Gait Assessment Using Smartphone Applications in Older Adults: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identifying the Research Question
2.2. Literature Search Methodology
3. Results
Data Analyses
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veronese, N.; Stubbs, B.; Volpato, S.; Zuliani, G.; Maggi, S.; Cesari, M.; Lipnicki, D.M.; Smith, L.; Schofield, P.; Firth, J.; et al. Association Between Gait Speed with Mortality, Cardiovascular Disease and Cancer: A Systematic Review and Meta-analysis of Prospective Cohort Studies. J. Am. Med. Dir. Assoc. 2018, 19, 981–988.e7. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; Schapira, M.; Soriano, E.R.; Varela, M.; Kaplan, R.; Camera, L.A.; Mayorga, L.M. Gait Velocity as a Single Predictor of Adverse Events in Healthy Seniors Aged 75 Years and Older. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 1304–1309. [Google Scholar] [CrossRef]
- Van Kan, G.A.; Rolland, Y.; Andrieu, S.; Bauer, J.; Beauchet, O.; Bonnefoy, M.; Cesari, M.; Donini, L.; Gillette-Guyonnet, S.; Inzitari, M.; et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J. Nutr. Health Aging 2009, 13, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Verghese, J.; Holtzer, R.; Lipton, R.B.; Wang, C. Quantitative Gait Markers and Incident Fall Risk in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64A, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Doi, T.; Nakakubo, S.; Tsutsumimoto, K.; Kurita, S.; Ishii, H.; Shimada, H. Spatiotemporal gait characteristics and risk of mortality in community-dwelling older adults. Maturitas 2021, 151, 31–35. [Google Scholar] [CrossRef]
- Studenski, S. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50. [Google Scholar] [CrossRef]
- Bytyçi, I.; Henein, M.Y. Stride Length Predicts Adverse Clinical Events in Older Adults: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 2670. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, E.; Walker, R. Global ageing: Successes, challenges and opportunities. Br. J. Hosp. Med. 2020, 81, 1–9. [Google Scholar] [CrossRef]
- World Health Organization. Decade of Healthy Ageing: Baseline Report; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 26 June 2024).
- Samaras, N.; Chevalley, T.; Samaras, D.; Gold, G. Older patients in the emergency department: A review. Ann. Emerg. Med. 2010, 56, 261–269. [Google Scholar] [CrossRef]
- Hardy, S.E.; Perera, S.; Roumani, Y.F.; Chandler, J.M.; Studenski, S.A. Improvement in Usual Gait Speed Predicts Better Survival in Older Adults. J. Am. Geriatr. Soc. 2007, 55, 1727–1734. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, L.; Jimenez, A.R.; Garcia-Villamil, G.; Seco, F. Detecting Fall Risk and Frailty in Elders with Inertial Motion Sensors: A Survey of Significant Gait Parameters. Sensors 2021, 21, 6918. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-A.; DuMontier, C.; Yu, W.; Ask, L.; Zhou, J.; Testa, M.A.; Kim, D.; Abel, G.; Travison, T.; Manor, B.; et al. Validity and Reliability of a Smartphone Application for Home Measurement of Four-Meter Gait Speed in Older Adults. Bioengineering 2024, 11, 257. [Google Scholar] [CrossRef] [PubMed]
- Lunardini, F.; Malavolti, M.; Pedrocchi, A.L.G.; Borghese, N.A.; Ferrante, S. A mobile app to transparently distinguish single- from dual-task walking for the ecological monitoring of age-related changes in daily-life gait. Gait Posture 2021, 86, 27–32. [Google Scholar] [CrossRef]
- Silsupadol, P.; Teja, K.; Lugade, V. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: Body, bag, belt, hand, and pocket. Gait Posture 2017, 58, 516–522. [Google Scholar] [CrossRef]
- Andrea, R.; Mireia, F.-A. Smartphone usage diversity among older people. In Perspectives on Human-Computer Interaction Research with Older People; Springer Link: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Portenhauser, A.A.; Terhorst, Y.; Schultchen, D.; Sander, L.B.; Denkinger, M.D.; Stach, M.; Waldherr, N.; Dallmeier, D.; Baumeister, H.; Messner, E.-M. Mobile Apps for Older Adults: Systematic Search and Evaluation within Online Stores. JMIR Aging 2021, 4, e23313. [Google Scholar] [CrossRef] [PubMed]
- Almada, M.; Brochado, P.; Portela, D. Prevalence of falls and associated factors among community-dwelling older adults: A cross-sectional study. J. Frailty Aging 2020, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Rau, P.L.P. A mobile phone-based gait assessment app for the elderly: Development and evaluation. JMIR Mhealth Uhealth 2020, 8, e14453. [Google Scholar] [CrossRef] [PubMed]
- Shafi, H.; Awan, W.A.; Olsen, S.; Siddiqi, F.A.; Tassadaq, N.; Rashid, U.; Niazi, I.K. Assessing Gait & Balance in Adults with Mild Balance Impairment: G&B App Reliability and Validity. Sensors 2023, 23, 9718. [Google Scholar] [CrossRef] [PubMed]
- Doshi, K.B.; Moon, S.H.; Whitaker, M.D.; Lockhart, T.E. Assessment of gait and posture characteristics using a smartphone wearable system for persons with osteoporosis with and without falls. Sci. Rep. 2023, 13, 538. [Google Scholar] [CrossRef] [PubMed]
- Kawai, H.; Obuchi, S.; Ejiri, M.; Ito, K. Association between daily life walking speed and frailty measured by a smartphone application: A cross-sectional study. BMJ Open 2023, 13, e065098. [Google Scholar] [CrossRef]
- Satake, S.; Shimokata, H.; Senda, K.; Kondo, I.; Toba, K. Validity of Total Kihon Checklist Score for Predicting the Incidence of 3-Year Dependency and Mortality in a Community-Dwelling Older Population. J. Am. Med. Dir. Assoc. 2017, 18, 552.e1–552.e6. [Google Scholar] [CrossRef]
- Giannouli, E.; Kim, E.-K.; Fu, C.; Weibel, R.; Sofios, A.; Infanger, D.; Portegijs, E.; Rantanen, T.; Huang, H.; Schmidt-Trucksäss, A.; et al. Psychometric properties of the MOBITEC-GP mobile application for real-life mobility assessment in older adults. Geriatr. Nurs. 2022, 48, 273–279. [Google Scholar] [CrossRef]
- Olsen, S.; Rashid, U.; Allerby, C.; Brown, E.; Leyser, M.; McDonnell, G.; Alder, G.; Barbado, D.; Shaikh, N.; Lord, S.; et al. Smartphone-based gait and balance accelerometry is sensitive to age and correlates with clinical and kinematic data. Gait Posture 2023, 100, 57–64. [Google Scholar] [CrossRef]
- Rubin, D.S.; Ranjeva, S.L.; Urbanek, J.K.; Karas, M.; Madariaga, M.L.L.; Huisingh-Scheetz, M. Smartphone-Based Gait Cadence to Identify Older Adults with Decreased Functional Capacity. Digit. Biomark. 2022, 6, 61–70. [Google Scholar] [CrossRef]
- Olsen, S.; Rashid, U.; Barbado, D.; Suresh, P.; Alder, G.; Niazi, I.K.; Taylor, D. The validity of smartphone-based spatiotemporal gait measurements during walking with and without head turns: Comparison with the GAITRite® system. J. Biomech. 2024, 162, 111899. [Google Scholar] [CrossRef]
- Zhong, R.; Gao, T. Impact of walking states, self-reported daily walking amount and age on the gait of older adults measured with a smart-phone app: A pilot study. BMC Geriatr. 2022, 22, 259. [Google Scholar] [CrossRef]
- Pedrero-Sánchez, J.-F.; De-Rosario-Martínez, H.; Medina-Ripoll, E.; Garrido-Jaén, D.; Serra-Añó, P.; Mollà-Casanova, S.; López-Pascual, J. The Reliability and Accuracy of a Fall Risk Assessment Procedure Using Mobile Smartphone Sensors Compared with a Physiological Profile Assessment. Sensors 2023, 23, 6567. [Google Scholar] [CrossRef]
- Suri, A.; Rosso, A.L.; VanSwearingen, J.; Coffman, L.M.; Redfern, M.S.; Brach, J.S.; Sejdić, E. Mobility of Older Adults: Gait Quality Measures Are Associated With Life-Space Assessment Scores. J. Gerontol. Ser. A 2021, 76, e299–e306. [Google Scholar] [CrossRef]
- Brognara, L.; Luna, O.C.; Traina, F.; Cauli, O. Inflammatory Biomarkers and Gait Impairment in Older Adults: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 1368. [Google Scholar] [CrossRef]
- Brognara, L.; Mafla-España, M.A.; Gil-Molina, I.; Castillo-Verdejo, Y.; Cauli, O. The Effects of 3D Custom Foot Orthotics with Mechanical Plantar Stimulation in Older Individuals with Cognitive Impairment: A Pilot Study. Brain Sci. 2022, 12, 1669. [Google Scholar] [CrossRef]
- Brognara, L.; Mazzotti, A.; Di Martino, A.; Faldini, C.; Cauli, O. Wearable Sensor for Assessing Gait and Postural Alterations in Patients with Diabetes: A Scoping Review. Med. B Aires 2021, 57, 1145. [Google Scholar] [CrossRef]
- Simon, S.R. Quantification of human motion: Gait analysis—Benefits and limitations to its application to clinical problems. J. Biomech. 2004, 37, 1869–1880. [Google Scholar] [CrossRef]
- Mulas, I.; Putzu, V.; Asoni, G.; Viale, D.; Mameli, I.; Pau, M. Clinical assessment of gait and functional mobility in Italian healthy and cognitively impaired older persons using wearable inertial sensors. Aging Clin. Exp. Res. 2021, 33, 1853–1864. [Google Scholar] [CrossRef]
- Mazzotti, A.; Arceri, A.; Abdi, P.; Artioli, E.; Zielli, S.O.; Langone, L.; Ramponi, L.; Ridolfi, A.; Faldini, C.; Brognara, L. An Innovative Clinical Evaluation Protocol after Total Ankle Arthroplasty: A Pilot Study Using Inertial Sensors and Baropodometric Platforms. Appl. Sci. 2024, 14, 1964. [Google Scholar] [CrossRef]
- Brognara, L.; Mazzotti, A.; Rossi, F.; Lamia, F.; Artioli, E.; Faldini, C.; Traina, F. Using Wearable Inertial Sensors to Monitor Effectiveness of Different Types of Customized Orthoses during CrossFit® Training. Sensors 2023, 23, 1636. [Google Scholar] [CrossRef]
- Song, Y.; Ren, C.; Liu, P.; Tao, L.; Zhao, W.; Gao, W. Effect of Smartphone-Based Telemonitored Exercise Rehabilitation among Patients with Coronary Heart Disease. J. Cardiovasc. Transl. Res. 2020, 13, 659–667. [Google Scholar] [CrossRef]
- Moral-Munoz, J.A.; Zhang, W.; Cobo, M.J.; Herrera-Viedma, E.; Kaber, D.B. Smartphone-based systems for physical rehabilitation applications: A systematic review. Assist. Technol. 2021, 33, 223–236. [Google Scholar] [CrossRef]
- Milani, P.; Coccetta, C.A.; Rabini, A.; Sciarra, T.; Massazza, G.; Ferriero, G. Mobile Smartphone Applications for Body Position Measurement in Rehabilitation: A Review of Goniometric Tools. PM&R 2014, 6, 1038–1043. [Google Scholar] [CrossRef]
- Lee, C.; Ahn, J.; Lee, B.-C. A Systematic Review of the Long-Term Effects of Using Smartphone- and Tablet-Based Rehabilitation Technology for Balance and Gait Training and Exercise Programs. Bioengineering 2023, 10, 1142. [Google Scholar] [CrossRef]
- Abou, L.; Wong, E.; Peters, J.; Dossou, M.S.; Sosnoff, J.J.; Rice, L.A. Smartphone applications to assess gait and postural control in people with multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2021, 51, 102943. [Google Scholar] [CrossRef]
- Abou, L.; Peters, J.; Wong, E.; Akers, R.; Dossou, M.S.; Sosnoff, J.J.; Rice, L.A. Gait and Balance Assessments using Smartphone Applications in Parkinson’s Disease: A Systematic Review. J. Med. Syst. 2021, 45, 87. [Google Scholar] [CrossRef]
- Peters, J.; Abou, L.; Wong, E.; Dossou, M.S.; Sosnoff, J.J.; Rice, L.A. Smartphone-based gait and balance assessment in survivors of stroke: A systematic review. Disabil. Rehabil. Assist. Technol. 2024, 19, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Werner, C.; Hezel, N.; Dongus, F.; Spielmann, J.; Mayer, J.; Becker, C.; Bauer, J.M. Validity and reliability of the Apple Health app on iPhone for measuring gait parameters in children, adults, and seniors. Sci. Rep. 2023, 13, 5350. [Google Scholar] [CrossRef] [PubMed]
- Rashid, U.; Barbado, D.; Olsen, S.; Alder, G.; Elvira, J.L.L.; Lord, S.; Niazi, I.K.; Taylor, D. Validity and Reliability of a Smartphone App for Gait and Balance Assessment. Sensors 2021, 22, 124. [Google Scholar] [CrossRef]
- Shahar, R.T.; Agmon, M. Gait Analysis Using Accelerometry Data from a Single Smartphone: Agreement and Consistency between a Smartphone Application and Gold-Standard Gait Analysis System. Sensors 2021, 21, 7497. [Google Scholar] [CrossRef]
- Vera-Remartínez, E.J.; Lázaro-Monge, R.; Casado-Hoces, S.V.; Garcés-Pina, E.; Molés-Julio, M.P. Validity and reliability of an android device for the assessment of fall risk in older adult inmates. Nurs. Open 2023, 10, 2904–2911. [Google Scholar] [CrossRef]
Reference | Experimental Group (N, Mean Age SD, Sex) | Patients with History of Falls | Mobile Phone App Used | Smartphone Used and Placement | Spatiotemporal Parameters Investigated | Main Findings |
---|---|---|---|---|---|---|
Zhong et al., 2020 [20] | 148 participants (40 M/108 F) Age: 69.8 (7.0) | Yes. N = 37 | Pocket Gait | Android smartphone (vivo Z1, Android operating system version 8.1, VIVO Technology Co, Dongguan, China) with a sacroiliac belt | Step symmetry, step frequency, RMS, step regularity and step variability | The Pocket Gait app is a health management tool that enables older adults to self-manage their gait quality and prevent adverse outcomes. The step frequency of participants in the age group 60 to 69 years was significantly higher than that of participants in the other age groups. |
Shafi et al., 2023 [21] | 83 participants(33 M/50 F) Age: 56.12 ± 6.06 years | Berg Balance Scale = 46 to 54, indicating a mild risk of falls | G&B | iOS. iPhone 7 used with a sacroiliac belt | Gait velocity, gait symmetry (periodicity index) (%), step time variability (%), average step length, average step time, step length variability (%), step length asymmetry (%) and step time asymmetry | The G&B app excels in specific areas, particularly in measuring walking speed, step length and step time, as emphasized by the alignment of these parameters with established clinical benchmarks and their moderate-to-excellent reliability. However, gaps remain, especially concerning the reliable assessment of steadiness, step length variability, step time variability, step length asymmetry and step time asymmetry. |
Doshi et al., 2023 [22] | 49 participants(7 M/42 F) Age: 75.6 (8.3) | Yes. N = 14 | Lockhart Monitor | iOS. Apple smartphone used with a sacroiliac belt | Gait velocity | People with osteoporosis with a history of falls can be differentiated by using dynamic real-time measurements that can be easily captured using a smartphone app. Participants in the non-fall group walked faster (0.96 m/s) than those who had fallen (0.79 m/s). |
Kawai et al., 2023 [23] | 163 participants (104 M/59 F) Age: 72.1 (6.85) | n = 34 frailty group assessed using Kihon checklist score [24]. | Authors customized a daily walking speed measurement app (Chami, InfoDeliver Co. Ltd., Tokyo, Japan) | Android smartphones worn in the pant pocket | Gait velocity, step length, cadence and number of steps | DWS measured using the smartphone application was associated with frailty. Step length was significantly smaller in the frailty group. |
Giannouli et al., 2022 [25] | 57 participants (27 M/30 F) Age: 75.3 (5.9) | Yes. N = 13 | MOBITEC-GP | Android smartphones worn in the pant pocket | Gait velocity | The MOBITEC-GP app showed moderate-to-excellent test–retest reliability and validity of walking speed measurements. |
Olsen et al., 2023 [26] | 34 participants(14 M/20 F) Age: 42–94 | No | G&B app | iOS. iPhone SE used with a sacroiliac belt | Gait velocity, periodicity index, mean step length, mean step time, step length variability, step time variability, step length asymmetry and step time asymmetry | The G&B app offers valid measurements of walking speed, step length and step time with a moderate-to-excellent reliability in older adults. |
Rubin et al., 2022 [27] | 37 participants(5 M/32 F) Age: 71 (69–74) | Yes. N = 8 | Authors customized a Step Test application | iOS. iPhone 8 smartphone was placed in either the patient’s front pants pocket or attached to a waist belt | Cadence | The study demonstrates the feasibility of using gait cadence as a measure to estimate functional capacity. |
Olsen et al., 2024 [28] | 54 participants(20 M/30 F) Age: mean 61.6 | No | G&B app | iOS. iPhone 7 or iPhone SE used with a sacroiliac belt | Gait velocity, mean step length, mean step time, mean left step length, mean right step length, mean left step time, mean right step time, step length variability, step time variability, step time, step length asymmetry and asymmetry | The G&B app has potential to provide valid measurements of step time, step length and walking speed in older adults. |
Zhong et al., 2022 [29] | 100 participants (56 M/44 F) Age: 73.0 (7.7) | Yes. N = 18 | Pocket Gait | Android. Smartphone Huawei Honor v20 used with a sacroiliac belt | Step frequency (Hz), RMS acceleration (m/s2), step time variability, step regularity and step symmetry | The Pocket Gait app could be used to detect early signs of aging; older adults who walked less than 1 km had a lower quality gait compared with their counterparts who walked more than 1 km per day. |
Lee et al., 2024 [14] | 15 participants(15 F) Age: (77.67 ± 6.41) | No | Authors customized a smartphone application | Smartphones worn in the pant pocket | Gait speed | This mobile app has been shown to be valid and reliable for measuring gait speed in older adults and was highly correlated with video-based analysis. |
Pedrero-Sánchez et al., 2023 [30] | 65 participants (M/F: not reported) Age: 68.55 (7.18) | Yes. N = 25 | FallSkip app | Android9. Smartphone Xiaomi Redmi 4 × Model MAG138 used with a sacroiliac belt | AP and ML displacement of the center of mass (CoM) during 30 s standing, vertical and ML excursion of the CoM while walking, average power of turning–sitting movements and standing up, range of AP jerk of CoM during turning–sitting movement and standing up, reaction time and total motion time | Fall risk can be reliably assessed using a simple, fast smartphone protocol that allows accurate fall risk classification among older people and can be a useful screening tool in clinical settings. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brognara, L. Gait Assessment Using Smartphone Applications in Older Adults: A Scoping Review. Geriatrics 2024, 9, 95. https://doi.org/10.3390/geriatrics9040095
Brognara L. Gait Assessment Using Smartphone Applications in Older Adults: A Scoping Review. Geriatrics. 2024; 9(4):95. https://doi.org/10.3390/geriatrics9040095
Chicago/Turabian StyleBrognara, Lorenzo. 2024. "Gait Assessment Using Smartphone Applications in Older Adults: A Scoping Review" Geriatrics 9, no. 4: 95. https://doi.org/10.3390/geriatrics9040095
APA StyleBrognara, L. (2024). Gait Assessment Using Smartphone Applications in Older Adults: A Scoping Review. Geriatrics, 9(4), 95. https://doi.org/10.3390/geriatrics9040095