Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = primary air proportion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2026 KiB  
Review
Mapping the Fat: How Childhood Obesity and Body Composition Shape Obstructive Sleep Apnoea
by Marco Zaffanello, Angelo Pietrobelli, Giorgio Piacentini, Thomas Zoller, Luana Nosetti, Alessandra Guzzo and Franco Antoniazzi
Children 2025, 12(7), 912; https://doi.org/10.3390/children12070912 - 10 Jul 2025
Viewed by 441
Abstract
Background/Objectives: Childhood obesity represents a growing public health concern. It is closely associated with obstructive sleep apnoea (OSA), which impairs nocturnal breathing and significantly affects neurocognitive and cardiovascular health. This review aims to analyse differences in fat distribution, anthropometric parameters, and [...] Read more.
Background/Objectives: Childhood obesity represents a growing public health concern. It is closely associated with obstructive sleep apnoea (OSA), which impairs nocturnal breathing and significantly affects neurocognitive and cardiovascular health. This review aims to analyse differences in fat distribution, anthropometric parameters, and instrumental assessments of paediatric OSA compared to adult OSA to improve the diagnostic characterisation of obese children. Methods: narrative review. Results: While adenotonsillar hypertrophy (ATH) remains a primary cause of paediatric OSA, the increasing prevalence of obesity has introduced distinct pathophysiological mechanisms, including fat accumulation around the pharynx, reduced respiratory muscle tone, and systemic inflammation. Children exhibit different fat distribution patterns compared to adults, with a greater proportion of subcutaneous fat relative to visceral fat. Nevertheless, cervical and abdominal adiposity are crucial in increasing upper airway collapsibility. Recent evidence highlights the predictive value of anthropometric and body composition indicators such as neck circumference (NC), neck-to-height ratio (NHR), neck-to-waist ratio (NWR), fat-to-muscle ratio (FMR), and the neck-to-abdominal-fat percentage ratio (NAF%). In addition, ultrasound assessment of lateral pharyngeal wall (LPW) thickness and abdominal fat distribution provides clinically relevant information regarding anatomical contributions to OSA severity. Among imaging modalities, dual-energy X-ray absorptiometry (DXA), bioelectrical impedance analysis (BIA), and air displacement plethysmography (ADP) have proven valuable tools for evaluating body fat distribution. Conclusions: Despite advances in the topic, a validated predictive model that integrates these parameters is still lacking in clinical practice. Polysomnography (PSG) remains the gold standard for diagnosis; however, its limited accessibility underscores the need for complementary tools to prioritise the identification of children at high risk. A multimodal approach integrating clinical, anthropometric, and imaging data could support the early identification and personalised management of paediatric OSA in obesity. Full article
(This article belongs to the Section Translational Pediatrics)
Show Figures

Figure 1

19 pages, 3857 KiB  
Article
Improving Indoor Thermal Comfort and Air-Conditioning Management in Representative Primary Schools in Southern China
by Yicheng Sun, Wataru Ando, Shoichi Kojima and Kazuaki Nakaohkubo
Processes 2025, 13(5), 1538; https://doi.org/10.3390/pr13051538 - 16 May 2025
Viewed by 391
Abstract
This study aims to optimize indoor thermal environment assessment methods for primary school classrooms in regions with hot summers and cold winters, enhancing air-conditioning management efficiency and accuracy. Given the complexity of Predicted Mean Vote (PMV) calculations and its reduced accuracy under high [...] Read more.
This study aims to optimize indoor thermal environment assessment methods for primary school classrooms in regions with hot summers and cold winters, enhancing air-conditioning management efficiency and accuracy. Given the complexity of Predicted Mean Vote (PMV) calculations and its reduced accuracy under high temperature and humidity, this research explores the use of Thermal Sensation Vote (TSV) as a simpler alternative. Field measurements and subjective assessments were conducted to analyze the relationship between TSV and PMV, leading to a regression model linking predicted TSV (TSVp) with temperature and humidity. Results indicate that temperature and humidity significantly impact TSV, with regression coefficients of 0.499 and 0.055, respectively. Furthermore, when TSV is ≥1, the proportion of PMV of ≥0.5 remains stable, validating TSVp as a reliable indicator. Based on these findings, energy-efficient air-conditioning management strategies are proposed, recommending a temperature setting of 28 °C for thermal comfort. This study provides insights into climate control strategies in educational buildings, promoting sustainable development. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

17 pages, 4067 KiB  
Article
Numerical Simulation and Intelligent Prediction of Effects of Primary Air Proportion and Moisture Content on MSW Incineration
by Shanping Chen, Fang Xu, Yong Chen and Lijie Yin
Processes 2025, 13(5), 1479; https://doi.org/10.3390/pr13051479 - 12 May 2025
Viewed by 488
Abstract
As the core process of the thermal treatment of municipal solid waste (MSW), incineration process optimization has become a frontier topic in the field of environmental engineering. This study took a 500 t/d incinerator for engineering application as the research object. Based on [...] Read more.
As the core process of the thermal treatment of municipal solid waste (MSW), incineration process optimization has become a frontier topic in the field of environmental engineering. This study took a 500 t/d incinerator for engineering application as the research object. Based on a two-fluid model, a three-dimensional transient model of a proportional incinerator was established. The effects of primary air proportion and moisture content on the combustion state in the incinerator were verified and discussed using field test data, and the dynamic changes in flue gas temperature were predicted by a BPNN (Backpropagation Neural Network). The results show that the increase in air volume in the drying section promotes water evaporation but inhibits the devolatilization and combustion of fixed carbon. The position where complete devolatilization and fixed carbon combustion begins was delayed by 1.5 m~3 m. The moisture content (M) is negatively correlated with the devolatilization and combustion of fixed carbon. From M = 25% to M = 40%, the flue gas outlet temperature decreased by 140 K. In addition, a dynamic combustion BP neural network model with the movement of the grate under rated conditions was constructed, with the MSE (Mean Squared Error) being 1.629%. The model can learn data characteristics well and has a good prediction effect. This study provides a scientific basis for optimizing the operating parameters of municipal solid waste incinerators, helps to optimize the incineration process, and is of great significance to the thermal treatment of MSW. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

27 pages, 28696 KiB  
Article
Numerical Simulation of Dry and Wet Rice Seeds in an Air-Suction Seed Metering Device
by Cheng Qian, Zhuorong Fan, Daoqing Yan, Wei Qin, Youcong Jiang, Zishun Huang, He Xing, Zaiman Wang and Ying Zang
Agronomy 2025, 15(5), 1145; https://doi.org/10.3390/agronomy15051145 - 7 May 2025
Viewed by 663
Abstract
Rice direct seeding for bunch planting is a sustainable agricultural production method that reduces production costs, improves rice lodging resistance, and conserves irrigation water in the field. However, there are notable differences in seed treatment between direct seeding on dry land and in [...] Read more.
Rice direct seeding for bunch planting is a sustainable agricultural production method that reduces production costs, improves rice lodging resistance, and conserves irrigation water in the field. However, there are notable differences in seed treatment between direct seeding on dry land and in paddy fields, which can impact the seeding process’s accuracy. This study employs the numerical simulation methods of computational fluid dynamics (CFDs) and discrete element method (DEM) to examine the motion characteristics of dry and wet rice seeds in a fluid–solid coupled domain and their impact on seeding accuracy. The aim is to guide the optimization of the rice air-suction seed metering device. Rice seeds were divided into dry and wet groups, and their physical properties were measured. Discrete element models of rice seeds were constructed and calibrated using a polyhedral method. The results show that the static friction coefficient between the seed meter and the seed ranged from 0.902 to 0.950, and the thousand-grain weights ranged from 25.89 to 32.42 g, which were higher than those of the dry rice seed, which ranged from 0.774 to 0.839, and from 25.89 to 32.42 g. After calibration, the errors between the simulated dynamic stacking angles of HHZD, HYD, YLYD, HHZW, HYW, and YLYW and the physical–dynamic stacking angles were 0.12%, 0.13%, 0.75%, 0.62%, 0.08%, 0.75%, 0.59%, and 1.24%, respectively, which indicated that the discrete element model for rice was reliable. Additionally, a seeding accuracy test revealed that wet seeds of the same variety had higher missing and single indices, while dry seeds had higher triple and multiple indices. Furthermore, CFD-DEM simulations demonstrated that wet seeds’ normal and tangential forces were more significant than those on dry seeds during the seed-filling process. At 40 rpm, the normal and tangential forces during the seed-filling process of HYW are 37.69 × 10−3 N and 12.47 × 10−3 N, respectively, which are higher than those of HYD (25.18 × 10−3 N and 9.19 × 10−3 N). The action force of suctioned rice seeds was directly proportional to the missing and single indices. The primary factors contributing to the discrepancy in seeding accuracy between dry and wet rice are the thousand-grain weight, the static friction coefficient between the seed meter and the seed, and the action force exerted between the rice seeds. In addition, using a shaped hole structure and optimizing the seed chamber structure can reduce normal and tangential forces and improve seeding accuracy. This study provides a reference for the simulation of rice seed flow-solid coupling and optimization of air-suction seed metering devices. Full article
Show Figures

Figure 1

36 pages, 9920 KiB  
Article
Recovered Tire-Derived Aggregates for Thermally Insulating Lightweight Mortars
by Elhem Ghorbel, Safiullah Omary and Ali Karrech
Materials 2025, 18(8), 1849; https://doi.org/10.3390/ma18081849 - 17 Apr 2025
Viewed by 525
Abstract
This study explores the innovative use of recovered tire-derived aggregates in cement-based mortars to enhance thermal insulation and reduce environmental impact. The research addresses the pressing global challenge of managing end-of-life tires (ELTs), which are non-biodegradable and contribute significantly to waste management issues. [...] Read more.
This study explores the innovative use of recovered tire-derived aggregates in cement-based mortars to enhance thermal insulation and reduce environmental impact. The research addresses the pressing global challenge of managing end-of-life tires (ELTs), which are non-biodegradable and contribute significantly to waste management issues. By incorporating crumb rubber from recycled tires into mortars, this study investigates the feasibility of creating lightweight, thermally insulating mortars suitable for building repair and rehabilitation. The primary objective is to develop mortars that minimize structural load, decrease energy consumption in buildings, and promote the recycling of ELTs as a valuable resource. The study focuses on evaluating how varying crumb rubber content affects key properties such as workability, thermal conductivity, compressive strength, and fracture energy. Experimental tests were conducted to assess these properties, with the results indicating that mortars with up to 50% crumb rubber content exhibit improved thermal insulation and meet industry standards for non-structural repair applications. The methodology involved creating eight different mortar mixtures with varying proportions of crumb rubber particles (ranging from 0% to 100%). Each mixture was tested for physical and mechanical properties, including density, workability, air content, setting time, thermal conductivity, and strength. The experimental results showed that as the crumb rubber content increased, the thermal conductivity of the mortars decreased, indicating enhanced insulation properties. However, higher crumb rubber content led to reduced mechanical strength, highlighting the need for a balanced approach in material design. Key findings reveal that the air content of early-age mortar paste increases linearly with the crumb rubber replacement ratio, impacting the hardened behavior by concentrating stresses or facilitating the infiltration of damaging elements. The study also establishes relationships between mortar properties and crumb rubber content, contributing to the development of sustainable construction materials. The environmental benefits of recycling ELTs are emphasized, as this practice reduces the reliance on natural sand, a resource that is the second most consumed globally after water. This study underscores the viability of using crumb rubber from recycled tires in mortars for repair and rehabilitation purposes. The developed mortars, particularly those with 25% to 50% crumb rubber content, show promise as non-structural repair products, offering improved thermal insulation and reduced environmental impact. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 13510 KiB  
Article
Assessing the Role of Energy Mix in Long-Term Air Pollution Trends: Initial Evidence from Poland
by Mateusz Zareba
Energies 2025, 18(5), 1211; https://doi.org/10.3390/en18051211 - 1 Mar 2025
Cited by 2 | Viewed by 745
Abstract
Air pollution remains a critical environmental and public health issue, requiring diverse research perspectives, including those related to energy production and consumption. This study examines the relationship between Poland’s energy mix and air pollution trends by integrating national statistical data on primary energy [...] Read more.
Air pollution remains a critical environmental and public health issue, requiring diverse research perspectives, including those related to energy production and consumption. This study examines the relationship between Poland’s energy mix and air pollution trends by integrating national statistical data on primary energy consumption and renewable energy sources over the past 15 years with air pollution measurements from the last eight years. The air pollution data, obtained from reference-grade monitoring stations, focus on particulate matter (PM). To address discrepancies in temporal resolution between daily PM measurements and annual energy sector reports, a bootstrapping method was applied within a regression framework to assess the overall impact of individual energy components on national air pollution levels. Seasonal decomposition techniques were employed to analyze the temporal dynamics of specific energy sources and their contributions to pollution variability. A key aspect of this research is the role of renewable energy sources in air quality trends. This study also investigates regional variations in pollution levels by analyzing correlations between geographic location, industrialization intensity, and the proportion of green areas across Poland’s administrative regions (Voivodeships). This spatially explicit approach provides deeper insights into the linkages between energy production and pollution distribution at a national scale. Poland presents a unique case due to its distinct energy mix, which differs significantly from the EU average, its persistently high air pollution levels, and recent regulatory changes. These factors create an ideal setting to assess the impact of energy sector transitions on environmental quality. By employing high-resolution spatiotemporal big data analysis, this study leverages measurements from over 100 monitoring stations and applies advanced statistical methodologies to integrate multi-scale energy and pollution datasets. From a PM perspective, the regression analysis showed that High-Methane Gas had a neutral impact on PM concentrations, making it a suitable transition energy source, while renewables exhibited negative regression coefficients and coal-based sources showed positive coefficients. The findings offer new perspectives on the long-term environmental effects of shifts in national energy policies. Full article
Show Figures

Figure 1

25 pages, 4734 KiB  
Review
Features of the Composition, Release, Localization, and Environmental Effects of Free Gases in the Khibiny Massif (Kola Peninsula, Northwest Russia): A Review
by Valentin A. Nivin
Geosciences 2025, 15(3), 86; https://doi.org/10.3390/geosciences15030086 - 1 Mar 2025
Viewed by 630
Abstract
The article presents a comprehensive analysis of long-term studies on hydrogen-hydrocarbon free gases (FGs) in the rocks of the Khibiny massif, systematically organized and generalized for the first time. Gasometric observations were predominantly conducted within underground mine workings, with occasional measurements taken during [...] Read more.
The article presents a comprehensive analysis of long-term studies on hydrogen-hydrocarbon free gases (FGs) in the rocks of the Khibiny massif, systematically organized and generalized for the first time. Gasometric observations were predominantly conducted within underground mine workings, with occasional measurements taken during the drilling of exploration boreholes at the surface or in subsurface air within loose sediments. Methane is the primary component of these gases, followed in descending order by hydrogen, ethane, helium, other methane homologs, and alkenes. Nitrogen is also presumed to be present, although its proportions remain undefined. The carbon and hydrogen in FGs exhibit relatively heavy isotopic compositions, which progressively lighten from methane to ethane. The intensity of gas emissions is characterized by a gas flow rate from shot holes and boreholes, reaching up to 0.5 L/min but generally decreasing significantly within an hour of reservoir exposure. Gas-bearing areas, ranging in size from a few meters to tens of meters, are distributed irregularly and without discernible patterns. The FG content in rocks and ores varies from trace amounts to approximately 1 m3 of gas per cubic meter of undisturbed rock. These gases are primarily residual, preserved within microfractures and cavities following the isolation of fluid inclusions. Their distribution and composition may fluctuate due to the dynamic geomechanical conditions of the rock mass. The release of flammable and explosive FGs presents a significant hazard during ore deposit exploration and development, necessitating the implementation of rigorous safety measures for mining and drilling operations. Additionally, the environmental implications and potential applications of gas emissions warrant attention. Future comprehensive studies of the Khibiny gases using advanced methodologies and equipment are expected to address various scientific and practical challenges. Full article
Show Figures

Figure 1

22 pages, 6143 KiB  
Article
CFD Simulation of Fluid Flow and Combustion Characteristics in Aero-Engine Combustion Chambers with Single and Double Fuel Inlets
by Abhishek Agarwal, Michel Kalenga Wa Kalenga and Masengo Ilunga
Processes 2025, 13(1), 124; https://doi.org/10.3390/pr13010124 - 6 Jan 2025
Cited by 6 | Viewed by 2391
Abstract
Gas turbine engines are used in many applications such as power plants and aircrafts. The energy generated through fuel combustion has a significant impact on fluid flow characteristics and thrust force produced by gas turbine engines. This energy generation is based on the [...] Read more.
Gas turbine engines are used in many applications such as power plants and aircrafts. The energy generated through fuel combustion has a significant impact on fluid flow characteristics and thrust force produced by gas turbine engines. This energy generation is based on the precise mixing of fuel and air with known proportions. The present research work attempts to examine the characteristics of fluid flow for aero-engine combustion in a chamber with either a single fuel inlet or multiple fuel inlets using the computational fluid dynamics (CFD) technique. Developed in Creo-6.0 parametric design software, the combustion chamber was modeled and simulated using the ANSYS CFX simulation platform to determine the pressure and other fluid flow-induced characteristics. The analysis was performed for both single fuel inlet and multiple fuel inlet combustion chamber designs. The outlet pressure of the combustion chamber is a key parameter in determining the combustion characteristics and subsequent gas expansion in gas turbine performance. Our results indicated that the outlet pressure from the double fuel inlet design was 49.04% higher than the single fuel inlet design. The thrust force (propulsion) in gas turbine engines is a result of the mass flow rate of exhaust gasses, as quantified by the gas exit velocity. Induced thrust on a combustor with double fuel inlet was 48.3% higher than the induced thrust in the single fuel inlet design, making the double fuel inlet design a more viable option. The higher outlet pressure obtained in the double fuel inlet design showed higher enthalpy generation and greater energy conversion into thrust. The cause of this higher enthalpy is attributed to better fuel combustion in the primary zone. It appears that the double fuel inlet design could improve total turbine efficiency, reduce fuel consumption, and lower emissions. Full article
Show Figures

Figure 1

21 pages, 10443 KiB  
Article
Contamination Characteristics of Antibiotic Resistance Genes in Multi-Vector Environment in Typical Regional Fattening House
by Kai Wang, Dan Shen, Zhendong Guo, Qiuming Zhong and Kai Huang
Toxics 2024, 12(12), 916; https://doi.org/10.3390/toxics12120916 - 18 Dec 2024
Viewed by 1105
Abstract
Antibiotic resistance genes (ARGs) are emerging as significant environmental contaminants, posing potential health risks worldwide. Intensive livestock farming, particularly swine production, is a primary contributor to the escalation of ARG pollution. In this study, we employed metagenomic sequencing and quantitative polymerase chain reaction [...] Read more.
Antibiotic resistance genes (ARGs) are emerging as significant environmental contaminants, posing potential health risks worldwide. Intensive livestock farming, particularly swine production, is a primary contributor to the escalation of ARG pollution. In this study, we employed metagenomic sequencing and quantitative polymerase chain reaction to analyze the composition of microorganisms and ARGs across four vectors in a typical swine fattening facility: dung, soil, airborne particulate matter (PM), and fodder. Surprisingly, soil and PM harbored a higher abundance of microorganisms and ARGs than dung. At the same time, fodder was more likely to carry eukaryotes. Proteobacteria exhibited the highest propensity for carrying ARGs, with proportions 9–20 times greater than other microorganisms. Furthermore, a strong interrelation among various ARGs was observed, suggesting the potential for cooperative transmission mechanisms. These findings underscore the importance of recognizing soil and PM as significant reservoirs of ARGs in swine facilities alongside dung. Consequently, targeted measures should be implemented to mitigate their proliferation, mainly focusing on airborne PM, which can rapidly disseminate via air currents. Proteobacteria, given their remarkable carrying capacity for ARGs with the primary resistance mechanism of efflux, represent a promising avenue for developing novel control strategies against antibiotic resistance. Full article
(This article belongs to the Special Issue Antibiotics and Resistance Genes in Environment)
Show Figures

Figure 1

18 pages, 18581 KiB  
Article
Spatial–Temporal Variations in Water Use Efficiency and Its Influencing Factors in the Li River Basin, China
by Yanqi Chu, Xiangling Tang and Xuemei Zhong
Water 2024, 16(19), 2864; https://doi.org/10.3390/w16192864 - 9 Oct 2024
Cited by 2 | Viewed by 979
Abstract
As a vital indicator for measuring the coupled carbon–water cycle of an ecosystem, water use efficiency (WUE) can also reflect the adaptive capacity of plants in different ecosystems. Located in Southwest China, the Li River Basin has a representative karst landform, and the [...] Read more.
As a vital indicator for measuring the coupled carbon–water cycle of an ecosystem, water use efficiency (WUE) can also reflect the adaptive capacity of plants in different ecosystems. Located in Southwest China, the Li River Basin has a representative karst landform, and the uneven rainfall in the region leads to severe water shortage. In this study, we analyzed the spatial–temporal transformation characteristics of the WUE of the basin and its relationship with different influencing factors from 2001 to 2020 based on a correlation analysis and trend analysis. The main conclusions are as follows: (1) The average value of WUE in the Li River Basin was 1.8251 gC· mm−1·m−2, and it kept decreasing at a rate of 0.0072 gC· mm−1·m−2·a−1 in the past 20 years. With respect to the spatial distribution of the multi-year average of WUE, it exhibits a gradual increasing trend from west to east. (2) Between gross primary productivity (GPP) and evapotranspiration (ET), it was found that ET was the primary influencing factor of WUE. Precipitation was positively correlated with WUE in the Li River Basin, accounting for 67.22% of the total area of the basin. The air temperature was negatively correlated with WUE, and the area was negatively correlated with WUE, accounting for 92.67% of the basin area. (3) The normalized difference vegetation index (NDVI) and leaf area index (LAI) were negatively correlated with WUE, and the proportions of negatively correlated areas to the total area of the basin were similar; both were between 60 and 70%. The growth of vegetation inhibited the increase in WUE in the basin to a certain extent. Regarding Vapor Pressure Deficit (VPD), the proportions of positive and negative correlation areas with WUE were similar, accounting for 49.58% and 50.42%, respectively. (4) The occurrence of drought events and the enhancement in its degree led to a continuous increase in WUE in the basin; for different land cover types, the correlation of the standardized precipitation evapotranspiration index (SPEI) was in the following order from strongest to weakest: grassland > cropland > forest > shrubland. Full article
Show Figures

Figure 1

36 pages, 14602 KiB  
Article
Reliability Enhancement of a Double-Switch Single-Ended Primary Inductance–Buck Regulator in a Wind-Driven Permanent Magnet Synchronous Generator Using a Double-Band Hysteresis Current Controller
by Walid Emar, Mais Alzgool and Ibrahim Mansour
Energies 2024, 17(19), 4868; https://doi.org/10.3390/en17194868 - 27 Sep 2024
Cited by 4 | Viewed by 999
Abstract
The wind power exchange system (WECS) covered in this paper consists of a voltage source inverter (VSI), a DSSB regulator, and an uncontrolled rectifier. An AC grid or a heavy inductive or resistive load (RL) can be supplied by this system. The DSSB [...] Read more.
The wind power exchange system (WECS) covered in this paper consists of a voltage source inverter (VSI), a DSSB regulator, and an uncontrolled rectifier. An AC grid or a heavy inductive or resistive load (RL) can be supplied by this system. The DSSB is a recently developed DC-DC regulator consisting of an improved single-ended primary inductance regulator (SEPIC) followed by a buck regulator. It has a peak efficiency of 95–98% and a voltage gain of (D (1+D)/(1D). where D is the regulator transistor’s on-to-off switching ratio. The proposed regulator improves the voltage stability and MPPT strategy (optimal or maximum power-point tracking). The combination of the DSSB and the proposed regulator improves the efficiency of the system and increases the power output of the wind turbine by reducing the harmonics of the system voltages and current. This method also reduces the influence of air density as well as wind speed variations on the MPPT strategy. Classical proportional–integral (PI) controllers are used in conjunction with a vector-controlled voltage source inverter, which adheres to the suggested DSSB regulator, to control the PMSM speed and d-q axis currents and to correct for current error. In addition to the vector-controlled voltage source inverter (which follows the recommended DSSB regulator), classical proportional–integral controllers are used to regulate the PMSM speed and d-q axis currents, and to correct current errors. In addition, a model Predictive Controller (PPC) is used with the pitch angle control (PAC) of WECS. This is done to show how well the proposed WECS (WECS with DSSB regulator) enhances voltage stability. A software-based simulation (MATLAB/Simulink) evaluates the results for ideal and unoptimized parameters of the WT and WECS under a variety of conditions. The results of the simulation show an increase in MPPT precision and output power performance. Full article
Show Figures

Figure 1

16 pages, 7416 KiB  
Article
Analysis of the Relationship between Upper-Level Aircraft Turbulence and the East Asian Westerly Jet Stream
by Kenan Li, Xi Chen, Liman A, Kaijun Wu, Haiwen Liu, Fengjing Dai, Tiantian Yang, Jia Yu and Kehua Wang
Atmosphere 2024, 15(9), 1138; https://doi.org/10.3390/atmos15091138 - 20 Sep 2024
Cited by 1 | Viewed by 2102
Abstract
The jet stream is a primary factor contributing to turbulence, especially for upper-level aircraft. This study utilized pilot reports and ERA5 data from 2023 to investigate the relationship between upper-level turbulence and the East Asian westerly jet (EAJ). The results indicate that approximately [...] Read more.
The jet stream is a primary factor contributing to turbulence, especially for upper-level aircraft. This study utilized pilot reports and ERA5 data from 2023 to investigate the relationship between upper-level turbulence and the East Asian westerly jet (EAJ). The results indicate that approximately 45.9% of upper-level aircraft turbulence occurs within the jet stream, with the lowest proportion in August and the highest in January. Additionally, the strongest vertical wind shear (VMS) is found concentrated in the lower part of the jet stream core, particularly in the South–Down part of the jet stream, where upper-level aircraft turbulence occurs most frequently (27.1%). The most turbulent area is located between 30–40° N and 110–120° E, with the main air routes experiencing turbulence being the Henan sections of G212 and B208. From a seasonal perspective, there is less frequent occurrence of upper-level aircraft turbulence in summer and autumn but more in winter and spring. The EAJ volume increases with the strengthening of the jet core wind speed, with the jet core regions being most distinct at altitudes of 200~300 hPa. Meanwhile, the jet stream intensity index peaks at 70.6 m/s in January and reaches its lowest value of 7.1 m/s in August. The jet stream axis shifts southward in winter and northward in summer, reaching the southernmost position in December at 32.2° N and the northernmost position in August at 43.5° N. Furthermore, the VMS at turbulence points within the jet stream is higher than that at the turbulence points outside the jet stream, and the Richardson number (RI) is lower. Moreover, the temporal distribution of upper-level aircraft turbulence is primarily determined by the location and intensity of the jet stream, of which the jet stream intensity index provides guidance and thus serves as a reliable indicator. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere)
Show Figures

Figure 1

18 pages, 5570 KiB  
Article
Electromagnetic Field and Variable Inertia Analysis of a Dual Mass Flywheel Based on Electromagnetic Control
by Hongen Niu, Liping Zeng, Cuicui Wei and Zihao Wan
Symmetry 2024, 16(9), 1234; https://doi.org/10.3390/sym16091234 - 20 Sep 2024
Cited by 1 | Viewed by 1231
Abstract
The moment of inertia of the primary flywheel and the secondary flywheel in a dual mass flywheel (DMF) directly affects the vibration damping performance in an automotive driveline. To enable better minimization of vibration and noise by changing the moment of inertia of [...] Read more.
The moment of inertia of the primary flywheel and the secondary flywheel in a dual mass flywheel (DMF) directly affects the vibration damping performance in an automotive driveline. To enable better minimization of vibration and noise by changing the moment of inertia of the DMF to adjust the frequency characteristics of the automotive driveline, a new variable inertia DMF structure is proposed by introducing electromagnetic devices. The finite element simulation model of the electromagnetic field of an electromagnetic device is established, the electromagnetic field characteristics in the structure are analyzed, and the variation in the electromagnetic force under different air gaps and current conditions is obtained. The electromagnetic force test system of the electromagnetic device is constructed, and the validity of the finite element simulation analysis of the electromagnetic field of the electromagnetic device is verified. A mechanical model of the electromagnetic device is established to analyze the characteristics of the displacement of the moving mass in the structure as well as the variation in the moment of inertia of the DMF at different rotational speeds and currents. The maximum adjustable proportion of its moment of inertia can reach 15.07%. A torsional model of the automotive driveline is established to analyze the effect of variable inertia DMF on the resonance frequency of the system under different currents. The results show that the electromagnetic device introduced in the DMF can realize the active adjustment of the moment of inertia and enable the resonance frequency to decrease with increasing rotational speed, which expands the idea of optimizing the vibration damping performance of the DMF and provides a reference for better control of the torsional vibration of the automobile or other mechanical transmission systems. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

26 pages, 8177 KiB  
Article
Achieving Pareto Optimum for Hybrid Geothermal–Solar (PV)–Gas Heating Systems: Minimising Lifecycle Cost and Greenhouse Gas Emissions
by Yu Zhou, Guillermo A. Narsilio, Kenichi Soga and Lu Aye
Sustainability 2024, 16(15), 6595; https://doi.org/10.3390/su16156595 - 1 Aug 2024
Viewed by 1970
Abstract
This article investigates heating options for poultry houses (or sheds) in order to meet their specific indoor air temperature requirements, with case studies conducted across Australia under conditions similar to those encountered worldwide. Hybrid geothermal–solar (PV)–gas heating systems with various configurations are proposed [...] Read more.
This article investigates heating options for poultry houses (or sheds) in order to meet their specific indoor air temperature requirements, with case studies conducted across Australia under conditions similar to those encountered worldwide. Hybrid geothermal–solar (PV)–gas heating systems with various configurations are proposed to minimise the lifecycle costs and GHG emissions of poultry shed heating, which involves six seven-week cycles per year. The baseload heating demand is satisfied using ground-source heat pumps (GSHPs), with solar photovoltaic panels generating the electricity needed. LPG burners satisfy the remaining heating demand. Integrating these systems with GSHPs aims to minimise the overall installation costs of the heating system. The primary focus is to curtail the costs and GHG emissions of poultry shed heating with these hybrid systems, considering three different electricity offsetting scenarios. It is found that a considerable reduction in the lifecycle cost (up to 55%) and GHG emissions (up to 50%) can be achieved when hybrid systems are used for heating. The Pareto front solutions for the systems are also determined. By comparing the Pareto front solutions for various scenarios, it is found that the shave factor, a measure of the GSHP proportion of the overall system, significantly influences the lifecycle cost, while the size and utilisation of the solar PV panels significantly affect the lifecycle GHG emissions. Full article
(This article belongs to the Special Issue Sustainable Energy System: Efficiency and Cost of Renewable Energy)
Show Figures

Figure 1

25 pages, 7728 KiB  
Article
Experimental Investigation of Recycling Cement Kiln Dust (CKD) as a Co-Binder Material in Cemented Paste Backfill (CPB) Made with Copper Tailings
by Ali Y. Al-Bakri, Haitham M. Ahmed and Mohammed A. Hefni
Minerals 2024, 14(8), 750; https://doi.org/10.3390/min14080750 - 25 Jul 2024
Cited by 4 | Viewed by 1500
Abstract
Cement production may involve excessive use of natural resources and have negative environmental impacts, as energy consumption and CO2 emissions can cause air pollution and climate change. Cement kiln dust (CKD), a by-product waste material, is also a primary issue associated with [...] Read more.
Cement production may involve excessive use of natural resources and have negative environmental impacts, as energy consumption and CO2 emissions can cause air pollution and climate change. Cement kiln dust (CKD), a by-product waste material, is also a primary issue associated with cement production. Utilizing CKD in mining applications is a pathway to eco-sustainable solutions. Cemented paste backfill (CPB) made with mine tailings is an efficient method for void backfilling in underground mines. Therefore, this study investigated the eco-sustainable utilization of CKD as a co-binder material that can partially replace cement in CPB prepared with copper tailings. At 7, 14, 28, 56, and 90-day curing times, the experimental campaign measured the physical and mechanical parameters of the cured CPB samples, including density, UCS, and elastic modulus (stiffness). Additionally, the CPB-cured mixes were analyzed using XRF, X-ray XRD, SEM, and EDX techniques to link the mineral phases and microstructure to mechanical performance. Four proportions (5, 10, 15, and 20%) of CKD represented in 75 samples were prepared to replace ordinary Portland cement (OPC) in the CPB mixtures, in addition to the reference mix (control) with 0% CKD. As all combinations exceed the compressive strength of CPB required for achieving stability in underground mines, the results showed that CKD could be utilized advantageously as a partial substitute for OPC with a proportion of up to 20% in the CPB mixture. When tested after 90 days, the combination modified with 5% CKD exhibited comparatively higher compressive strength than the control mixture. Full article
(This article belongs to the Special Issue Mechanical and Rheological Properties of Cemented Tailings Backfill)
Show Figures

Figure 1

Back to TopTop