Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = preferred gait velocity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1850 KiB  
Article
Kinematic Analysis of Dynamic Coactivation During Arm Swing at the Shoulder and Elbow Joints
by Jae Ho Kim, Jaejin Hwang, Myung-Chul Jung and Seung-Min Mo
Appl. Sci. 2025, 15(12), 6593; https://doi.org/10.3390/app15126593 - 11 Jun 2025
Viewed by 419
Abstract
This study aimed to investigate the influence of different walking speeds on shoulder and elbow joint kinematics, specifically focusing on range of motion, angular velocity, and angular acceleration during arm swing. The natural rhythm of human gait was studied to develop an effective [...] Read more.
This study aimed to investigate the influence of different walking speeds on shoulder and elbow joint kinematics, specifically focusing on range of motion, angular velocity, and angular acceleration during arm swing. The natural rhythm of human gait was studied to develop an effective mechanical interface, particularly with respect to joint impedance and force controllability. The independent variable in this study was walking speed, operationalized at four levels—3.6 km/h (slow), 4.2 km/h (preferred walking speed, PWS), 5.4 km/h (normal), and 7.2 km/h (fast)—and defined as a within-subject factor. The dependent variables consisted of quantitative kinematic parameters, including joint range of motion (ROM, in degrees), peak and minimum joint angular velocity (deg/s), and peak and minimum joint angular acceleration (deg/s2). For each subject, data from twenty gait cycles were extracted for analysis. The kinematic variables of the shoulder and elbow were analyzed, showing increasing trends as the walking speed increased. As walking speed increases, adequate arm swing contributes to gait stability and energy efficiency. Notably, the ROM of shoulder was slightly reduced at the PWS compared to the slowest speed (3.6 km/h), which may reflect more natural and coordinated limb movements at the PWS. Dynamic covariation of torque patterns in the shoulder and elbow joints was observed, reflecting a synergistic coordination between these joints in response to human body movement. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

11 pages, 2728 KiB  
Review
Gait Assessment Using Smartphone Applications in Older Adults: A Scoping Review
by Lorenzo Brognara
Geriatrics 2024, 9(4), 95; https://doi.org/10.3390/geriatrics9040095 - 18 Jul 2024
Cited by 9 | Viewed by 2660
Abstract
Spatiotemporal parameters such as gait velocity and stride length are simple indicators of functional status and can be used to predict major adverse outcomes in older adults. A smartphone can be used for gait analysis by providing spatiotemporal parameters useful for improving the [...] Read more.
Spatiotemporal parameters such as gait velocity and stride length are simple indicators of functional status and can be used to predict major adverse outcomes in older adults. A smartphone can be used for gait analysis by providing spatiotemporal parameters useful for improving the diagnosis and rehabilitation processes in frail people. The aim of this study was to review articles published in the last 20 years (from 2004 to 2024) concerning the application of smartphones to assess the spatiotemporal parameters of gait in older adults. This systematic review was performed in line with Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA), and original articles were identified by searching seven electronic databases: SciVerse (ScienceDirect), Excerpta Medica Database (EMBASE), Medline, Scopus, PubMed, Web of Science and the Cochrane Library. Studies were rigorously screened using the inclusion criteria of smartphones and mobile apps, older adults and spatiotemporal gait parameters, and results were narratively synthesized. Seventy-three articles were initially identified while searching the scientific literature regarding this topic. Eleven articles were selected and included in this review. Analysis of these studies covered information about gait assessment using mobile apps recorded in 723 older adults and 164 control cases. Analysis of data related to the application of smartphones to assess spatiotemporal parameters of gait in older adults showed moderate-to-excellent test–retest reliability and validity (ICCs around 0.9) of gait speed, the most common parameter reported. Additionally, gait speeds recorded with mobile apps showed excellent agreement when compared to gold standard systems. Smartphones and mobile apps are useful, non-invasive, low-cost and objective tools that are being extensively used to perform gait analysis in older adults. Smartphones and mobile apps can reliably identify spatiotemporal parameters related to adverse outcomes, such as a slow gait speed, as predictors and outcomes in clinical practice and research involving older adults. Full article
Show Figures

Figure 1

12 pages, 1557 KiB  
Article
Serious Game with Electromyography Feedback and Physical Therapy in Young Children with Unilateral Spastic Cerebral Palsy and Equinus Gait: A Prospective Open-Label Study
by Christophe Boulay, Jean-Michel Gracies, Lauren Garcia, Guillaume Authier, Alexis Ulian, Maud Pradines, Taian Martins Vieira, Talita Pinto, Marco Gazzoni, Béatrice Desnous, Bernard Parratte and Sébastien Pesenti
Sensors 2024, 24(5), 1513; https://doi.org/10.3390/s24051513 - 26 Feb 2024
Cited by 1 | Viewed by 2153
Abstract
The clinical effects of a serious game with electromyography feedback (EMGs_SG) and physical therapy (PT) was investigated prospectively in children with unilateral spastic cerebral palsy (USCP). An additional aim was to better understand the influence of muscle shortening on function. Thirty children with [...] Read more.
The clinical effects of a serious game with electromyography feedback (EMGs_SG) and physical therapy (PT) was investigated prospectively in children with unilateral spastic cerebral palsy (USCP). An additional aim was to better understand the influence of muscle shortening on function. Thirty children with USCP (age 7.6 ± 2.1 years) received four weeks of EMGs_SG sessions 2×/week including repetitive, active alternating training of dorsi- and plantar flexors in a seated position. In addition, each child received usual PT treatment ≤ 2×/week, involving plantar flexor stretching and command strengthening on dorsi- and plantar flexors. Five-Step Assessment parameters, including preferred gait velocity (normalized by height); plantar flexor extensibility (XV1); angle of catch (XV3); maximal active ankle dorsiflexion (XA); and derived coefficients of shortening, spasticity, and weakness for both soleus and gastrosoleus complex (GSC) were compared pre and post treatment (t-tests). Correlations were explored between the various coefficients and gait velocities at baseline. After four weeks of EMGs_SG + PT, there was an increase in normalized gait velocity from 0.72 ± 0.13 to 0.77 ± 0.13 m/s (p = 0.025, d = 0.43), a decrease in coefficients of shortening (soleus, 0.10 ± 0.07 pre vs. 0.07 ± 0.08 post, p = 0.004, d = 0.57; GSC 0.16 ± 0.08 vs. 0.13 ± 0.08, p = 0.003, d = 0.58), spasticity (soleus 0.14 ± 0.06 vs. 0.12 ± 0.07, p = 0.02, d = 0.46), and weakness (soleus 0.14 ± 0.07 vs. 0.11 ± 0.07, p = 0.005, d = 0.55). At baseline, normalized gait velocity correlated with the coefficient of GSC shortening (R = −0.43, p = 0.02). Four weeks of EMGs_SG and PT were associated with improved gait velocity and decreased plantar flexor shortening. A randomized controlled trial comparing EMGs_SG and conventional PT is needed. Full article
Show Figures

Figure 1

14 pages, 1156 KiB  
Review
Inflammatory Biomarkers and Gait Impairment in Older Adults: A Systematic Review
by Lorenzo Brognara, Oscar Caballero Luna, Francesco Traina and Omar Cauli
Int. J. Mol. Sci. 2024, 25(3), 1368; https://doi.org/10.3390/ijms25031368 - 23 Jan 2024
Cited by 14 | Viewed by 3012
Abstract
Peripheral inflammation and gait speed alterations are common in several neurological disorders and in the aging process, but the association between the two is not well established. The aim of this systematic literary review is to determine whether proinflammatory markers are a positive [...] Read more.
Peripheral inflammation and gait speed alterations are common in several neurological disorders and in the aging process, but the association between the two is not well established. The aim of this systematic literary review is to determine whether proinflammatory markers are a positive predictor for gait impairments and their complications, such as falls in older adults, and may represent a risk factor for slow gait speed and its complications. The systematic review was performed in line with the Preferred Report Items for Systematic Review and Meta-Analyses (PRISMA). A protocol for literature searches was structured a priori and designed according to the International Perspective Register of Systemic Review (PROSPERO: CRD42023451108). Peer-reviewed original articles were identified by searching seven electronic databases: Excerpta Medica Database (EMBASE), SciVerse (ScienceDirect), Scopus, PubMed, Medline, Web of Science, and the Cochrane Library. The search strategy was formulated based on a combination of controlled descriptors and/or keywords related to the topic and a manual search was conducted of the reference lists from the initially selected studies to identify other eligible studies. The studies were thoroughly screened using the following inclusion criteria: older adults, spatiotemporal gait characteristics, and proinflammatory markers. A meta-analysis was not performed due to the heterogeneity of the studies, and the results were narratively synthesized. Due to the clinical and methodological heterogeneity, the studies were combined in a narrative synthesis, grouped by the type of biomarkers evaluated. A standardized data extraction form was used to collect the following methodological outcome variables from each of the included studies: author, year, population, age, sample size, spatiotemporal gait parameters such as gait velocity, and proinflammatory markers such as TNF-α, high sensitivity C-reactive (CRP) proteins, and IL-6. We included 21 out of 51 studies in our review, which examined the association between inflammatory biomarkers and gait impairment. This review highlights the role of TNF-α, CRP, and IL-6 in gait impairment. Biomarkers play an important role in the decision-making process, and IL-6 can be an effective biomarker in establishing the diagnosis of slow gait speed. Further longitudinal research is needed to establish the use of molecular biomarkers in monitoring gait impairment. Full article
Show Figures

Figure 1

23 pages, 3404 KiB  
Article
Faster Walking Speeds Require Greater Activity from the Primary Motor Cortex in Older Adults Compared to Younger Adults
by Lisa Alcock, Rodrigo Vitório, Samuel Stuart, Lynn Rochester and Annette Pantall
Sensors 2023, 23(15), 6921; https://doi.org/10.3390/s23156921 - 3 Aug 2023
Cited by 8 | Viewed by 2391
Abstract
Gait speed declines with age and slower walking speeds are associated with poor health outcomes. Understanding why we do not walk faster as we age, despite being able to, has implications for rehabilitation. Changes in regional oxygenated haemoglobin (HbO2) across the frontal lobe [...] Read more.
Gait speed declines with age and slower walking speeds are associated with poor health outcomes. Understanding why we do not walk faster as we age, despite being able to, has implications for rehabilitation. Changes in regional oxygenated haemoglobin (HbO2) across the frontal lobe were monitored using functional near infrared spectroscopy in 17 young and 18 older adults while they walked on a treadmill for 5 min, alternating between 30 s of walking at a preferred and fast (120% preferred) speed. Gait was quantified using a triaxial accelerometer (lower back). Differences between task (preferred/fast) and group (young/old) and associations between regional HbO2 and gait were evaluated. Paired tests indicated increased HbO2 in the supplementary motor area (right) and primary motor cortex (left and right) in older adults when walking fast (p < 0.006). HbO2 did not significantly change in the young when walking fast, despite both groups modulating gait. When evaluating the effect of age (linear mixed effects model), greater increases in HbO2 were observed for older adults when walking fast (prefrontal cortex, premotor cortex, supplementary motor area and primary motor cortex) compared to young adults. In older adults, increased step length and reduced step length variability were associated with larger increases in HbO2 across multiple regions when walking fast. Walking fast required increased activation of motor regions in older adults, which may serve as a therapeutic target for rehabilitation. Widespread increases in HbO2 across the frontal cortex highlight that walking fast represents a resource-intensive task as we age. Full article
(This article belongs to the Special Issue Sensors in Neuroimaging and Neurorehabilitation)
Show Figures

Figure 1

17 pages, 2883 KiB  
Article
Impact of Sex and Velocity on Plantar Pressure Distribution during Gait: A Cross-Sectional Study Using an Instrumented Pressure-Sensitive Walkway
by Clara Leyh and Véronique Feipel
J. Funct. Morphol. Kinesiol. 2022, 7(4), 106; https://doi.org/10.3390/jfmk7040106 - 28 Nov 2022
Cited by 4 | Viewed by 2476
Abstract
In-shoe systems and pressure plates are used to assess plantar pressure during gait, but additional tools are employed to evaluate other gait parameters. The GAITRite® system is a clinical gait evaluation tool. Extensive literature is available for spatiotemporal parameters, but it is [...] Read more.
In-shoe systems and pressure plates are used to assess plantar pressure during gait, but additional tools are employed to evaluate other gait parameters. The GAITRite® system is a clinical gait evaluation tool. Extensive literature is available for spatiotemporal parameters, but it is scarce for relative plantar pressure data. Therefore, we investigated whether, when controlling for age, the GAITRite® system is able to distinguish the effects of walking velocity on plantar pressure parameters in six plantar regions in a large sample of adults. Participants (83 women and 87 men, aged 18–85 years) walked at three self-selected velocities (slow, preferred, fast) on a 6-m long GAITRite® walkway. Relative peak pressure, pressure-time integral, peak time and contact area were computed for six zones (lateral and medial heel, mid- and forefoot). The impact of age (covariate), sex, side, velocity, pressure zone and their interactions on pressure variables was evaluated. Velocity affected peak pressure, pressure-time integral, peak time and contact area (p < 0.001). With increasing self-selected gait velocity, medial forefoot peak pressure and pressure-time integral increased (p < 0.001), while heel and lateral forefoot regions displayed a nonlinear plantar pressure evolution. These results suggest lower (heel strike) or more equally distributed (push-off) loads at preferred gait velocity. Full article
(This article belongs to the Section Athletic Training and Human Performance)
Show Figures

Figure 1

39 pages, 1154 KiB  
Review
The Impact of Footwear on Occupational Task Performance and Musculoskeletal Injury Risk: A Scoping Review to Inform Tactical Footwear
by Robin Orr, Danny Maupin, Robert Palmer, Elisa F. D. Canetti, Vini Simas and Ben Schram
Int. J. Environ. Res. Public Health 2022, 19(17), 10703; https://doi.org/10.3390/ijerph191710703 - 27 Aug 2022
Cited by 26 | Viewed by 9995
Abstract
The aim of this scoping review was to investigate the impact of footwear on worker physical task performance and injury risk. The review was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews protocol and registered in [...] Read more.
The aim of this scoping review was to investigate the impact of footwear on worker physical task performance and injury risk. The review was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews protocol and registered in the Open Science Framework. Key search terms were entered into five academic databases. Following a dedicated screening process and critical appraisal, data from the final articles informing this review were extracted, tabulated, and synthesised. Of 19,614 identified articles, 50 articles informed this review. Representing 16 countries, the most common populations investigated were military and firefighter populations, but a wide range of general occupations (e.g., shipping, mining, hairdressing, and healthcare workers) were represented. Footwear types included work safety boots/shoes (e.g., industrial, gumboots, steel capped, etc.), military and firefighter boots, sports shoes (trainers, tennis, basketball, etc.) and various other types (e.g., sandals, etc.). Occupational footwear was found to impact gait and angular velocities, joint ranges of motion, posture and balance, physiological measures (like aerobic capacity, heart rates, temperatures, etc.), muscle activity, and selected occupational tasks. Occupational footwear associated with injuries included boots, conventional running shoes, shoes with inserts, harder/stiffer outsoles or thin soles, and shoes with low comfort scores—although the findings were mixed. Occupational footwear was also linked to potentially causing injuries directly (e.g., musculoskeletal injuries) as well as leading to mechanisms associated with causing injuries (like tripping and slipping). Full article
(This article belongs to the Special Issue Health and Wellness in the Workplace)
Show Figures

Figure 1

10 pages, 2090 KiB  
Article
Optimal Frequency and Amplitude of Vertical Viewpoint Oscillation for Improving Vection Strength and Reducing Neural Constrains on Gait
by Wei Wang, Kaiming Yang and Yu Zhu
Entropy 2021, 23(5), 541; https://doi.org/10.3390/e23050541 - 28 Apr 2021
Viewed by 2264
Abstract
Inducing self-motion illusions referred as vection are critical for improving the sensation of walking in virtual environments (VE). Adding viewpoint oscillations to a constant forward velocity in VE is effective for improving vection strength under static conditions. However, the effects of oscillation frequency [...] Read more.
Inducing self-motion illusions referred as vection are critical for improving the sensation of walking in virtual environments (VE). Adding viewpoint oscillations to a constant forward velocity in VE is effective for improving vection strength under static conditions. However, the effects of oscillation frequency and amplitude on vection strength under treadmill walking conditions are still unclear. Besides, due to the visuomotor entrainment mechanism, these visual oscillations would affect gait patterns and be detrimental for achieving natural walking if not properly designed. This study was aimed at determining the optimal frequency and amplitude of vertical viewpoint oscillations for improving vection strength and reducing gait constraints. Seven subjects walked on a treadmill while watching a visual scene. The visual scene presented a constant forward velocity equal to the treadmill velocity with different vertical viewpoint oscillations added. Five oscillation patterns with different combinations of frequency and amplitude were tested. Subjects gave verbal ratings of vection strength. The mediolateral (M-L) center of pressure (CoP) complexity was calculated to indicate gait constraints. After the experiment, subjects were asked to give the best and the worst oscillation pattern based on their walking experience. The oscillation frequency and amplitude had strong positive correlations with vection strength. The M-L CoP complexity was reduced under oscillations with low frequency. The medium oscillation amplitude had greater M-L CoP complexity than the small and large amplitude. Besides, subjects preferred those oscillation patterns with large gait complexity. We suggested that the oscillation amplitude with largest M-L CoP complexity should first be chosen to reduce gait constraints. Then, increasing the oscillation frequency to improve vection strength until individual preference or the boundary of motion sickness. These findings provide important guidelines to promote the sensation of natural walking in VE. Full article
(This article belongs to the Special Issue Multiscale Entropy Approaches and Their Applications II)
Show Figures

Figure 1

16 pages, 970 KiB  
Article
Effect of Short-Term Metro-Rhythmic Stimulations on Gait Variability
by Katarzyna Nowakowska-Lipiec, Robert Michnik, Sandra Niedzwiedź, Anna Mańka, Patrycja Twardawa, Bruce Turner, Patrycja Romaniszyn-Kania, Aneta Danecka and Andrzej W. Mitas
Healthcare 2021, 9(2), 174; https://doi.org/10.3390/healthcare9020174 - 6 Feb 2021
Cited by 2 | Viewed by 2621
Abstract
The aim of the study was to define the effect of different short-term metro-rhythmic stimulations on the time and spatial parameters of gait. The secondary goal was to test whether prior instructions on how to respond to stimulations played a significant role in [...] Read more.
The aim of the study was to define the effect of different short-term metro-rhythmic stimulations on the time and spatial parameters of gait. The secondary goal was to test whether prior instructions on how to respond to stimulations played a significant role in the stimulation by sound stimuli. Experimental tests of gait were conducted on a group of 36 healthy participants: group 1—subjects who were not informed how to react after hearing sound stimuli, group 2—subjects who received a clear instruction before the test to adjust the frequency of taking steps to the rhythm of the music. The gait research was carried out on a Zebris FDM-S (zebris Medical Gmbh, Isny, Germany) treadmill for various sound stimuli (arrhythmic stimulus, rhythmic stimuli at different rate). It was shown that a short-term influence of metro-rhythmic stimulations changes the time and spatial parameters of gait, i.e., gait frequency, length and duration of the gait cycle. The greatest impact on the modification of the time–space parameters of walking is exerted by rhythmic stimuli at a pace different from the frequency of gait at a preferred velocity. Providing information on how to respond to sounds heard may be important in gait therapy with RAS (rhythmic auditory stimulation). Full article
Show Figures

Figure 1

21 pages, 1777 KiB  
Article
Upper and Lower Limb Movement Kinematics in Aging FMR1 Gene Premutation Carriers
by Zheng Wang, Callie Lane, Matthew Terza, Pravin Khemani, Su Lui, Walker S. McKinney and Matthew W. Mosconi
Brain Sci. 2021, 11(1), 13; https://doi.org/10.3390/brainsci11010013 - 24 Dec 2020
Cited by 6 | Viewed by 2875
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder associated with a premutation cytosine-guanine-guanine (CGG) trinucleotide repeat expansion of the FMR1 gene. FXTAS is estimated to be the most common single-gene form of ataxia in the aging population. Gait ataxia and intention tremor [...] Read more.
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder associated with a premutation cytosine-guanine-guanine (CGG) trinucleotide repeat expansion of the FMR1 gene. FXTAS is estimated to be the most common single-gene form of ataxia in the aging population. Gait ataxia and intention tremor are the primary behavioral symptoms of FXTAS, though clinical evaluation of these symptoms often is subjective, contributing to difficulties in reliably differentiating individuals with FXTAS and asymptomatic premutation carriers. This study aimed to clarify the extent to which quantitative measures of gait and upper limb kinematics may serve as biobehavioral markers of FXTAS degeneration. Nineteen premutation carriers (aged 46–77 years), including 9 with possible, probable, or definite FXTAS and 16 sex- and IQ-matched healthy controls, completed tests of non-constrained walking and reaching while both standing (static reaching) and walking (dynamic reaching) to quantify gait and upper limb control, respectively. For the non-constrained walking task, participants wore reflective markers and walked at their preferred speed on a walkway. During the static reaching task, participants reached and lifted boxes of different sizes while standing. During the dynamic reaching task, participants walked to reach and lift the boxes. Movement kinematics were examined in relation to clinical ratings of neuromotor impairments and CGG repeat length. During non-constrained walking, individuals with FXTAS showed decreased stride lengths and stride velocities, increased percentages of double support time, and increased variabilities of cadence and center of mass relative to both asymptomatic premutation carriers and controls. While individuals with FXTAS did not show any static reaching differences relative to the other two groups, they showed multiple differences during dynamic reaching trials, including reduced maximum reaching velocity, prolonged acceleration time, and jerkier movement of the shoulder, elbow, and hand. Gait differences during non-constrained walking were associated with more severe clinically rated posture and gait symptoms. Reduced maximum reaching velocity and increased jerkiness during dynamic reaching were each related to more severe clinically rated kinetic dysfunction and overall neuromotor symptoms in FMR1 premutation carriers. Our findings suggest kinematic alterations consistent with gait ataxia and upper limb bradykinesia are each selectively present in individuals with FXTAS, but not asymptomatic aging premutation carriers. Consistent with neuropathological and magnetic resonance imaging (MRI) studies of FXTAS, these findings implicate cerebellar and basal ganglia degeneration associated with neuromotor decline. Our results showing associations between quantitative kinematic differences in FXTAS and clinical ratings suggest that objective assessments of gait and reaching behaviors may serve as critical and reliable targets for detecting FXTAS risk and monitoring progression. Full article
(This article belongs to the Special Issue Sensory, Motor and Cognitive Alterations in Autism)
Show Figures

Figure 1

17 pages, 647 KiB  
Review
The Biomechanics of Pregnancy: A Systematic Review
by Rebecca Conder, Reza Zamani and Mohammad Akrami
J. Funct. Morphol. Kinesiol. 2019, 4(4), 72; https://doi.org/10.3390/jfmk4040072 - 2 Dec 2019
Cited by 46 | Viewed by 15756
Abstract
During pregnancy, a number of biomechanical and hormonal changes occur that can alter spinal curvature, balance, and gait patterns by affecting key areas of the human body. This can greatly impact quality of life (QOL) by increasing back pain and the risk of [...] Read more.
During pregnancy, a number of biomechanical and hormonal changes occur that can alter spinal curvature, balance, and gait patterns by affecting key areas of the human body. This can greatly impact quality of life (QOL) by increasing back pain and the risk of falls. These effects are likely to be the ultimate result of a number of hormonal and biomechanical changes that occur during pregnancy. Research Question and Methodology: Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, this systematic review sets out to analyse all available literature relating to the biomechanics factors caused by pregnancy and assess how this might reduce QOL. Fifty papers were deemed eligible for inclusion in this review based on the PUBMED and SCOPUS databases. Results: Angles of lordosis and kyphosis of the spine are significantly increased by pregnancy, but not consistently across all studies. Back pain is significantly increased in pregnant women, although this is not significantly correlated with spinal changes. Increased movements of centre of pressure (COP) and increased stability indexes indicate postural control is reduced in pregnancy. Trunk range of motion, hip flexion, and extension are reduced, as well as decreased stride length, decreased gait velocity, and increased step width; again, not consistently. It is likely that each woman adopts unique techniques to minimise the effects, for example increasing step width to improve balance. Further research should focus on how altered limb kinematics during gait might affect QOL by influencing the human body, as well as assessing parameters in all planes to develop a wider understanding of pregnant biomechanical alterations. Full article
(This article belongs to the Section Athletic Training and Human Performance)
Show Figures

Figure 1

23 pages, 1589 KiB  
Article
Locomotion Efficiency Optimization of Biologically Inspired Snake Robots
by Eleni Kelasidi, Mansoureh Jesmani, Kristin Y. Pettersen and Jan Tommy Gravdahl
Appl. Sci. 2018, 8(1), 80; https://doi.org/10.3390/app8010080 - 9 Jan 2018
Cited by 34 | Viewed by 6541
Abstract
Snake robots constitute bio-inspired solutions that have been studied due to their ability to move in challenging environments where other types of robots, such as wheeled or legged robots, usually fail. In this paper, we consider both land-based and swimming snake robots. One [...] Read more.
Snake robots constitute bio-inspired solutions that have been studied due to their ability to move in challenging environments where other types of robots, such as wheeled or legged robots, usually fail. In this paper, we consider both land-based and swimming snake robots. One of the principal concerns of the bio-inspired snake robots is to increase the motion efficiency in terms of the forward speed by improving the locomotion methods. Furthermore, energy efficiency becomes a crucial challenge for this type of robots due to the importance of long-term autonomy of these systems. In this paper, we take into account both the minimization of the power consumption and the maximization of the achieved forward velocity in order to investigate the optimal gait parameters for bio-inspired snake robots using lateral undulation and eel-like motion patterns. We furthermore consider possible negative work effects in the calculation of average power consumption of underwater snake robots. To solve the multi-objective optimization problem, we propose transforming the two objective functions into a single one using a weighted-sum method. For different set of weight factors, Particle Swarm Optimization is applied and a set of optimal points is consequently obtained. Pareto fronts or trade-off curves are illustrated for both land-based and swimming snake robots with different numbers of links. Pareto fronts represent trade-offs between the objective functions. For example, how increasing the forward velocity results in increasing power consumption. Therefore, these curves are a very useful tool for the control and design of snake robots. The trade-off curve thus constitutes a very useful tool for both the control and design of bio-inspired snake robots. In particular, the operators or designers of bio-inspired snake robots can choose a Pareto optimal point based on the trade-off curve, given the preferred number of links on the robot. The optimal gait parameters for the robot control system design are then directly given both for land-based and underwater snake robots. Moreover, we are able to obtain some observations about the optimal values of the gait parameters, which provide very important insights for future control design of bio-inspired snake robots. Full article
(This article belongs to the Special Issue Bio-Inspired Robotics)
Show Figures

Figure 1

Back to TopTop