Evaluation of [125I]α-Bungarotoxin Binding to α7 Nicotinic Acetylcholinergic Receptors in Hippocampus–Subiculum of Postmortem Human Alzheimer’s Disease Brain
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Methods
2.2. Postmortem Human Brain
2.3. Immunohistochemistry
2.4. Radiopharmaceuticals
2.5. [125I]α-Bgtx Autoradiography
2.6. Image Analysis
2.7. Statistical Analysis
3. Results
3.1. [125I]Bgtx Binding in Hippocampal Versus Subiculum Regions
3.2. CN Female and CN Male Human Postmortem Subjects
3.3. AD Female and AD Male Human Postmortem Subjects
3.4. CN-AD Gender Comparisons of [125I]α-Bgtx
3.5. Braak Stage Comparisons of [125I]α-Bgtx to [18F]Flotaza and [125I]IPPI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, S.; Agrawal, N.; Goyal, A. Role of alpha-7 nicotinic receptor in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 2024, 23, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Pal, P.; Supta, S.K. The neurotransmitter puzzle of Alzheimer’s: Dissecting mechanisms and exploring therapeutic horizons. Brain Res. 2024, 1829, 148797. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.-G.; Qian, Y.-H. Alpha 7 Nicotinic Acetylcholine Receptor and Its Effects on Alzheimer’s Disease. Neuropeptides 2019, 73, 96–106. [Google Scholar] [CrossRef]
- Kem, W.R. The Brain A7 Nicotinic Receptor May Be an Important Therapeutic Target for the Treatment of Alzheimer’s Disease: Studies with DMXBA (GTS-21). Behav. Brain Res. 2000, 113, 169–181. [Google Scholar] [CrossRef]
- Dineley, K.T.; Pandya, A.A.; Yakel, J.L. Nicotinic ACh Receptors as Therapeutic Targets in CNS Disorders. Trends Pharmacol. Sci. 2015, 36, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Egea, J.; Buendia, I.; Parada, E.; Navarro, E.; León, R.; Lopez, M.G. Anti-Inflammatory Role of Microglial Alpha7 nAChRs and Its Role in Neuroprotection. Biochem. Pharmacol. 2015, 97, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, S.D.; Jones, A.K.; Brown, L.A.; Sattelle, D.B. Nicotinic Acetylcholine Receptor Signalling: Roles in Alzheimer’s Disease and Amyloid Neuroprotection. Pharmacol. Rev. 2009, 61, 39–61. [Google Scholar] [CrossRef]
- Conejero-Goldberg, C.; Davies, P.; Ulloa, L. Alpha7 Nicotinic Acetylcholine Receptor: A Link between Inflammation and Neurodegeneration. Neurosci. Biobehav. Rev. 2007, 32, 693. [Google Scholar] [CrossRef]
- Chrem Mendez, P.; Surace, E.; Bérgamo, Y.; Calandri, I.; Vázquez, S.; Sevlever, G.; Allegri, R.F. Biomarkers for Alzheimer’s Disease. Where We Stand and Where We Are Headed. Medicina 2019, 79, 546–551. [Google Scholar]
- Therriault, J.; Pascoal, T.A.; Lussier, F.Z.; Tissot, C.; Chamoun, M.; Bezgin, G.; Servaes, S.; Benedet, A.L.; Ashton, N.J.; Karikari, T.K.; et al. Biomarker Modeling of Alzheimer’s Disease Using PET-Based Braak Staging. Nat. Aging 2022, 2, 526–535. [Google Scholar] [CrossRef]
- Sadigh-Eteghad, S.; Talebi, M.; Farhoudi, M.; Golzari, S.E.J.; Sabermarouf, B.; Mahmoudi, J. Beta-Amyloid Exhibits Antagonistic Effects on Alpha 7 Nicotinic Acetylcholine Receptors in Orchestrated Manner. J. Med. Hypotheses Ideas 2014, 8, 49–52. [Google Scholar] [CrossRef]
- Cecon, E.; Dam, J.; Luka, M.; Gautier, C.; Chollet, A.-M.; Delagrange, P.; Danober, L.; Jockers, R. Quantitative assessment of oligomeric amyloid b peptide binding to α7 nicotinic receptor. Br. J. Pharmacol. 2019, 176, 3475–3488. [Google Scholar] [CrossRef]
- Horti, A.G.; Gao, Y.; Kuwabara, H.; Wang, Y.; Abazyan, S.; Yasuda, R.P.; Tran, T.; Xiao, Y.; Sahibzada, N.; Holt, D.P.; et al. 18F-ASEM, a radiolabele antagonist for imaging the a7-nicotinic acetylcholine receptor with PET. J. Nucl. Med. 2014, 55, 672–677. [Google Scholar] [CrossRef]
- Coughlin, J.M.; Rubin, L.H.; Du, Y.; Rowe, S.P.; Crawford, J.L.; Rosenthal, H.B.; Frey, S.M.; Marshall, E.S.; Shinehouse, L.K.; Chen, A.; et al. High Availability of the A7-Nicotinic Acetylcholine Receptor in Brains of Individuals with Mild Cognitive Impairment: A Pilot Study Using 18F-ASEM PET. J. Nucl. Med. 2020, 61, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Brun, O.; Zoukimian, C.; Oliveira-Mendes, B.; Montnach, J.; Lauzier, B.; Ronjat, M.; Béroud, R.; Lesage, F.; Boturyn, D.; De Waard, M. Chemical Synthesis of a Functional Fluorescent-Tagged α-Bungarotoxin. Toxins 2022, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Alpha7 Nicotinic Acetylcholine Receptor Is a Target in Pharmacology and Toxicology. Int. J. Mol. Sci. 2012, 13, 2219–2238. [Google Scholar] [CrossRef]
- DaCosta, C.J.B.; Free, C.R.; Sine, S.M. Stoichiometry for a-bungarotoxin block of α7 acetylcholine receptors. Nat. Commun. 2015, 6, 8057. [Google Scholar] [CrossRef]
- Kalkman, H.O.; Feuerbach, D. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cell. Mol. Life Sci. 2016, 73, 2511–2530. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.R.; Rubin, L.H.; Harington, C.K.; Jenkins, K.R.; Shinehouse, L.K.; Yoon, M.; Kilgore, J.J.; Soule, A.R.; Lesniak, W.G.; Rowe, S.P.; et al. Hippocampal availability of the a7 nicotinic acetylcholine receptor in recent onset psychosis. JAMA Netw. Open 2024, 7, e2427163. [Google Scholar] [CrossRef]
- Mondal, R.; Sandhu, Y.K.; Kamalia, V.M.; Delaney, B.A.; Syed, A.U.; Nguyen, G.A.H.; Moran, T.R.; Limpengco, R.R.; Liang, C.; Mukherjee, J. Measurement of Aβ Amyloid Plaques and Tau Protein in Postmortem Human Alzheimer’s Disease Brain by Autoradiography Using [18F]Flotaza, [125I]IBETA, [124/125I]IPPI and Immunohistochemistry Analysis Using QuPath. Biomedicines 2023, 11, 1033. [Google Scholar] [CrossRef]
- Donat, C.K.; Hansen, H.H.; Hansen, H.D.; Mease, R.C.; Horti, A.G.; Pomper, M.G.; L’Estrade, E.T.; Herth, M.M.; Peters, D.; Knudsen, G.M.; et al. In vitro and in vivo characterization of dibenzothiophene derivatives [125I]iodo-ASEM and [18F]ASEM as radiotracers of homo-and heteromeric a7 nicotinic acetylcholine receptors. Molecules 2020, 25, 1425. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, Y.K.; Bath, H.S.; Shergill, J.; Liang, C.; Syed, A.U.; Ngo, A.; Karim, F.; Serrano, G.E.; Beach, T.G.; Mukherjee, J. [18F]Flotaza for Ab plaque diagnostic imaging: Evaluation in postmortem human Alzheimer’s disease brain hippocampus and PET/CT imaging in 5xFAD transgenic mice. Int. J. Mol. Sci. 2024, 25, 7890. [Google Scholar] [CrossRef] [PubMed]
- Beach, T.G.; Adler, C.H.; Sue, L.I.; Serrano, G.; Shill, H.A.; Walker, D.G.; Lue, L.; Roher, A.E.; Dugger, B.N.; Maarouf, C.; et al. Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology 2015, 35, 354–389. [Google Scholar] [CrossRef]
- Ferretti, M.T.; Iulita, M.F.; Cavedo, E.; Chiesa, P.A.; Dimech, A.S.; Chadha, A.S.; Baracchi, F.; Girouard, H.; Misoch, S.; Giacobini, E.; et al. Sex differences in Alzheimer’s disease- the gateway to precision medicine. Nat. Rev. Neurol. 2018, 14, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Ngo, A.; Keerthisinghe, O.V.; Patel, K.K.; Liang, C.; Mukherjee, J. Synthesis and evaluation of compound targeting α7 and β2 subunits in nicotinic acetylcholinergic receptor. Molecules 2023, 28, 8128. [Google Scholar] [CrossRef]
- Woolsey, A.; Jenkins, K.R.; Harrington, C.K.; Miller, H.M.; Soule, A.R.; Du, Y.; Horti, A.G.; Pomper, M.G.; Bakker, A.; Rubin, L.H.; et al. Higher availability of the α7 nicotinic acetylcholine receptor in the brains of older, cognitively normal individuals. Biol. Psychiatry 2024, 95, S300. [Google Scholar] [CrossRef]
- Mukherjee, J.; Lao, P.; Betthauser, T.; Samra, G.K.; Pan, M.-L.; Patel, I.H.; Liang, C.; Metherate, R.; Christian, B.T. Human brain imaging of nicotinic acetylcholine α4β2* receptors using [18F]Nifene: Selectivity, functional activity, toxicity, aging effects, gender effects and extrathalamic pathways. J. Comp. Neurol. 2018, 526, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Karim, F.; Ngo, A.; Danh, T.B.; Delaney, B.D.; Liang, C.; Serrano, G.E.; Beach, T.G.; Mukherjee, J. Human hippocampal [18F]nifene binding to nicotinic acetylcholinergic α4β2* receptors in hippocampus-subiculum of postmortem Alzheimer’s disease brains. Brain Res. 2025, accepted. [Google Scholar]
- Furcila, D.; Dominguez-Alvaro, M.; DeFelipe, J.; Alonso-Nanclares, L. Subregional density of neurons, neurofibrillary tangles and amyloid plaques in the hippocampus of patients with Alzheimer’s disease. Front. Neuroanat. 2019, 13, 99. [Google Scholar] [CrossRef]
- Letsinger, A.C.; Gu, Z.; Yakel, J.L. a7 Nicotinic Acetylcholine Receptors in the Hippocampal Circuit: Taming Complexity. Trends Neurosci. 2021, 45, 145. [Google Scholar] [CrossRef]
- Jagust, W. Imaging the Evolution and Pathophysiology of Alzheimer Disease. Nat. Rev. Neurosci. 2018, 19, 687. [Google Scholar] [CrossRef]
- Guan, Z.-Z.; Zhang, X.; Ravid, R.; Nordberg, A. Decreased Protein Levels of Nicotinic Receptor Subunits in the Hippocampus and Temporal Cortex of Patients with Alzheimer’s Disease. J. Neurochem. 2000, 74, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Ikonomovic, M.D.; Wecker, L.; Abrahamson, E.E.; Wuu, J.; Counts, S.; Ginsberg, S.; Mufson, E.; DeKosky, S.T. Cortical A7 Nicotinic Acetylcholine Receptor and β-Amyloid Levels in Early Alzheimer’s Disease. Arch. Neurol. 2009, 66, 646. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xie, X.; Lukas, R.J.; John, P.A.S.; Wu, J. A Novel Nicotinic Mechanism Underlies β-Amyloid-Induced Neuronal Hyperexcitation. J. Neurosci. 2013, 33, 7253–7263. [Google Scholar] [CrossRef]
- Lasala, M.; Fabiani, C.; Corradi, J.; Antollini, S.; Bouzat, C. Molecular Modulation of Human A7 Nicotinic Receptor by Amyloid-β Peptides. Front. Cell. Neurosci. 2019, 13, 37. [Google Scholar] [CrossRef]
- Rajmohan, R.; Reddy, P.H. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s Disease Neurons. J. Alzheimer’s Dis. 2017, 57, 975–999. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.W.; Ma, E.S.K.; Lam, K.K.Y.; Chan, M.F.; Lee, D.H.S. Increased Alpha 7 Nicotinic Acetylcholine Receptor Protein Levels in Alzheimer’s Disease Patients. Dement. Geriatr. Cogn. Disord. 2005, 19, 106–112. [Google Scholar] [CrossRef]
- Tracey, K.J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Investig. 2007, 117, 289–296. [Google Scholar] [CrossRef]
- Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimers disease. Neuropharmacology 2021, 190, 108352. [Google Scholar] [CrossRef]
- Stage, E.; Svaldi, D.; Sokolow, S.; Risacher, S.L.; Marosi, K.; Rotter, J.I.; Saykin, A.J.; Apostolova, L.G.; Alzheimer’s Disease Neuroimaging Initiative. Prescribing cholinestaerase inhibiotrs in mild cognitive imapairment-observations from the ADNI. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2021, 7, e12168. [Google Scholar] [CrossRef]
- Zuin, M.; Cherubini, A.; Volpato, S.; Ferrucci, L.; Zuliani, G. Acetyl-cholinesterase inhibitors slow cognitive decline and decrease overall mortality in older patients with dementia. Sci. Rep. 2022, 12, 12214. [Google Scholar] [CrossRef] [PubMed]
- Shulman, D.; Dubnov, S.; Zorbaz, T.; Madrer, N.; Paldor, I.; Bennett, D.A.; Seshadri, S.; Mufson, E.J.; Greenberg, D.S.; Loewenstein, Y.; et al. Sex-specific declines in cholinergic-targeting tRNA fragments in the nucleus accumbens in Alzheimer’s disease. Alzheimer’s Dement 2023, 18, 5159–5172. [Google Scholar] [CrossRef] [PubMed]
- McVea, A.; Choi, J.; DiFilippo, A.; McLachlan, M.; Bettcher, B.; Zammit, M.; Stone, C.K.; Tudorascu, D.; Mukherjee, J.; Christian, B.T. Age and sex related differences in human a4b2* nicotinic acetylcholine receptor binding evaluated with [18F]nifene PET. Imaging Neurosci. 2024, 2, 1–12. [Google Scholar] [CrossRef]
- Pradhan, A.; Mounford, H.; Peixinho, J.; Rea, E.; Epeslidou, E.; Scott, J.S.; Cull, J.; Maxwell, S.; Webster, R.; Beeson, D.; et al. Unraveling the molecular interactions between a7 nicotinic receptor and a RIC3 variant associated with backward speech. Cell. Mol. Sci. 2024, 81, 129. [Google Scholar] [CrossRef]
- Liang, C.; Okamoto, A.A.; Karim, F.; Kawauchi, S.; Mukherjee, J. Disruption of normal brain distribution of [18F]nifene to a4b2* nicotinic acetylcholinergic receptors in B6129SF2/J mice and transgenic 3xTg mouse model of Alzheimer’s disease: In vivo [18F]Nifene PET/CT imaging studies. Neuroimage 2025, 310, 121092. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Marquez-Nostra, B.; Belitzky, E.; Toyonaga, T.; Tong, J.; Huang, Y.; Cai, Z. PET imaging in animal models of Alzheimer’s disease. Front. Neurosci. 2022, 16, 872509. [Google Scholar] [CrossRef]
- Lykhmus, O.; Tzeng, W.-Y.; Koval, L.; Uspenska, K.; Zirdum, E.; Kalashnyk, O.; Garaschuk, O.; Skok, M. Impairment of brain function in a mouse model of Alzheimer’s disease during the pre-depositing phase: The role of a7 nicotinic acetylcholine receptors. Biomed. Pharmacother. 2024, 178, 117255. [Google Scholar] [CrossRef]
Subjects, N | CERAD Pathology | Gender | Age Range, Mean ± SD | PMI, hrs | Brain Region | Plaque Total | Tangle Total | LB | Braak Score |
---|---|---|---|---|---|---|---|---|---|
13 | CN | Male | 71–97 (79.9 ± 8.55) | 2–5.4 | HP | 0–5.5 | 0–6 | 0 | I–III |
15 | CN | Female | 53–95 (80.4 ± 13.1) | 2.1–4.8 | HP | 0–10 | 0.5–6.5 | 0 | I–III |
13 | AD | Male | 70–91 (80.4 ± 5.98) | 2.3–4.8 | HP | 14–15 | 10–15 | 0 | V–VI |
16 | AD | Female | 59–93 (81.3 ± 9.26) | 1.8–5 | HP | 10–15 | 12–15 | 0 | V–VI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, A.; Karim, F.; Keerthisinghe, O.V.; Danh, T.B.; Liang, C.; Mukherjee, J. Evaluation of [125I]α-Bungarotoxin Binding to α7 Nicotinic Acetylcholinergic Receptors in Hippocampus–Subiculum of Postmortem Human Alzheimer’s Disease Brain. Receptors 2025, 4, 7. https://doi.org/10.3390/receptors4010007
Ngo A, Karim F, Keerthisinghe OV, Danh TB, Liang C, Mukherjee J. Evaluation of [125I]α-Bungarotoxin Binding to α7 Nicotinic Acetylcholinergic Receptors in Hippocampus–Subiculum of Postmortem Human Alzheimer’s Disease Brain. Receptors. 2025; 4(1):7. https://doi.org/10.3390/receptors4010007
Chicago/Turabian StyleNgo, Allyson, Fariha Karim, Oshini V. Keerthisinghe, Tram B. Danh, Christopher Liang, and Jogeshwar Mukherjee. 2025. "Evaluation of [125I]α-Bungarotoxin Binding to α7 Nicotinic Acetylcholinergic Receptors in Hippocampus–Subiculum of Postmortem Human Alzheimer’s Disease Brain" Receptors 4, no. 1: 7. https://doi.org/10.3390/receptors4010007
APA StyleNgo, A., Karim, F., Keerthisinghe, O. V., Danh, T. B., Liang, C., & Mukherjee, J. (2025). Evaluation of [125I]α-Bungarotoxin Binding to α7 Nicotinic Acetylcholinergic Receptors in Hippocampus–Subiculum of Postmortem Human Alzheimer’s Disease Brain. Receptors, 4(1), 7. https://doi.org/10.3390/receptors4010007