacian Schrödinger–Hardy-type equations involving concave–convex nonlinearities. The first aim is to demonstrate the L-bound for any possible weak solution to our problem. As far as we know, the global a priori bound for weak solutions to nonlinear elliptic problems involving a singular nonlinear term such as Hardy potentials has not been studied extensively. To overcome this, we utilize a truncated energy technique and the De Giorgi iteration method. As its application, we demonstrate that the problem above has at least two distinct nontrivial solutions by exploiting a variant of Ekeland’s variational principle and the classical mountain pass theorem as the key tools. Furthermore, we prove the existence of a sequence of infinitely many weak solutions that converges to zero in the L-norm. To derive this result, we employ the modified functional method and the dual fountain theorem. Full article
27 pages, 6065 KiB  
Article
Optimizing Concrete Grade for a Sustainable Structural Design in Saudi Arabia
by Mohammad S. M. Almulhim and Mohammed W. Al Masmoum
Buildings 2024, 14(4), 860; https://doi.org/10.3390/buildings14040860 - 22 Mar 2024
Cited by 3 | Viewed by 3096
Abstract
Buildings and facilities undergo several stages: the product stage, the construction stage, the use stage, the end-of-life stage, and the recycling stage. The life cycle of any facility or building contributes to embodied carbon (EC) emissions. The product stage, also known as the [...] Read more.
Buildings and facilities undergo several stages: the product stage, the construction stage, the use stage, the end-of-life stage, and the recycling stage. The life cycle of any facility or building contributes to embodied carbon (EC) emissions. The product stage, also known as the cradle-to-gate stage (A1–A3), registers the highest emissions, estimated to account for 70% of the total environmental impact. The continuing population growth in Saudi Arabia necessitates urgent action to identify and implement solutions for reducing greenhouse gas emissions and mitigating environmental risks. This study investigates the optimal method to analyze the grade of concrete for specific structural elements (columns) in a particular work area, adhering to accurate and methodological standards outlined in the Saudi Building Code (SBC). The bill of quantities (BOQ) determined the amount of building materials for the structure considered in this study. Reliable embedded carbon coefficients (ECCs) for structural materials such as concrete and steel were determined following life cycle assessment principles. They were analyzed using the Inventory of Carbon and Energy (ICE; Version 2.0) and Global Warming Potential (GWP). The obtained values varied based on the components of each mixture. This study determined the cost of each concrete mixture and steel, selecting the optimal mixture based on both EC and material cost. Since the quantity of cement significantly affects EC emissions in a concrete mixture, it is essential to select appropriate plasticizers and concrete types. This study evaluated the C30, C40, C50, C60, and C70 mixtures. Among these, the C70 mixture demonstrated the best environmental impact and was the least expensive compared to the basic C40 mixture for the estimated quantities of concrete and steel. The estimated reductions in cost and environmental impact were 33% and 27%, respectively. This groundbreaking study paves the way for low-carbon structural design in large hotels across Saudi Arabia, offering valuable insights for future projects and contributing significantly to energy conservation. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 311 KiB  
Article
Quantum Spacetime Geometrization: QED at High Curvature and Direct Formation of Supermassive Black Holes from the Big Bang
by Piero Chiarelli
Quantum Rep. 2024, 6(1), 14-28; https://doi.org/10.3390/quantum6010002 - 26 Dec 2023
Viewed by 1974
Abstract
In this work, the author employs the quantum hydrodynamic formalism to achieve the geometrization of spacetime for describing the gravitational interaction within the framework of quantum theory. This approach allows for the development of an equation of gravity that is mathematically connected to [...] Read more.
In this work, the author employs the quantum hydrodynamic formalism to achieve the geometrization of spacetime for describing the gravitational interaction within the framework of quantum theory. This approach allows for the development of an equation of gravity that is mathematically connected to the fermion and boson fields. This achievement is accomplished by incorporating two fundamental principles: covariance of the quantum field equations and the principle of least action. By considering these principles, a theory is established that enables the calculation of gravitational corrections to quantum electrodynamics and, potentially, to the standard model of particle physics as well. The theory also provides an explanation for two phenomena: the existence of a cosmological pressure density similar to quintessence, which is compatible with the small value of the observed cosmological constant, and the breaking of matter–antimatter symmetry at high energies, offering insights into why there is an imbalance between the two in the early universe. In the cosmological modeling of the theory, there exists a proposal to account for the formation of supermassive black holes that are accompanied by their own surrounding galaxies, without relying on the process of mass accretion. The model, in accordance with recent observations conducted by the James Webb Space Telescope, supports the notion that galactic configurations were established relatively early in the history of the universe, shortly after the occurrence of the Big Bang. Full article
11 pages, 317 KiB  
Article
Exploring the Roles of Education, Renewable Energy, and Global Warming on Health Expenditures
by Maryam Piran, Alireza Sharifi and Mohammad Mahdi Safari
Sustainability 2023, 15(19), 14352; https://doi.org/10.3390/su151914352 - 28 Sep 2023
Cited by 5 | Viewed by 2213
Abstract
Renewable energy sources—which are available in abundance all around us and are provided by the sun, wind, water, waste, and heat from the Earth—are replenished by nature and emit little to no greenhouse gases or pollutants into the air. This paper builds upon [...] Read more.
Renewable energy sources—which are available in abundance all around us and are provided by the sun, wind, water, waste, and heat from the Earth—are replenished by nature and emit little to no greenhouse gases or pollutants into the air. This paper builds upon a preceding study that examined beliefs, perceptions, and attitudes regarding renewable energy technologies. In this study, we examine the implications renewable energy sources may have on science, technology policies, and education. This study embraced a sequential mixed-methods methodology to accomplish its objectives. The primary goal of this study was to ascertain the impact of global warming, education, and renewable energy on healthcare expenditure. In order to determine the impact of renewable energy on health care expenditure, the present research study coupled renewable energy with gross domestic product (GDP). Based on the long-term outcomes derived from our Fully Modified Ordinary Least Squares (FMOLS) and Dynamic Ordinary Least Squares (DOLS) estimators, GDP, renewable energy, and education were found to be adversely correlated with healthcare expenditure. To collect data, we conducted interview sessions, which were subsequently complemented by a survey that was completed by 400 respondents (specifically chosen research participants). We then conducted thematic analyses. The findings of this study underscore a compelling inverse relationship linking GDP, renewable energy integration, and education with healthcare spending. Regions displaying lower healthcare outlays are seemingly less strained ecologically due to their judicious utilization of renewable energy sources. Furthermore, based on our findings, a noteworthy correlation between healthcare expenditure and global warming was observed, underscoring the potential escalation of financial burdens with intensifying climate shifts. In light of our findings, advocating for the amplification of renewable energy deployment emerges as a prudent strategy to fortify public health while mitigating healthcare expenses. Augmenting investments in education acts as a pivotal lever to steer sustainable growth. It is noteworthy that the survey participants’ level of familiarity with renewable energy technology was not found to be connected to their educational backgrounds, revealing a disparity in knowledge. The prevailing unfamiliarity with sustainability principles among the respondents underscores the need for widespread awareness initiatives. This study acts as a holistic exploration of the ramifications of renewable energy on healthcare expenditure; this is intertwined with the complex tapestry of global warming and education. The implications of renewable energy reverberate across policy and practice, accentuating the urgency of sustainable energy adoption for the betterment of public health and economic resilience. Future studies should focus on conducting more nuanced assessments of socio-economic aspects and generate strategies for bridging knowledge gaps among diverse stakeholders. Full article
21 pages, 6196 KiB  
Article
Enhancement of Arc Erosion Resistance in AgCuO Electrical Contact Materials through Rare Earth Element Doping: First-Principles and Experimental Studies
by Haitao Wang, Yanling Wang, Jingqin Wang, Qinglong Cai and Dekao Hu
Int. J. Mol. Sci. 2023, 24(16), 12627; https://doi.org/10.3390/ijms241612627 - 10 Aug 2023
Cited by 5 | Viewed by 2263
Abstract
To investigate the stability and electrical and physical properties of undoped CuO and CuO doped with rare earth elements, electronic structures and elastic constants were calculated using first-principles density functional theory. Additionally, experimental verification was carried out on AgCuO and AgCuO-X (La, Ce, [...] Read more.
To investigate the stability and electrical and physical properties of undoped CuO and CuO doped with rare earth elements, electronic structures and elastic constants were calculated using first-principles density functional theory. Additionally, experimental verification was carried out on AgCuO and AgCuO-X (La, Ce, Y) electrical contacts, which were prepared using sol–gel and powder metallurgy methods. The contacts were tested under an 18 V/15 A DC resistive load using the JF04D contact material testing system. Arc parameters were analyzed, and three-dimensional surface profilometry and scanning electron microscopy were used to study the altered erosion morphology of the electrically contacted materials; moreover, the potential mechanisms behind their arc erosion behavior were investigated in depth. The results demonstrate that the doping of rare earth elements can improve the electrical conductivity and physical properties of the contacts, optimize the arc parameters, and enhance their resistance to arc erosion. Notably, AgCuO-Ce exhibited the highest electrical conductivity and the least amount of material transfer; moreover, it had excellent arc time and energy parameters, resulting in the best resistance to arc erosion. This study provides a theoretical basis for the screening of doping elements to enhance the performance of AgCuO contact materials and offers new ideas and scientific references for this field. Full article
Show Figures

Graphical abstract

50 pages, 34709 KiB  
Review
Rotating Triboelectric Nanogenerators for Energy Harvesting and Their Applications
by Apostolos Segkos and Christos Tsamis
Nanoenergy Adv. 2023, 3(3), 170-219; https://doi.org/10.3390/nanoenergyadv3030010 - 5 Jul 2023
Cited by 14 | Viewed by 5275
Abstract
Addressing the increasing development of IoT networks and the associated energy requirements, rotating triboelectric nanogenerators (R-TENGs) are proving to be strong candidates in the field of energy harvesting, as well as to that of self-powered devices and autonomous sensors. In this work, we [...] Read more.
Addressing the increasing development of IoT networks and the associated energy requirements, rotating triboelectric nanogenerators (R-TENGs) are proving to be strong candidates in the field of energy harvesting, as well as to that of self-powered devices and autonomous sensors. In this work, we review the theoretical framework surrounding the operating principles and key design parameters of R-TENGs, while also associating them with their output characteristics. Furthermore, we present an overview of the core designs used by the research community in energy harvesting applications, as well as variations of these designs along with explicit solutions for the engineering and optimization of the electrical output of R-TENGs. Last but not least, a comprehensive survey of the potential applications of R-TENGs outside the energy harvesting scope is provided, showcasing the working principles of the various designs and the benefits they confer for each specific scenario. Full article
(This article belongs to the Special Issue Fabrication and Characterization of Materials for Nanoenergy)
Show Figures

Figure 1

22 pages, 3211 KiB  
Article
Environmental Impact Assessment of Waste Wood-to-Energy Recovery in Australia
by Shahjadi Hisan Farjana, Olubukola Tokede and Mahmud Ashraf
Energies 2023, 16(10), 4182; https://doi.org/10.3390/en16104182 - 18 May 2023
Cited by 8 | Viewed by 3348
Abstract
Wood is a renewable material that can store biogenic carbon, and waste wood can be recycled to recover bioenergy. The amount of energy recovery from the waste wood can vary depending on the type of wood and its chemical and structural properties. This [...] Read more.
Wood is a renewable material that can store biogenic carbon, and waste wood can be recycled to recover bioenergy. The amount of energy recovery from the waste wood can vary depending on the type of wood and its chemical and structural properties. This paper will analyse the life cycle environmental impact of energy recovery from waste wood, starting from the wood production stage. These are cradle-to-cradle systems, excluding the use phase and the waste collection phase. The types of waste wood considered in the current study are softwood, hardwood, medium-density fibreboard (MDF), plywood, and particleboard. The results showed that all waste wood has great potential to produce energy while reducing climate change impact. Hardwood and softwood products showed the most beneficial aspects in terms of energy recovery from waste wood and thus could help to reduce harmful environmental emissions. However, MDF and particleboard show the least potential for energy recovery as they contribute to the greatest emissions among all types of wood products. The outcomes of this study could be used as guiding principles for Australia to consider waste-to-energy recovery facility establishment to generate additional energy while reducing waste wood. Full article
(This article belongs to the Special Issue Sustainability Assessment of the Energy Generation Systems)
Show Figures

Figure 1

31 pages, 6768 KiB  
Review
Commercially Available Cell-Free Permeability Tests for Industrial Drug Development: Increased Sustainability through Reduction of In Vivo Studies
by Ann-Christin Jacobsen, Sonja Visentin, Cosmin Butnarasu, Paul C. Stein and Massimiliano Pio di Cagno
Pharmaceutics 2023, 15(2), 592; https://doi.org/10.3390/pharmaceutics15020592 - 9 Feb 2023
Cited by 26 | Viewed by 5658
Abstract
Replacing in vivo with in vitro studies can increase sustainability in the development of medicines. This principle has already been applied in the biowaiver approach based on the biopharmaceutical classification system, BCS. A biowaiver is a regulatory process in which a drug is [...] Read more.
Replacing in vivo with in vitro studies can increase sustainability in the development of medicines. This principle has already been applied in the biowaiver approach based on the biopharmaceutical classification system, BCS. A biowaiver is a regulatory process in which a drug is approved based on evidence of in vitro equivalence, i.e., a dissolution test, rather than on in vivo bioequivalence. Currently biowaivers can only be granted for highly water-soluble drugs, i.e., BCS class I/III drugs. When evaluating poorly soluble drugs, i.e., BCS class II/IV drugs, in vitro dissolution testing has proved to be inadequate for predicting in vivo drug performance due to the lack of permeability interpretation. The aim of this review was to provide solid proofs that at least two commercially available cell-free in vitro assays, namely, the parallel artificial membrane permeability assay, PAMPA, and the PermeaPad® assay, PermeaPad, in different formats and set-ups, have the potential to reduce and replace in vivo testing to some extent, thus increasing sustainability in drug development. Based on the literature review presented here, we suggest that these assays should be implemented as alternatives to (1) more energy-intense in vitro methods, e.g., refining/replacing cell-based permeability assays, and (2) in vivo studies, e.g., reducing the number of pharmacokinetic studies conducted on animals and humans. For this to happen, a new and modern legislative framework for drug approval is required. Full article
Show Figures

Figure 1

27 pages, 3738 KiB  
Review
Regulatory Paradigm and Challenge for Blockchain Integration of Decentralized Systems: Example—Renewable Energy Grids
by Ernest Barceló, Katarina Dimić-Mišić, Monir Imani, Vesna Spasojević Brkić, Michael Hummel and Patrick Gane
Sustainability 2023, 15(3), 2571; https://doi.org/10.3390/su15032571 - 31 Jan 2023
Cited by 22 | Viewed by 6556
Abstract
Nowadays, fossil fuels are used in a clearly unsustainable way that can bring potentially catastrophic consequences. Electricity is currently delivered to end users by generation and energy transmission companies. Previous research shows that the development of modern circular economy sets a need for [...] Read more.
Nowadays, fossil fuels are used in a clearly unsustainable way that can bring potentially catastrophic consequences. Electricity is currently delivered to end users by generation and energy transmission companies. Previous research shows that the development of modern circular economy sets a need for the re-orientation of socio and economic development of decentralized systems, including energy basis. In addition to being ecological, the use of renewable energy sources also has economic significance by contributing to energy independence. Citizens, industries, local and national authorities become interconnected within emerging novel renewable energy sourcing communities, through which they establish trade of energy and, most importantly, models of investing and reshaping the distribution of renewable energy. The modern portfolio management of renewable energy networking is aiming toward decentralized systems of trade, where the consumer becomes a producer (prosumer) within the network, itself managed by users. Excess energy produced in the micro-grid nets within the over-arching national and transnational energy grid should be accounted for and managed with blockchain technology for financial and structural security. The decentralization of the energy market requires the establishment of strict norms that will regulate the market and taxation of profits arising. The extensive literature review on blockchain in the energy sector reflects a very pragmatic and narrow approach to the topic, although it is evident that the distribution of energy within the blockchain would enable economic development through reducing cost and ensuring more secure energy trade. Blockchain technology embeds the related digital codes, in which information will be visible to all, but also secured from hacking and duplicating. However, there are challenges to this paradigm, not least the energy consumption of the extensive nodal mesh required to perform the necessary protocols. This paper aims to provide an overview of the application of blockchain technology and the need for the development of the regulatory system and of potential solutions to the challenges posed. By undertaking an energy consumption analysis of blockchain implementation from first electronic principles, which has not been constructed before in the literature, this paper’s conclusion stresses the future demand for reducing energy consumption and considers the latest findings in the quantum coupling of light signals as a potential for solving the enormous ledger duplication structure problem. Full article
(This article belongs to the Special Issue Raising Power Energy from Distributed Renewable Sources)
Show Figures

Figure 1

35 pages, 448 KiB  
Perspective
Perspective on Predictive Modeling: Current Status, New High-Order Methodology and Outlook for Energy Systems
by Dan Gabriel Cacuci
Energies 2023, 16(2), 933; https://doi.org/10.3390/en16020933 - 13 Jan 2023
Cited by 1 | Viewed by 1334
Abstract
This work presents a perspective on deterministic predictive modeling methodologies, which aim at extracting best-estimate values for model responses and parameters along with reduced predicted uncertainties for these best-estimate values. The two oldest such methodologies are the data-adjustment method, which stems from the [...] Read more.
This work presents a perspective on deterministic predictive modeling methodologies, which aim at extracting best-estimate values for model responses and parameters along with reduced predicted uncertainties for these best-estimate values. The two oldest such methodologies are the data-adjustment method, which stems from the nuclear energy field, and the data-assimilation method, which is implemented in the geophysical sciences. Both of these methodologies attempt to minimize, in the least-square sense, a user-defined functional that represents the discrepancies between computed and measured model responses. These two methodologies were briefly reviewed and shown to be inconsistent even to first-order in the sensitivities of the response to the model parameters. In contrast to these methodologies, it was shown that the “maximum entropy”-based predictive modeling methodology (called BERRU-PM) that was developed by the author not only dispenses with the subjective “user-chosen functional to be minimized” but is also inherently amenable to high-order formulations. This inherent potential was illustrated by presenting a novel, higher-order, MaxEnt-based predictive modeling methodology, labelled BERRU-PM-2+, which is complete and exact to second-order sensitivities and moments of both the a priori and posterior distributions of responses and parameters, while explicitly including third- and fourth-order sensitivities and correlations, thus indicating the mechanism for incorporating information of orders higher than second in predictive modeling. The presentation of this new predictive modeling methodology also aims at motivating a widespread application of predictive modeling principles and methodologies in the energy sciences for obtaining best-estimate results with reduced uncertainties. Full article
15 pages, 3200 KiB  
Article
Volumetric Absorptive Microsampling (VAMS) for Targeted LC-MS/MS Determination of Tryptophan-Related Biomarkers
by Michele Protti, Marco Cirrincione, Roberto Mandrioli, James Rudge, Luca Regazzoni, Valeria Valsecchi, Claudia Volpi and Laura Mercolini
Molecules 2022, 27(17), 5652; https://doi.org/10.3390/molecules27175652 - 1 Sep 2022
Cited by 16 | Viewed by 4238
Abstract
L-Tryptophan (TRP) metabolites and related biomarkers play crucial roles in physiological functions, and their imbalances are implicated in central nervous system pathologies and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, schizophrenia and depression. The measurement of TRP metabolites [...] Read more.
L-Tryptophan (TRP) metabolites and related biomarkers play crucial roles in physiological functions, and their imbalances are implicated in central nervous system pathologies and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, schizophrenia and depression. The measurement of TRP metabolites and related biomarkers possesses great potential to elucidate the disease mechanisms, aid preclinical drug development, highlight potential therapeutic targets and evaluate the outcomes of therapeutic interventions. An effective, straightforward, sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of 24 TRP-related compounds in miniaturised murine whole blood samples. Sampling and sample pretreatment miniaturisation were achieved thanks to the development of a volumetric dried blood microsampling approach. Volumetric absorptive microsampling (VAMS) allows the accurate sampling of microvolumes of blood with advantages including, but not limited to, minimal sampling invasiveness, logistical improvements, method sustainability in terms of solvents and energy consumption, and improvement of animal studies in the framework of the 3Rs (Replacement, Reduction and Refinement) principles on animal welfare. The VAMS-LC-MS/MS method exhibited good selectivity, and correlation coefficient values for the calibration curves of each analyte were >0.9987. The limits of quantitation ranged from 0.1 to 25 ng/mL. The intra- and inter-day precisions in terms of RSD were <9.6%. All analytes were stable in whole blood VAMS samples stored at room temperature for at least 30 days with analyte losses < 14%. The developed method was successfully applied to the analysis of biological samples from mice, leading to the unambiguous determination of all the considered target analytes. This method can therefore be applied to analyse TRP metabolites and related biomarkers levels to monitor disease states, perform mechanistic studies and investigate the outcomes of therapeutic interventions. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop