Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = prediction of crude oil prices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1414 KiB  
Article
An xLSTM–XGBoost Ensemble Model for Forecasting Non-Stationary and Highly Volatile Gasoline Price
by Fujiang Yuan, Xia Huang, Hong Jiang, Yang Jiang, Zihao Zuo, Lusheng Wang, Yuxin Wang, Shaojie Gu and Yanhong Peng
Computers 2025, 14(7), 256; https://doi.org/10.3390/computers14070256 - 29 Jun 2025
Viewed by 642
Abstract
High-frequency fluctuations in the international crude oil market have led to multilevel characteristics in China’s domestic refined oil pricing mechanism. To address the poor fitting performance of single deep learning models on oil price data, which hampers accurate gasoline price prediction, this paper [...] Read more.
High-frequency fluctuations in the international crude oil market have led to multilevel characteristics in China’s domestic refined oil pricing mechanism. To address the poor fitting performance of single deep learning models on oil price data, which hampers accurate gasoline price prediction, this paper proposes a gasoline price prediction method based on a combined xLSTM–XGBoost model. Using gasoline price data from June 2000 to November 2024 in Sichuan Province as a sample, the data are decomposed via STL decomposition to extract trend, residual, and seasonal components. The xLSTM model is then employed to predict the trend and seasonal components, while XGBoost predicts the residual component. Finally, the predictions from both models are combined to produce the final forecast. The experimental results demonstrate that the proposed xLSTM–XGBoost model reduces the MAE by 14.8% compared to the second-best sLSTM–XGBoost model and by 83% compared to the traditional LSTM model, significantly enhancing prediction accuracy. Full article
(This article belongs to the Special Issue Machine Learning and Statistical Learning with Applications 2025)
Show Figures

Figure 1

27 pages, 2691 KiB  
Article
Sustainable Factor Augmented Machine Learning Models for Crude Oil Return Forecasting
by Lianxu Wang and Xu Chen
J. Risk Financial Manag. 2025, 18(7), 351; https://doi.org/10.3390/jrfm18070351 - 24 Jun 2025
Viewed by 413
Abstract
The global crude oil market, known for its pronounced volatility and nonlinear dynamics, plays a pivotal role in shaping economic stability and informing investment strategies. Contrary to traditional research focused on price forecasting, this study emphasizes the more investor-centric task of predicting returns [...] Read more.
The global crude oil market, known for its pronounced volatility and nonlinear dynamics, plays a pivotal role in shaping economic stability and informing investment strategies. Contrary to traditional research focused on price forecasting, this study emphasizes the more investor-centric task of predicting returns for West Texas Intermediate (WTI) crude oil. By spotlighting returns, it directly addresses critical investor concerns such as asset allocation and risk management. This study applies advanced machine learning models, including XGBoost, random forest, and neural networks to predict crude oil return, and for the first time, incorporates sustainability and external risk variables, which are shown to enhance predictive performance in capturing the non-stationarity and complexity of financial time-series data. To enhance predictive accuracy, we integrate 55 variables across five dimensions: macroeconomic indicators, financial and futures markets, energy markets, momentum factors, and sustainability and external risk. Among these, the rate of change stands out as the most influential predictor. Notably, XGBoost demonstrates a superior performance, surpassing competing models with an impressive 76% accuracy in direction forecasting. The analysis highlights how the significance of various predictors shifted during the COVID-19 pandemic. This underscores the dynamic and adaptive character of crude oil markets under substantial external disruptions. In addition, by incorporating sustainability factors, the study provides deeper insights into the drivers of market behavior, supporting more informed portfolio adjustments, risk management strategies, and policy development aimed at fostering resilience and advancing sustainable energy transitions. Full article
(This article belongs to the Special Issue Machine Learning-Based Risk Management in Finance and Insurance)
Show Figures

Figure 1

25 pages, 1991 KiB  
Article
Crude Oil and Hot-Rolled Coil Futures Price Prediction Based on Multi-Dimensional Fusion Feature Enhancement
by Yongli Tang, Zhenlun Gao, Ya Li, Zhongqi Cai, Jinxia Yu and Panke Qin
Algorithms 2025, 18(6), 357; https://doi.org/10.3390/a18060357 - 11 Jun 2025
Viewed by 859
Abstract
To address the challenges in forecasting crude oil and hot-rolled coil futures prices, the aim is to transcend the constraints of conventional approaches. This involves effectively predicting short-term price fluctuations, developing quantitative trading strategies, and modeling time series data. The goal is to [...] Read more.
To address the challenges in forecasting crude oil and hot-rolled coil futures prices, the aim is to transcend the constraints of conventional approaches. This involves effectively predicting short-term price fluctuations, developing quantitative trading strategies, and modeling time series data. The goal is to enhance prediction accuracy and stability, thereby supporting decision-making and risk management in financial markets. A novel approach, the multi-dimensional fusion feature-enhanced (MDFFE) prediction method has been devised. Additionally, a data augmentation framework leveraging multi-dimensional feature engineering has been established. The technical indicators, volatility indicators, time features, and cross-variety linkage features are integrated to build a prediction system, and the lag feature design is used to prevent data leakage. In addition, a deep fusion model is constructed, which combines the temporal feature extraction ability of the convolution neural network with the nonlinear mapping advantage of an extreme gradient boosting tree. With the help of a three-layer convolution neural network structure and adaptive weight fusion strategy, an end-to-end prediction framework is constructed. Experimental results demonstrate that the MDFFE model excels in various metrics, including mean absolute error, root mean square error, mean absolute percentage error, coefficient of determination, and sum of squared errors. The mean absolute error reaches as low as 0.0068, while the coefficient of determination can be as high as 0.9970. In addition, the significance and stability of the model performance were verified by statistical methods such as a paired t-test and ANOVA analysis of variance. This MDFFE algorithm offers a robust and practical approach for predicting commodity futures prices. It holds significant theoretical and practical value in financial market forecasting, enhancing prediction accuracy and mitigating forecast volatility. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

25 pages, 4566 KiB  
Article
How Do Asymmetric Oil Prices and Economic Policy Uncertainty Shapes Stock Returns Across Oil Importing and Exporting Countries? Evidence from Instrumental Variable Quantile Regression Approach
by Aman Bilal, Shakeel Ahmed, Hassan Zada, Eleftherios Thalassinos and Muhammad Hassaan Nawaz
Risks 2025, 13(5), 93; https://doi.org/10.3390/risks13050093 - 9 May 2025
Viewed by 805
Abstract
This study employs asymmetric quantile regression to investigate the asymmetric impact of WTI crude oil prices and economic policy uncertainty (EPU) on stock market returns from May 2014 to December 2024 in oil-importing (China, India, Germany, Italy, Japan, USA, and South Korea) and [...] Read more.
This study employs asymmetric quantile regression to investigate the asymmetric impact of WTI crude oil prices and economic policy uncertainty (EPU) on stock market returns from May 2014 to December 2024 in oil-importing (China, India, Germany, Italy, Japan, USA, and South Korea) and oil-exporting (Saudi Arabia, Russia, Iraq, Canada, and the United Arab Emirates) countries. The findings reveal that an increase in oil prices significantly impacts the returns of all countries. For oil-importing countries, an increase in oil prices consistently exhibits a positive impact, with insignificant effects in lower and medium quantiles and significant effects in higher quantiles. Conversely, a decrease in oil prices generally decreases stock market returns across all quantiles. This study offers valuable insights for investors to manage risks and improve the predictability of oil price fluctuations. It also provides strategies and policy implications for capitalists and decision-makers. By addressing contemporary issues and using up-to-date data, the study supports financial institutions and portfolio managers in formulating effective strategies. Full article
Show Figures

Figure 1

27 pages, 10604 KiB  
Article
Hybrid Method for Oil Price Prediction Based on Feature Selection and XGBOOST-LSTM
by Shucheng Lin, Yue Wang, Haocheng Wei, Xiaoyi Wang and Zhong Wang
Energies 2025, 18(9), 2246; https://doi.org/10.3390/en18092246 - 28 Apr 2025
Viewed by 713
Abstract
The accurate and stable prediction of crude oil prices holds significant value, providing insightful guidance for investors and decision-makers. The intricate interplay of factors influencing oil prices and the pronounced fluctuations present significant obstacles within the realm of oil price forecasting. This study [...] Read more.
The accurate and stable prediction of crude oil prices holds significant value, providing insightful guidance for investors and decision-makers. The intricate interplay of factors influencing oil prices and the pronounced fluctuations present significant obstacles within the realm of oil price forecasting. This study introduces a novel hybrid model framework, distinct from the conventional methods, that integrates influencing factors for oil price prediction. First, using Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) extract mode components from crude oil prices. Second, using the Adaptive Copula-based Feature Selection (ACBFS), rooted in Copula theory, facilitates the integration of the influencing factors; ACBFS enhances both accuracy and stability in feature selection, thereby amplifying predictive performance and interpretability. Third, low-frequency modes are predicted through an Attention Mechanism-based Long and Short-Term Memory Neural Network (AM-LSTM), optimized using Bayesian Optimization and Hyperband (BOHB). Conversely, high-frequency modes are forecasted using Extreme Gradient Boosting Models (XGboost). Finally, the error correction mechanism further enhances the predictive accuracy. The experimental results show that the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of the proposed hybrid prediction framework are the lowest compared to the benchmark model, at 0.7333 and 1.1069, respectively, which proves that the designed prediction structure has better efficiency and higher accuracy and stability. Full article
Show Figures

Figure 1

10 pages, 459 KiB  
Communication
Wavelet Entropy for Efficiency Assessment of Price, Return, and Volatility of Brent and WTI During Extreme Events
by Salim Lahmiri
Commodities 2025, 4(2), 4; https://doi.org/10.3390/commodities4020004 - 21 Mar 2025
Viewed by 537
Abstract
This study analyzes the market efficiency of crude oil markets, namely Brent and West Texas Intermediate (WTI), during three different periods: pre-COVID-19, during the COVID-19 pandemic, and during the ongoing Russia–Ukraine military conflict. To evaluate the efficiency of crude oil markets, wavelet entropy [...] Read more.
This study analyzes the market efficiency of crude oil markets, namely Brent and West Texas Intermediate (WTI), during three different periods: pre-COVID-19, during the COVID-19 pandemic, and during the ongoing Russia–Ukraine military conflict. To evaluate the efficiency of crude oil markets, wavelet entropy is computed from price, return, and volatility series. Our empirical results show that WTI prices are predictable during the Russia–Ukraine military conflict, but Brent prices are difficult to predict during the same period. The prices of Brent and WTI were difficult to predict during the COVID-19 pandemic. Returns in Brent and WTI are more difficult to predict during the military conflict than they were during the pandemic. Finally, volatility in Brent and WTI carried more information during the pandemic compared to the military conflict. Also, volatility series for Brent and WTI are difficult to predict during the military conflict. These findings offer insightful information for investors, traders, and policy makers in relation to crude oil energy under various extreme market conditions. Full article
Show Figures

Figure 1

17 pages, 2512 KiB  
Article
Economic Feasibility and Decarbonization Incentives of Sugarcane Biogas Production Pathways
by Flavio Eduardo Fava, Lucílio Rogério Aparecido Alves and Thiago Libório Romanelli
Agriculture 2025, 15(4), 380; https://doi.org/10.3390/agriculture15040380 - 11 Feb 2025
Cited by 1 | Viewed by 985
Abstract
Challenges in investment decisions for new fuels remain due to uncertain scenarios regarding profitability. There is also a challenge to improve production efficiency and waste utilization, either for biomass or by-products. This study evaluates the economic potential of biomethane production within sugarcane biorefineries [...] Read more.
Challenges in investment decisions for new fuels remain due to uncertain scenarios regarding profitability. There is also a challenge to improve production efficiency and waste utilization, either for biomass or by-products. This study evaluates the economic potential of biomethane production within sugarcane biorefineries through the principles of the circular economy and economic feasibility. To obtain price data for CBios, Brent crude oil, and natural gas, stochastic models based on GBM and Monte Carlo simulations were applied to project prices and assess revenue potential over a 10-year horizon. Price data were incorporated to assess market correlations and revenue scenarios. Key findings reveal that biomethane’s price stability, driven by its strong correlation with oil markets, supports its viability as a renewable energy source, while CBio presents a weak correlation and limited price predictability with present challenges for long-term planning. Economic modeling indicates high investment returns, with IRR values surpassing 35% in conservative scenarios and payback periods from 2 to 6 years. These results highlight biomethane’s potential for energy efficiency, carbon emission reduction, and the creation of new revenue through waste use. We conclude that targeted investments in biomethane infrastructure, coupled with policy and market support, are essential for achieving global sustainability goals. Full article
(This article belongs to the Special Issue Sustainability and Energy Economics in Agriculture—2nd Edition)
Show Figures

Figure 1

14 pages, 1977 KiB  
Article
Application of State Models in a Binary–Temporal Representation for the Prediction and Modelling of Crude Oil Prices
by Michał Dominik Stasiak, Żaneta Staszak, Joanna Siwek and Dawid Wojcieszak
Energies 2025, 18(3), 691; https://doi.org/10.3390/en18030691 - 2 Feb 2025
Cited by 4 | Viewed by 820
Abstract
Crude oil prices have a key meaning for the economies of most countries. Their levels shape the general production costs in many sectors. Oil prices are also a base for financial derivatives like CFD contracts, which are popular nowadays. Due to these reasons, [...] Read more.
Crude oil prices have a key meaning for the economies of most countries. Their levels shape the general production costs in many sectors. Oil prices are also a base for financial derivatives like CFD contracts, which are popular nowadays. Due to these reasons, the possibility of an effective prediction of the direction of future changes in the price of crude oil is especially significant. Most existing works focus on the analysis of daily closing prices. This kind of approach results, on the one hand, in losing important information about the dynamics of changes during the day. On the other hand, it does not allow for the modelling of short-term price changes that are especially important in cases of financial derivatives having crude oil as their base instrument. The goal of the following article is the analysis of possible applications of a binary–temporal representation in the modelling and construction of effective decision support systems on the crude oil market. The analysis encompasses all researched state models, e.g., those applying mean and trend analysis. Also, the selection of parameters was optimized for Brent crude oil rates. The presented research confirms the high effectiveness of our state modelling system in predicting oil prices on a level that allows for the construction of financially effective investment decision support systems. The obtained results were verified based on proper backtests from different quotation periods. The presented results can be used both in scientific analyses and in the construction of investment support tools for the crude oil market. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

25 pages, 3429 KiB  
Article
Crude Oil Price Forecasting Model Based on Neural Networks and Error Correction
by Guangji Zheng, Ye Li and Yu Xia
Appl. Sci. 2025, 15(3), 1055; https://doi.org/10.3390/app15031055 - 21 Jan 2025
Cited by 1 | Viewed by 2468
Abstract
Crude oil price forecasting contributes to global economic development. This study proposes a hybrid deep learning model for crude oil price forecasting. First, empirical wavelet transform decomposes raw data into multiple. Then, three neural networks generate preliminary forecasts, which are subsequently refined by [...] Read more.
Crude oil price forecasting contributes to global economic development. This study proposes a hybrid deep learning model for crude oil price forecasting. First, empirical wavelet transform decomposes raw data into multiple. Then, three neural networks generate preliminary forecasts, which are subsequently refined by a reinforcement learning-based ensemble method. Finally, an error correction module handles residuals, further enhancing the forecasting outcomes. Three West Texas Intermediate datasets and additional emergency scenarios were used to validate the hybrid model. The findings indicate that the proposed model achieves superior predictive performance compared with sixteen benchmark methods and three advanced models. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

16 pages, 1604 KiB  
Article
Crude Oil Futures Price Forecasting Based on Variational and Empirical Mode Decompositions and Transformer Model
by Linya Huang, Xite Yang, Yongzeng Lai, Ankang Zou and Jilin Zhang
Mathematics 2024, 12(24), 4034; https://doi.org/10.3390/math12244034 - 23 Dec 2024
Cited by 1 | Viewed by 1834
Abstract
Crude oil is a raw and natural, but nonrenewable, resource. It is one of the world’s most important commodities, and its price can have ripple effects throughout the broader economy. Accurately predicting crude oil prices is vital for investment decisions but it remains [...] Read more.
Crude oil is a raw and natural, but nonrenewable, resource. It is one of the world’s most important commodities, and its price can have ripple effects throughout the broader economy. Accurately predicting crude oil prices is vital for investment decisions but it remains challenging. Due to the deficiencies neglecting residual factors when forecasting using conventional combination models, such as the autoregressive moving average and the long short-term memory for prediction, the variational mode decomposition (VMD)-empirical mode decomposition (EMD)-Transformer model is proposed to predict crude oil prices in this study. This model integrates a second decomposition and Transformer model-based machine learning method. More specifically, we employ the VMD technique to decompose the original sequence into variational mode filtering (VMF) and a residual sequence, followed by using EMD to decompose the residual sequence. Ultimately, we apply the Transformer model to predict the decomposed modal components and superimpose the results to produce the final forecasted prices. Further empirical test results demonstrate that the proposed quadratic decomposition composite model can comprehensively identify the characteristics of WTI and Brent crude oil futures daily price series. The test results illustrate that the proposed VMD–EMD–Transformer model outperforms the other three models—long short-term memory (LSTM), Transformer, and VMD–Transformer in forecasting crude oil prices. Details are presented in the empirical study part. Full article
Show Figures

Figure 1

22 pages, 3675 KiB  
Article
Dynamic Anomaly Detection in the Chinese Energy Market During Financial Turbulence Using Ratio Mutual Information and Crude Oil Price Movements
by Lin Xiao and Arash Sioofy Khoojine
Energies 2024, 17(23), 5852; https://doi.org/10.3390/en17235852 - 22 Nov 2024
Viewed by 895
Abstract
Investigating the stability of and fluctuations in the energy market has long been of interest to researchers and financial market participants. This study aimed to analyze the Chinese energy market, focusing on its volatility and response to financial tensions. For this purpose, data [...] Read more.
Investigating the stability of and fluctuations in the energy market has long been of interest to researchers and financial market participants. This study aimed to analyze the Chinese energy market, focusing on its volatility and response to financial tensions. For this purpose, data from eight major financial companies, which were selected based on their market share in Shanghai’s and Shenzhen’s financial markets, were collected from January 2014 to December 2023. In this study, stock prices and trading volumes were used as the key variables to build bootstrap-based minimum spanning trees (BMSTs) using ratio mutual information (RMI). Then, using the sliding window procedure, the major network characteristics were derived to create an anomaly-detection tool using the multivariate exponentially weighted moving average (MEWMA), along with the Brent crude oil price index as a benchmark and a global oil price indicator. This framework’s stability was evaluated through stress testing with five scenarios designed for this purpose. The results demonstrate that during periods of high oil price volatility, such as during the turbulence in the stock market in 2015 and the COVID-19 pandemic in 2020, the network topologies became more centralized, which shows that the market’s instability increased. This framework successfully identifies anomalies and proves to be a valuable tool for market players and policymakers in evaluating companies that are active in the energy sector and predicting possible instabilities, which could be useful in monitoring financial markets and improving decision-making processes in the energy sector. In addition, the integration of other macroeconomic factors into this field could strengthen the identification of anomalies and be considered a field for possible research. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

15 pages, 6826 KiB  
Article
Forecasting Crude Oil Price Using Multiple Factors
by Hind Aldabagh, Xianrong Zheng, Mohammad Najand and Ravi Mukkamala
J. Risk Financial Manag. 2024, 17(9), 415; https://doi.org/10.3390/jrfm17090415 - 19 Sep 2024
Viewed by 5191
Abstract
In this paper, we predict crude oil price using various factors that may influence its price. The factors considered are physical market, financial, and trading market factors, including seven key factors and the dollar index. Firstly, we select the main factors that may [...] Read more.
In this paper, we predict crude oil price using various factors that may influence its price. The factors considered are physical market, financial, and trading market factors, including seven key factors and the dollar index. Firstly, we select the main factors that may greatly influence the prices. Then, we develop a hybrid model based on a convolutional neural network (CNN) and long short-term memory (LSTM) network to predict the prices. Lastly, we compare the CNN–LSTM model with other models, namely gradient boosting (GB), decision trees (DTs), random forests (RFs), neural networks (NNs), CNN, LSTM, and bidirectional LSTM (Bi–LSTM). The empirical results show that the CNN–LSTM model outperforms these models. Full article
(This article belongs to the Section Financial Technology and Innovation)
Show Figures

Figure 1

13 pages, 2529 KiB  
Article
Forecasting Container Throughput of Singapore Port Considering Various Exogenous Variables Based on SARIMAX Models
by Geun-Cheol Lee and June-Young Bang
Forecasting 2024, 6(3), 748-760; https://doi.org/10.3390/forecast6030038 - 30 Aug 2024
Viewed by 2884
Abstract
In this study, we propose a model to forecast container throughput for the Singapore port, one of the busiest ports globally. Accurate forecasting of container throughput is critical for efficient port operations, strategic planning, and maintaining a competitive advantage. Using monthly container throughput [...] Read more.
In this study, we propose a model to forecast container throughput for the Singapore port, one of the busiest ports globally. Accurate forecasting of container throughput is critical for efficient port operations, strategic planning, and maintaining a competitive advantage. Using monthly container throughput data of the Singapore port from 2010 to 2021, we develop a Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) model. For the exogenous variables included in the SARIMAX model, we consider the West Texas Intermediate (WTI) crude oil price and China’s export volume, alongside the impact of the COVID-19 pandemic measured through global confirmed cases. The predictive performance of the SARIMAX model was evaluated against a diverse set of benchmark methods, including the Holt–Winters method, linear regression, LASSO regression, Ridge regression, ECM (Error Correction Mechanism), Support Vector Regressor (SVR), Random Forest, XGBoost, LightGBM, Long Short-Term Memory (LSTM) networks, and Prophet. This comparative analysis was conducted by forecasting container throughput for the year 2022. Results indicated that the SARIMAX model, particularly when incorporating WTI prices and China’s export volume, outperformed other models in terms of forecasting accuracy, such as Mean Absolute Percentage Error (MAPE). Full article
Show Figures

Figure 1

20 pages, 933 KiB  
Article
Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN
by Adel Hassan A. Gadhi, Shelton Peiris and David E. Allen
J. Risk Financial Manag. 2024, 17(9), 380; https://doi.org/10.3390/jrfm17090380 - 23 Aug 2024
Cited by 1 | Viewed by 2021
Abstract
This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature for the city [...] Read more.
This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature for the city of Sydney in Australia, we have shown that the corresponding forecasts have improved when combined with WGAN-GP models (i.e., ANN-(WGAN-GP), LSTM-ANN-(WGAN-GP) and BLSTM-ANN (WGAN-GP)). As a result, we conclude that incorporating with WGAN-GP will’ significantly improve the capabilities of volatility forecasting in standard econometric models and deep learning techniques. Full article
(This article belongs to the Section Financial Markets)
Show Figures

Figure 1

25 pages, 6639 KiB  
Article
Linear Ensembles for WTI Oil Price Forecasting
by João Lucas Ferreira dos Santos, Allefe Jardel Chagas Vaz, Yslene Rocha Kachba, Sergio Luiz Stevan, Thiago Antonini Alves and Hugo Valadares Siqueira
Energies 2024, 17(16), 4058; https://doi.org/10.3390/en17164058 - 15 Aug 2024
Cited by 3 | Viewed by 1055
Abstract
This paper investigated the use of linear models to forecast crude oil futures prices (WTI) on a monthly basis, emphasizing their importance for financial markets and the global economy. The main objective was to develop predictive models using time series analysis techniques, such [...] Read more.
This paper investigated the use of linear models to forecast crude oil futures prices (WTI) on a monthly basis, emphasizing their importance for financial markets and the global economy. The main objective was to develop predictive models using time series analysis techniques, such as autoregressive (AR), autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA), as well as ARMA variants adjusted by genetic algorithms (ARMA-GA) and particle swarm optimization (ARMA-PSO). Exponential smoothing techniques, including SES, Holt, and Holt-Winters, in additive and multiplicative forms, were also covered. The models were integrated using ensemble techniques, by the mean, median, Moore-Penrose pseudo-inverse, and weighted averages with GA and PSO. The methodology adopted included pre-processing that applied techniques to ensure the stationarity of the data, which is essential for reliable modeling. The results indicated that for one-step-ahead forecasts, the weighted average ensemble with PSO outperformed traditional models in terms of error metrics. For multi-step forecasts (3, 6, 9 and 12), the ensemble with the Moore-Penrose pseudo-inverse showed better results. This study has shown the effectiveness of combining predictive models to forecast future values in WTI oil prices, offering a useful tool for analysis and applications. However, it is possible to expand the idea of applying linear models to non-linear models. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

Back to TopTop