Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = preclinical quantitative imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3424 KiB  
Article
Fat Fraction MRI for Longitudinal Assessment of Bone Marrow Heterogeneity in a Mouse Model of Myelofibrosis
by Lauren Brenner, Tanner H. Robison, Timothy D. Johnson, Kristen Pettit, Moshe Talpaz, Thomas L. Chenevert, Brian D. Ross and Gary D. Luker
Tomography 2025, 11(8), 82; https://doi.org/10.3390/tomography11080082 - 28 Jul 2025
Viewed by 236
Abstract
Background/Objectives: Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by the replacement of healthy bone marrow (BM) with malignant and fibrotic tissue. In a healthy state, bone marrow is composed of approximately 60–70% fat cells, which are replaced as disease progresses. Proton density fat [...] Read more.
Background/Objectives: Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by the replacement of healthy bone marrow (BM) with malignant and fibrotic tissue. In a healthy state, bone marrow is composed of approximately 60–70% fat cells, which are replaced as disease progresses. Proton density fat fraction (PDFF), a non-invasive and quantitative MRI metric, enables analysis of BM architecture by measuring the percentage of fat versus cells in the environment. Our objective is to investigate variance in quantitative PDFF-MRI values over time as a marker of disease progression and response to treatment. Methods: We analyzed existing data from three cohorts of mice: two groups with MF that failed to respond to therapy with approved drugs for MF (ruxolitinib, fedratinib), investigational compounds (navitoclax, balixafortide), or vehicle and monitored over time by MRI; the third group consisted of healthy controls imaged at a single time point. Using in-house MATLAB programs, we performed a voxel-wise analysis of PDFF values in lower extremity bone marrow, specifically comparing the variance of each voxel within and among mice. Results: Our findings revealed a significant difference in PDFF values between healthy and diseased BM. With progressive disease non-responsive to therapy, the expansion of hematopoietic cells in BM nearly completely replaced normal fat, as determined by a markedly reduced PDFF and notable reduction in the variance in PDFF values in bone marrow over time. Conclusions: This study validated our hypothesis that the variance in PDFF in BM decreases with disease progression, indicating pathologic expansion of hematopoietic cells. We can conclude that disease progression can be tracked by a decrease in PDFF values. Analyzing variance in PDFF may improve the assessment of disease progression in pre-clinical models and ultimately patients with MF. Full article
(This article belongs to the Section Cancer Imaging)
Show Figures

Figure 1

16 pages, 2228 KiB  
Article
Quantitative Fluorescence Imaging of Chemophototherapy Drug Pharmacokinetics Using Laparoscopic SFDI
by Rasel Ahmmed, Elias Kluiszo, Semra Aygun-Sunar, Matthew Willadsen, Hilliard L. Kutscher, Jonathan F. Lovell and Ulas Sunar
Int. J. Mol. Sci. 2025, 26(12), 5571; https://doi.org/10.3390/ijms26125571 - 11 Jun 2025
Viewed by 480
Abstract
Chemophototherapy (CPT) is an emerging cancer treatment that leverages the synergistic effects of photodynamic therapy (PDT) and chemotherapy. This approach utilizes photosensitizers like Porphyrin-Phospholipid (PoP) and combined with chemotherapeutic like Doxorubicin (Dox) to enable light-triggered drug release and targeted tumor destruction. Here, we [...] Read more.
Chemophototherapy (CPT) is an emerging cancer treatment that leverages the synergistic effects of photodynamic therapy (PDT) and chemotherapy. This approach utilizes photosensitizers like Porphyrin-Phospholipid (PoP) and combined with chemotherapeutic like Doxorubicin (Dox) to enable light-triggered drug release and targeted tumor destruction. Here, we present the validation of a wide-field laparoscopic spatial frequency domain imaging (SFDI) system in an ovarian cancer model. The system allows quantitative fluorescence imaging to obtain absolute drug concentrations in vivo to obtain the absolute concentrations of PoP and Dox fluorescence by correcting for tissue absorption and scattering effects. Fluorescence imaging revealed a significant reduction (~25%, p < 0.001) in PoP concentration in tumor regions post-illumination, demonstrating PDT-mediated photobleaching. Next, the Dox release experiment showed an increase of ~13 µg/mL Dox concentration at the local site. The ability to quantify both PoP and Dox fluorescence concentrations with a laparoscopic system underscores its potential for intraoperative monitoring of CPT efficacy. These findings indicate wide-field laparoscopic SFDI as a promising tool for guiding minimally invasive PDT and targeted drug delivery in preclinical and future clinical settings. Full article
(This article belongs to the Special Issue Photodynamic Therapy and Photodetection, 2nd Edition)
Show Figures

Figure 1

14 pages, 2237 KiB  
Article
Proton Density Fat Fraction Micro-MRI for Non-Invasive Quantification of Bone Marrow Aging and Radiation Effects in Mice
by Hemendra Ghimire, Malakeh Malekzadeh, Ji Eun Lim, Srideshikan Sargur Madabushi, Marco Andrea Zampini, Angela Camacho, Weidong Hu, Natalia Baran, Guy Storme, Monzr M. Al Malki and Susanta K. Hui
Bioengineering 2025, 12(4), 349; https://doi.org/10.3390/bioengineering12040349 - 28 Mar 2025
Cited by 1 | Viewed by 760
Abstract
Background: Bone marrow (BM) adipocytes play a critical role in the progression of both solid tumor metastases and expansion of hematological malignancies across a spectrum of ages, from pediatric to aging populations. Single-point biopsies remain the gold standard for monitoring BM diseases, including [...] Read more.
Background: Bone marrow (BM) adipocytes play a critical role in the progression of both solid tumor metastases and expansion of hematological malignancies across a spectrum of ages, from pediatric to aging populations. Single-point biopsies remain the gold standard for monitoring BM diseases, including hematologic malignancies, but these are limited in capturing the full complexity of loco-regional and global BM microenvironments. Non-invasive imaging techniques such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Positron Emission Tomography (PET) could provide valuable alternatives for real-time evaluation in both preclinical translational and clinical studies. Methods: We developed a preclinical proton density fat fraction (PDFF) MRI technique for the quantitative assessment of BM composition, focusing on the fat fraction (FF) within mouse femurs. We validated this method using aging mice and young mice subjected to 10 Gy X-ray irradiation, compared to young control mice. Water–fat phantoms with varying fat percentages (0% to 100%) were used to optimize the imaging sequence, and immunohistochemical (IHC) staining with H&E validated equivalent adipose content in the femur BM region. Results: Significant differences in FF were observed across age groups (p = 0.001 for histology and p < 0.001 for PDFF) and between irradiated and control mice (p = 0.005 for histology and p = 0.002 for PDFF). A strong correlation (R2~0.84) between FF values from PDFF-MRI and histology validated the accuracy of the technique. Conclusions: These findings highlight PDFF-MRI’s potential as a non-invasive, real-time, in vivo biomarker for quantitatively assessing the BM fat fraction in preclinical studies, particularly in studies evaluating the effects of aging, disease progression, and cytotoxic cancer therapies, including chemotherapy and radiation. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

14 pages, 5348 KiB  
Article
Evaluation of [125I]α-Bungarotoxin Binding to α7 Nicotinic Acetylcholinergic Receptors in Hippocampus–Subiculum of Postmortem Human Alzheimer’s Disease Brain
by Allyson Ngo, Fariha Karim, Oshini V. Keerthisinghe, Tram B. Danh, Christopher Liang and Jogeshwar Mukherjee
Receptors 2025, 4(1), 7; https://doi.org/10.3390/receptors4010007 - 20 Mar 2025
Cited by 2 | Viewed by 490
Abstract
Background/Objectives: Alzheimer’s disease (AD) severely hinders cognitive function in the hippocampus (HP) and subiculum (SUB), impacting the expression of nicotinic acetylcholine receptors (nAChRs) such as the α7-subtype. To investigate α7 nAChRs as a potential PET imaging biomarker, we report the quantitative binding of [...] Read more.
Background/Objectives: Alzheimer’s disease (AD) severely hinders cognitive function in the hippocampus (HP) and subiculum (SUB), impacting the expression of nicotinic acetylcholine receptors (nAChRs) such as the α7-subtype. To investigate α7 nAChRs as a potential PET imaging biomarker, we report the quantitative binding of [125I]α-Bungarotoxin ([125I]α-Bgtx) for binding to postmortem human AD (n = 29; 13 males, 16 females) HP compared to cognitively normal (CN) (n = 28; 13 male, 15 female) HP. Methods: For comparisons with common AD biomarkers, adjacent slices were anti-Aβ and anti-Tau immunostained for analysis using QuPath. Results: The [125I]α-Bgtx average SUB/HP ratio was 0.5 among the CN subjects, suggesting higher [125I]α-Bgtx binding in the HP gray matter regions. The AD subjects showed overall less binding than the CN subjects, with no statistical significance. A positive correlation was found in the [125I]α-Bgtx binding in the AD subjects as the age increased. The Braak stage comparisons of [125I]α-Bgtx were made with [18F]flotaza binding to Aβ plaques and [125I]IPPI binding to Tau. A positive correlation was found between [125I]α-Bgtx and [18F]flotaza and there was a negative correlation between [125I]α-Bgtx and [125I]IPPI, implicating intricate relationships between the different AD biomarkers. Conclusions: [125I]α-Bgtx shows complimentary potential as a α7 nAChR imaging agent but needs more preclinical assessments to confirm effectiveness for translational PET studies using α7 nAChR radioligands. Full article
Show Figures

Figure 1

29 pages, 3286 KiB  
Review
Detection of Cancer Stem Cells from Patient Samples
by Sofia Hakala, Anna Hämäläinen, Sanne Sandelin, Nikolaos Giannareas and Elisa Närvä
Cells 2025, 14(2), 148; https://doi.org/10.3390/cells14020148 - 20 Jan 2025
Viewed by 2706
Abstract
The existence of cancer stem cells (CSCs) in various tumors has become increasingly clear in addition to their prominent role in therapy resistance, metastasis, and recurrence. For early diagnosis, disease progression monitoring, and targeting, there is a high demand for clinical-grade methods for [...] Read more.
The existence of cancer stem cells (CSCs) in various tumors has become increasingly clear in addition to their prominent role in therapy resistance, metastasis, and recurrence. For early diagnosis, disease progression monitoring, and targeting, there is a high demand for clinical-grade methods for quantitative measurement of CSCs from patient samples. Despite years of active research, standard measurement of CSCs has not yet reached clinical settings, especially in the case of solid tumors. This is because detecting this plastic heterogeneous population of cells is not straightforward. This review summarizes various techniques, highlighting their benefits and limitations in detecting CSCs from patient samples. In addition, methods designed to detect CSCs based on secreted and niche-associated signaling factors are reviewed. Spatial and single-cell methods for analyzing patient tumor tissues and noninvasive techniques such as liquid biopsy and in vivo imaging are discussed. Additionally, methods recently established in laboratories, preclinical studies, and clinical assays are covered. Finally, we discuss the characteristics of an ideal method as we look toward the future. Full article
(This article belongs to the Special Issue Signaling in Cancer Stem Cells)
Show Figures

Figure 1

34 pages, 12218 KiB  
Article
Validation of a Paralimbic-Related Subcortical Brain Dysmaturation MRI Score in Infants with Congenital Heart Disease
by William T. Reynolds, Jodie K. Votava-Smith, George Gabriel, Vincent K. Lee, Vidya Rajagopalan, Yijen Wu, Xiaoqin Liu, Hisato Yagi, Ruby Slabicki, Brian Gibbs, Nhu N. Tran, Molly Weisert, Laura Cabral, Subramanian Subramanian, Julia Wallace, Sylvia del Castillo, Tracy Baust, Jacqueline G. Weinberg, Lauren Lorenzi Quigley, Jenna Gaesser, Sharon H. O’Neil, Vanessa Schmithorst, Ashok Panigrahy, Rafael Ceschin and Cecilia W. Loadd Show full author list remove Hide full author list
J. Clin. Med. 2024, 13(19), 5772; https://doi.org/10.3390/jcm13195772 - 27 Sep 2024
Viewed by 1840
Abstract
Background: Brain magnetic resonance imaging (MRI) of infants with congenital heart disease (CHD) shows brain immaturity assessed via a cortical-based semi-quantitative score. Our primary aim was to develop an infant paralimbic-related subcortical-based semi-quantitative dysmaturation score, termed brain dysplasia score (BDS), to detect abnormalities [...] Read more.
Background: Brain magnetic resonance imaging (MRI) of infants with congenital heart disease (CHD) shows brain immaturity assessed via a cortical-based semi-quantitative score. Our primary aim was to develop an infant paralimbic-related subcortical-based semi-quantitative dysmaturation score, termed brain dysplasia score (BDS), to detect abnormalities in CHD infants compared to healthy controls and secondarily to predict clinical outcomes. We also validated our BDS in a preclinical mouse model of hypoplastic left heart syndrome. Methods: A paralimbic-related subcortical BDS, derived from structural MRIs of infants with CHD, was compared to healthy controls and correlated with clinical risk factors, regional cerebral volumes, feeding, and 18-month neurodevelopmental outcomes. The BDS was validated in a known CHD mouse model named Ohia with two disease-causing genes, Sap130 and Pchda9. To relate clinical findings, RNA-Seq was completed on Ohia animals. Findings: BDS showed high incidence of paralimbic-related subcortical abnormalities (including olfactory, cerebellar, and hippocampal abnormalities) in CHD infants (n = 215) compared to healthy controls (n = 92). BDS correlated with reduced cortical maturation, developmental delay, poor language and feeding outcomes, and increased length of stay. Ohia animals (n = 63) showed similar BDS findings, and RNA-Seq analysis showed altered neurodevelopmental and feeding pathways. Sap130 mutants correlated with a more severe BDS, whereas Pcdha9 correlated with a milder phenotype. Conclusions: Our BDS is sensitive to dysmaturational differences between CHD and healthy controls and predictive of poor outcomes. A similar spectrum of paralimbic and subcortical abnormalities exists between human and Ohia mutants, suggesting a common genetic mechanistic etiology. Full article
(This article belongs to the Special Issue Review Special Issue Series: Recent Advances in Clinical Neurology)
Show Figures

Figure 1

22 pages, 3621 KiB  
Review
Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2
by Wenqi Xu, Sigrid A. Langhans, David K. Johnson, Erik Stauff, Vinay V. R. Kandula, Heidi H. Kecskemethy, Lauren W. Averill and Xuyi Yue
Int. J. Mol. Sci. 2024, 25(17), 9419; https://doi.org/10.3390/ijms25179419 - 30 Aug 2024
Cited by 2 | Viewed by 2208
Abstract
Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity, hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2). Both isoforms have similar [...] Read more.
Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity, hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2). Both isoforms have similar structures and mediate numerous effects on the cardiovascular system. Most remarkably, ACE2 serves as an entry receptor for SARS-CoV-2. Understanding the interaction between the virus and ACE2 is vital to combating the disease and preventing a similar pandemic in the future. Noninvasive imaging techniques such as positron emission tomography and single photon emission computed tomography could noninvasively and quantitatively assess in vivo ACE2 expression levels. ACE2-targeted imaging can be used as a valuable tool to better understand the mechanism of the infection process and the potential roles of ACE2 in homeostasis and related diseases. Together, this information can aid in the identification of potential therapeutic drugs for infectious diseases, cancer, and many ACE2-related diseases. The present review summarized the state-of-the-art radiotracers for ACE2 imaging, including their chemical design, pharmacological properties, radiochemistry, as well as preclinical and human molecular imaging findings. We also discussed the advantages and limitations of the currently developed ACE2-specific radiotracers. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Pharmacology 2024)
Show Figures

Figure 1

20 pages, 2378 KiB  
Article
Numerical Study towards In Vivo Tracking of Micro-/Nanoplastic Based on X-ray Fluorescence Imaging
by Carolin von der Osten-Sacken, Theresa Staufer, Kai Rothkamm, Robert Kuhrwahl and Florian Grüner
Biomedicines 2024, 12(7), 1500; https://doi.org/10.3390/biomedicines12071500 - 5 Jul 2024
Cited by 2 | Viewed by 1662
Abstract
There is a rising awareness of the toxicity of micro- and nanoplastics (MNPs); however, fundamental precise information on MNP-biodistribution in organisms is currently not available. X-ray fluorescence imaging (XFI) is introduced as a promising imaging modality to elucidate the effective MNP bioavailability and [...] Read more.
There is a rising awareness of the toxicity of micro- and nanoplastics (MNPs); however, fundamental precise information on MNP-biodistribution in organisms is currently not available. X-ray fluorescence imaging (XFI) is introduced as a promising imaging modality to elucidate the effective MNP bioavailability and is expected to enable exact measurements on the uptake over the physical barriers of the organism and bioaccumulation in different organs. This is possible because of the ability of XFI to perform quantitative studies with a high spatial resolution and the possibility to conduct longitudinal studies. The focus of this work is a numerical study on the detection limits for a selected XFI-marker, here, palladium, to facilitate the design of future preclinical in vivo studies. Based on Monte Carlo simulations using a 3D voxel mouse model, the palladium detection thresholds in different organs under in vivo conditions in a mouse are estimated. The minimal Pd-mass in the scanning position at a reasonable significance level is determined to be <20 ng/mm2 for abdominal organs and <16 μg/mm2 for the brain. MNPs labelled with Pd and homogeneously distributed in the organ would be detectable down to a concentration of <1 μg/mL to <2.5 mg/mL in vivo. Long-term studies with a chronic MNP exposure in low concentrations are therefore possible such that XFI measurements could, in the future, contribute to MNP health risk assessment in small animals and humans. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

12 pages, 2027 KiB  
Article
Clinical Validation of a Deep Learning-Based Software for Lumbar Bone Mineral Density and T-Score Prediction from Chest X-ray Images
by Sheng-Chieh Tseng, Chia-En Lien, Cheng-Hung Lee, Kao-Chang Tu, Chia-Hui Lin, Amy Y. Hsiao, Shin Teng, Hsiao-Hung Chiang, Liang-Yu Ke, Chun-Lin Han, Yen-Cheng Lee, An-Chih Huang, Dun-Jhu Yang, Chung-Wen Tsai and Kun-Hui Chen
Diagnostics 2024, 14(12), 1208; https://doi.org/10.3390/diagnostics14121208 - 7 Jun 2024
Cited by 2 | Viewed by 3591
Abstract
Screening for osteoporosis is crucial for early detection and prevention, yet it faces challenges due to the low accuracy of calcaneal quantitative ultrasound (QUS) and limited access to dual-energy X-ray absorptiometry (DXA) scans. Recent advances in AI offer a promising solution through opportunistic [...] Read more.
Screening for osteoporosis is crucial for early detection and prevention, yet it faces challenges due to the low accuracy of calcaneal quantitative ultrasound (QUS) and limited access to dual-energy X-ray absorptiometry (DXA) scans. Recent advances in AI offer a promising solution through opportunistic screening using existing medical images. This study aims to utilize deep learning techniques to develop a model that analyzes chest X-ray (CXR) images for osteoporosis screening. This study included the AI model development stage and the clinical validation stage. In the AI model development stage, the combined dataset of 5122 paired CXR images and DXA reports from the patients aged 20 to 98 years at a medical center was collected. The images were enhanced and filtered for hardware retention such as pedicle screws, bone cement, artificial intervertebral discs or severe deformity in target level of T12 and L1. The dataset was then separated into training, validating, and testing datasets for model training and performance validation. In the clinical validation stage, we collected 440 paired CXR images and DXA reports from both the TCVGH and Joy Clinic, including 304 pared data from TCVGH and 136 paired data from Joy Clinic. The pre-clinical test yielded an area under the curve (AUC) of 0.940, while the clinical validation showed an AUC of 0.946. Pearson’s correlation coefficient was 0.88. The model demonstrated an overall accuracy, sensitivity, and specificity of 89.0%, 88.7%, and 89.4%, respectively. This study proposes an AI model for opportunistic osteoporosis screening through CXR, demonstrating good performance and suggesting its potential for broad adoption in preliminary screening among high-risk populations. Full article
Show Figures

Figure 1

13 pages, 2610 KiB  
Article
Bone Marrow Aspirate Concentrate Combined with Ultra-Purified Alginate Bioresorbable Gel Enhances Intervertebral Disc Repair in a Canine Model: A Preclinical Proof-of-Concept Study
by Daisuke Ukeba, Yoko Ishikawa, Katsuhisa Yamada, Takashi Ohnishi, Hiroyuki Tachi, Khin Khin Tha, Norimasa Iwasaki and Hideki Sudo
Cells 2024, 13(11), 987; https://doi.org/10.3390/cells13110987 - 5 Jun 2024
Cited by 3 | Viewed by 1828
Abstract
Although discectomy is commonly performed for lumbar intervertebral disc (IVD) herniation, the capacity for tissue repair after surgery is limited, resulting in residual lower back pain, recurrence of IVD herniation, and progression of IVD degeneration. Cell-based therapies, as one-step procedures, are desirable for [...] Read more.
Although discectomy is commonly performed for lumbar intervertebral disc (IVD) herniation, the capacity for tissue repair after surgery is limited, resulting in residual lower back pain, recurrence of IVD herniation, and progression of IVD degeneration. Cell-based therapies, as one-step procedures, are desirable for enhancing IVD repair. This study aimed to investigate the therapeutic efficacy of a combination of newly developed ultra-purified alginate (UPAL) gel and bone marrow aspirate concentrate (BMAC) implantation for IVD repair after discectomy. Prior to an in vivo study, the cell concentration abilities of three commercially available preparation kits for creating the BMAC were compared by measuring the number of bone marrow mesenchymal stem cells harvested from the bone marrow of rabbits. Subsequently, canine-derived BMAC was tested in a canine model using a kit which had the highest concentration rate. At 24 weeks after implantation, we evaluated the changes in the magnetic resonance imaging (MRI) signals as well as histological degeneration grade and immunohistochemical analysis results for type II and type I collagen-positive cells in the treated IVDs. In all quantitative evaluations, such as MRI and histological and immunohistochemical analyses of IVD degeneration, BMAC-UPAL implantation significantly suppressed the progression of IVD degeneration compared to discectomy and UPAL alone. This preclinical proof-of-concept study demonstrated the potential efficacy of BMAC-UPAL gel as a therapeutic strategy for implementation after discectomy, which was superior to UPAL and discectomy alone in terms of tissue repair and regenerative potential. Full article
Show Figures

Figure 1

24 pages, 17770 KiB  
Review
Growing Trend to Adopt Speckle Variance Optical Coherence Tomography for Biological Tissue Assessments in Pre-Clinical Applications
by Ruchire Eranga Wijesinghe, Nipun Shantha Kahatapitiya, Changho Lee, Sangyeob Han, Shinheon Kim, Sm Abu Saleah, Daewoon Seong, Bhagya Nathali Silva, Udaya Wijenayake, Naresh Kumar Ravichandran, Mansik Jeon and Jeehyun Kim
Micromachines 2024, 15(5), 564; https://doi.org/10.3390/mi15050564 - 25 Apr 2024
Cited by 6 | Viewed by 2501
Abstract
Speckle patterns are a generic feature in coherent imaging techniques like optical coherence tomography (OCT). Although speckles are granular like noise texture, which degrades the image, they carry information that can be benefited by processing and thereby furnishing crucial information of sample structures, [...] Read more.
Speckle patterns are a generic feature in coherent imaging techniques like optical coherence tomography (OCT). Although speckles are granular like noise texture, which degrades the image, they carry information that can be benefited by processing and thereby furnishing crucial information of sample structures, which can serve to provide significant important structural details of samples in in vivo longitudinal pre-clinical monitoring and assessments. Since the motions of tissue molecules are indicated through speckle patterns, speckle variance OCT (SV-OCT) can be well-utilized for quantitative assessments of speckle variance (SV) in biological tissues. SV-OCT has been acknowledged as a promising method for mapping microvasculature in transverse-directional blood vessels with high resolution in micrometers in both the transverse and depth directions. The fundamental scope of this article reviews the state-of-the-art and clinical benefits of SV-OCT to assess biological tissues for pre-clinical applications. In particular, focus on precise quantifications of in vivo vascular response, therapy assessments, and real-time temporal vascular effects of SV-OCT are primarily emphasized. Finally, SV-OCT-incorporating pre-clinical techniques with high potential are presented for future biomedical applications. Full article
(This article belongs to the Special Issue Optical Coherence Tomography (OCT) Technique and Its Applications)
Show Figures

Figure 1

20 pages, 5392 KiB  
Article
BR55 Ultrasound Molecular Imaging of Clear Cell Renal Cell Carcinoma Reflects Tumor Vascular Expression of VEGFR-2 in a Patient-Derived Xenograft Model
by Jean Courcier, Ingrid Leguerney, Baya Benatsou, Sibylle Pochon, Isabelle Tardy, Laurence Albiges, Paul-Henry Cournède, Alexandre De La Taille, Nathalie Lassau and Alexandre Ingels
Int. J. Mol. Sci. 2023, 24(22), 16211; https://doi.org/10.3390/ijms242216211 - 11 Nov 2023
Cited by 2 | Viewed by 1915
Abstract
Standard imaging cannot reliably predict the nature of renal tumors. Among malignant renal tumors, clear cell renal cell carcinoma (ccRCC) is the most common histological subtype, in which the vascular endothelial growth factor 2 (VEGFR-2) is highly expressed in the vascular endothelium. BR55, [...] Read more.
Standard imaging cannot reliably predict the nature of renal tumors. Among malignant renal tumors, clear cell renal cell carcinoma (ccRCC) is the most common histological subtype, in which the vascular endothelial growth factor 2 (VEGFR-2) is highly expressed in the vascular endothelium. BR55, a contrast agent for ultrasound imaging, consists of gas-core lipid microbubbles that specifically target and bind to the extracellular portion of the VEGFR-2. The specific information provided by ultrasound molecular imaging (USMI) using BR55 was compared with the vascular tumor expression of the VEGFR-2 by immunohistochemical (IHC) staining in a preclinical model of ccRCC. Patients’ ccRCCs were orthotopically grafted onto Nod-Scid-Gamma (NSG) mice to generate patient-derived xenografts (PdX). Mice were divided into four groups to receive either vehicle or axitinib an amount of 2, 7.5 or 15 mg/kg twice daily. Perfusion parameters and the BR55 ultrasound contrast signal on PdX renal tumors were analyzed at D0, D1, D3, D7 and D11, and compared with IHC staining for the VEGFR-2 and CD34. Significant Pearson correlation coefficients were observed between the area under the curve (AUC) and the CD34 (0.84, p < 10−4), and between the VEGFR-2-specific signal obtained by USMI and IHC (0.72, p < 10−4). USMI with BR55 could provide instant, quantitative information on tumor VEGFR-2 expression to characterize renal masses non-invasively. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

31 pages, 1767 KiB  
Review
Articular Cartilage—From Basic Science Structural Imaging to Non-Invasive Clinical Quantitative Molecular Functional Information for AI Classification and Prediction
by Bodo Kurz, Thomas Lange, Marita Voelker, Melanie L. Hart and Bernd Rolauffs
Int. J. Mol. Sci. 2023, 24(19), 14974; https://doi.org/10.3390/ijms241914974 - 7 Oct 2023
Cited by 7 | Viewed by 2984
Abstract
This review presents the changes that the imaging of articular cartilage has undergone throughout the last decades. It highlights that the expectation is no longer to image the structure and associated functions of articular cartilage but, instead, to devise methods for generating non-invasive, [...] Read more.
This review presents the changes that the imaging of articular cartilage has undergone throughout the last decades. It highlights that the expectation is no longer to image the structure and associated functions of articular cartilage but, instead, to devise methods for generating non-invasive, function-depicting images with quantitative information that is useful for detecting the early, pre-clinical stage of diseases such as primary or post-traumatic osteoarthritis (OA/PTOA). In this context, this review summarizes (a) the structure and function of articular cartilage as a molecular imaging target, (b) quantitative MRI for non-invasive assessment of articular cartilage composition, microstructure, and function with the current state of medical diagnostic imaging, (c), non-destructive imaging methods, (c) non-destructive quantitative articular cartilage live-imaging methods, (d) artificial intelligence (AI) classification of degeneration and prediction of OA progression, and (e) our contribution to this field, which is an AI-supported, non-destructive quantitative optical biopsy for early disease detection that operates on a digital tissue architectural fingerprint. Collectively, this review shows that articular cartilage imaging has undergone profound changes in the purpose and expectations for which cartilage imaging is used; the image is becoming an AI-usable biomarker with non-invasive quantitative functional information. This may aid in the development of translational diagnostic applications and preventive or early therapeutic interventions that are yet beyond our reach. Full article
(This article belongs to the Special Issue Molecular Advances in Orthopedic Trauma and Therapy)
Show Figures

Figure 1

14 pages, 2120 KiB  
Review
Molecular Imaging of ACE2 Expression in Infectious Disease and Cancer
by Zhiyao Li, Abbie Hasson, Lasya Daggumati, Hanwen Zhang and Daniel L. J. Thorek
Viruses 2023, 15(10), 1982; https://doi.org/10.3390/v15101982 - 23 Sep 2023
Cited by 1 | Viewed by 2024
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a cell-surface receptor that plays a critical role in the pathogenesis of SARS-CoV-2 infection. Through the use of ligands engineered for the receptor, ACE2 imaging has emerged as a valuable tool for preclinical and clinical research. These can [...] Read more.
Angiotensin-converting enzyme 2 (ACE2) is a cell-surface receptor that plays a critical role in the pathogenesis of SARS-CoV-2 infection. Through the use of ligands engineered for the receptor, ACE2 imaging has emerged as a valuable tool for preclinical and clinical research. These can be used to visualize the expression and distribution of ACE2 in tissues and cells. A variety of techniques including optical, magnetic resonance, and nuclear medicine contrast agents have been developed and employed in the preclinical setting. Positron-emitting radiotracers for highly sensitive and quantitative tomography have also been translated in the context of SARS-CoV-2-infected and control patients. Together this information can be used to better understand the mechanisms of SARS-CoV-2 infection, the potential roles of ACE2 in homeostasis and disease, and to identify potential therapeutic modulators in infectious disease and cancer. This review summarizes the tools and techniques to detect and delineate ACE2 in this rapidly expanding field. Full article
(This article belongs to the Special Issue The Secret Life of ACE2 as a Receptor for the Coronaviruses)
Show Figures

Figure 1

14 pages, 3069 KiB  
Article
Localized Increased Permeability of Blood–Brain Barrier for Antibody Conjugates in the Cuprizone Model of Demyelination
by Tatiana Abakumova, Anastasia Kuzkina, Philipp Koshkin, Daria Pozdeeva, Maxim Abakumov, Pavel Melnikov, Klavdia Ionova, Ilia Gubskii, Olga Gurina, Natalia Nukolova and Vladimir Chekhonin
Int. J. Mol. Sci. 2023, 24(16), 12688; https://doi.org/10.3390/ijms241612688 - 11 Aug 2023
Cited by 2 | Viewed by 2363
Abstract
The development of new neurotherapeutics depends on appropriate animal models being chosen in preclinical studies. The cuprizone model is an effective tool for studying demyelination and remyelination processes in the brain, but blood–brain barrier (BBB) integrity in the cuprizone model is still a [...] Read more.
The development of new neurotherapeutics depends on appropriate animal models being chosen in preclinical studies. The cuprizone model is an effective tool for studying demyelination and remyelination processes in the brain, but blood–brain barrier (BBB) integrity in the cuprizone model is still a topic for debate. Several publications claim that the BBB remains intact during cuprizone-induced demyelination; others demonstrate results that could explain the increased BBB permeability. In this study, we aim to analyze the permeability of the BBB for different macromolecules, particularly antibody conjugates, in a cuprizone-induced model of demyelination. We compared the traditional approach using Evans blue injection with subsequent dye extraction and detection of antibody conjugates using magnetic resonance imaging (MRI) and confocal microscopy to analyze BBB permeability in the cuprizone model. First, we validated our model of demyelination by performing T2-weighted MRI, diffusion tensor imaging, quantitative rt-PCR to detect changes in mRNA expression of myelin basic protein and proteolipid protein, and Luxol fast blue histological staining of myelin. Intraperitoneal injection of Evans blue did not result in any differences between the fluorescent signal in the brain of healthy and cuprizone-treated mice (IVIS analysis with subsequent dye extraction). In contrast, intravenous injection of antibody conjugates (anti-GFAP or non-specific IgG) after 4 weeks of a cuprizone diet demonstrated accumulation in the corpus callosum of cuprizone-treated mice both by contrast-enhanced MRI (for gadolinium-labeled antibodies) and by fluorescence microscopy (for Alexa488-labeled antibodies). Our results suggest that the methods with better sensitivity could detect the accumulation of macromolecules (such as fluorescent-labeled or gadolinium-labeled antibody conjugates) in the brain, suggesting a local BBB disruption in the demyelinating area. These findings support previous investigations that questioned BBB integrity in the cuprizone model and demonstrate the possibility of delivering antibody conjugates to the corpus callosum of cuprizone-treated mice. Full article
(This article belongs to the Special Issue Blood-Brain Barrier in CNS Injury and Repair 2023)
Show Figures

Figure 1

Back to TopTop