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Abstract: Speckle patterns are a generic feature in coherent imaging techniques like optical coherence
tomography (OCT). Although speckles are granular like noise texture, which degrades the image,
they carry information that can be benefited by processing and thereby furnishing crucial information
of sample structures, which can serve to provide significant important structural details of samples in
in vivo longitudinal pre-clinical monitoring and assessments. Since the motions of tissue molecules
are indicated through speckle patterns, speckle variance OCT (SV-OCT) can be well-utilized for quan-
titative assessments of speckle variance (SV) in biological tissues. SV-OCT has been acknowledged as
a promising method for mapping microvasculature in transverse-directional blood vessels with high
resolution in micrometers in both the transverse and depth directions. The fundamental scope of
this article reviews the state-of-the-art and clinical benefits of SV-OCT to assess biological tissues for
pre-clinical applications. In particular, focus on precise quantifications of in vivo vascular response,
therapy assessments, and real-time temporal vascular effects of SV-OCT are primarily emphasized.
Finally, SV-OCT-incorporating pre-clinical techniques with high potential are presented for future
biomedical applications.

Keywords: speckle-variance optical coherence tomography (SV-OCT); biological tissue imaging; mi-
crovasculature mapping; pre-clinical monitoring; blood flow assessment; in vivo vascular assessment

1. Introduction

Optical coherence tomography (OCT) is an optical non-destructive imaging modality
that is capable of providing cross-sectional and three-dimensional (3D) images [1,2] with
micrometer resolutions. OCT offers a high level of sensitivity for depth-resolved images
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with a high signal-to-noise ratio at a depth range of 2–8 mm [3,4]. OCT was first demon-
strated in 1991 for retinal imaging [1]. OCT is an interferometric imaging technique that
uses near-infrared (NIR) light to map sub-surface reflections to generate cross-sectional
images with detailed morphological features [5–7] with intensity variations with respect to
the varying refractive index of microstructures within the sample. The advent of Fourier
domain OCT (FD-OCT) and its high sensitivity facilitated the progression from real-time
two-dimensional (2D) imaging to real-time volumetric imaging [8,9], with the maximum
imaging depth and field of view varying based on the system specifications [10–12]. An
overview of the OCT system schematic together with the extensive distribution of applica-
tions are presented in Figure 1a,b.
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omedical imaging, particularly in ophthalmology, to visualize microstructural infor-
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Figure 1. (a) An overview of the optical coherence tomography (OCT) system schematic and (b) the
extensive distribution of applications.

OCT can be sub-categorized by functional methods depending on the different proper-
ties of light, namely, optical Doppler tomography (ODT), phase-sensitive OCT (Phs-OCT),
phase variance OCT, polarization-sensitive OCT (PS-OCT), photothermal OCT (PT-OCT),
and speckle variance OCT. The interest in developing contrast agents for targeting and
functioning as molecular contrast agents in OCT, ODT, and PT-OCT has recently become
notable. Enhanced in vivo contrast within a sample can be achieved through the notable
scattering efficiency of contrast agents [13–15]. The information determined from the po-
larization state of the interference fringe in the detected OCT signals helps in developing
PS-OCT, which is a valid functional extension of OCT to obtain an additional contrast in
OCT images [16,17]. PS-OCT is a valuable tool to obtain high-resolution spatial information
on the polarization state of the reflected light from the microstructures of the specimen.

Speckle variance optical coherence tomography (SV-OCT) is a technique used in
biomedical imaging, particularly in ophthalmology, to visualize microstructural informa-
tion within tissues. SV-OCT is a functional extension of OCT, which has recently gained
enormous interest as a trending micro-angiography technique. SV-OCT is based on conven-
tional OCT, which utilizes low-coherence interferometry to obtain cross-sectional images of
tissue microstructure. Speckle patterns arise due to interference from backscattered light in
the sample. In OCT images, these speckle patterns contain information about the tissue
microstructure. Speckle patterns change over time due to movement or changes within
the sample. This dynamic nature is utilized in SV-OCT to extract additional information
about the sample’s internal structures, which is unavailable in traditional OCT images.
SV-OCT images are obtained by calculating the variance of speckle intensity within a series
of OCT images acquired over a short period. In the calculated signals, the regions with high
variance indicate areas of movement or change within the sample. This label-free contrast-
enhanced imaging technology can be utilized to map microvasculature structures, yielding
depth-resolved visualizations of micrometer-resolved blood vessels with exceptional con-
trast [17]. Further, in this technology, moving molecules in microvasculature structures
lead to generating alterations of speckle patterns, which can be quantitatively acquired by
estimating speckle variances between frames or lines. The initial use of speckle analysis in
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OCT images to obtain depth-resolved blood flow was first documented in 2005 [18]. The
speckle variance (SV) algorithm was applied to visualize blood vessels [19–21]. The SV
algorithmic calculation used in SV-OCT involves several steps for processing the acquired
OCT B-scans and extracting speckle variance information. First, a stack of consecutive
B-scans is obtained rapidly, typically using a high-speed OCT imaging system. Within
this stack, a region of interest (ROI) is selected for analysis, which may correspond to a
specific tissue area or depth within the sample. Next, for each pixel position within the
ROI, the intensity values across the selected frames are extracted. Then, the variance of
these intensity values is computed, typically using the standard deviation calculation, to
quantify the level of speckle variance at each pixel. To enhance visualization and facilitate
comparison between different samples or regions, the variance values may be normalized.
Finally, the resulting speckle variance image is generated, where areas of high variance
correspond to regions of movement or change within the sample. This algorithm enables
the visualization and analysis of dynamic processes, such as blood flow or tissue motion,
providing valuable insights into biological structures and functions. Owing to these di-
verse functional capabilities, SV-OCT gained the spotlight as a potential imaging tool for
microvasculature in biological specimens. While 2D cross-sectional images of SV-OCT
provide depth-resolved in vivo images of biological specimens, the 3D vascular images
are acquired by calculating the inter-frame variance. The schematic of Figure 2 depicts
the widely adopted detection algorithm of the SV-OCT system [22,23], and the system
configurations of SV-OCT systems can be found in [24]. A high-configuration personal
computer was assembled using a high-performance GPU to obtain continuous real-time
acquisition, fast image processing, and to display the structural and SV calculations in
real-time. The accuracy of SV-OCT measurements is affected by the SV contrast between
biological microstructures and their nearby fluid components. Further technical aspects of
SV-OCT are illustrated descriptively elsewhere [25,26].
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The purpose of this article is to review the state-of-the-art and pre-clinical benefits
of label-free SV-OCT for assessing quantifications of in vivo vascular response, therapy
assessments, and real-time temporal vascular effects as an imaging method with enhanced
contrast. The article begins with a technical discussion and a contrasted comparison between
pre-clinical translation and quantification capabilities of SV-OCT for biological tissue assess-
ment to lay the foundation for understanding its strengths and limitations. To understand
the best applicability of this method, a further comparison of therapeutic assessments of
various medical treatments is provided. The review concludes with a summarized discus-
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sion illustrating the key features and strengths of previously reported SV-OCT studies in
biomedical applications, as well as highlighting the most expected future trends.

2. The Pre-Clinical Translation and Quantification Capabilities of SV-OCT for
Biological Tissue Assessment

Abnormalities in blood flow can lead to cardiological and vasculature defects [27–29],
as appropriate blood flow is essential for the development of the heart and other organs.
This involves diagnosing and assessing the vascular network and its health, along with
measuring blood flow rates to assess the condition of organ health. In clinical and research
settings, microscopes and endoscopes are predominantly used for the diagnosis of vascular
health. However, the commonly adopted medical endoscopes offer only the surface of
tissues, and this makes it difficult to estimate the underlying tissue health, which results
in limiting the estimation of the overall condition of the vasculature. The use of SV-
OCT not only enables 3D volumetric visualization of the vasculature but also enables
the assessment of the sub-layer conditions. The effective use of SV-OCT with its 3D
vasculature reconstruction of live mouse embryos was demonstrated in [30], and showed
the advantages of SV-OCT to visualize blood vessels in transverse and in depth. The study
results were obtained using both SV-OCT and Doppler OCT systems, as shown in Figure 3,
and equal performance was observed in both systems when blood flow had a significant
axial component. SV-OCT demonstrated better performance (Figure 3b,d) in visualizing
the network and branching of vasculature compared to Doppler OCT (Figure 3a,c), making
it beneficial for vasculature remodeling studies.
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Figure 3. SV OCT and Doppler OCT visualization of embryonic vasculature. (a) Doppler OCT
provides a 3D reconstruction of the vasculature in the mouse embryonic brain at 8.5 dpc; (b) Cor-
responding reconstruction acquired through SV analysis, revealing the same identified vascular
structures; (c) Doppler OCT generates a 3D reconstruction of the yolk sac vasculature at 9.5 dpc;
(d) SV analysis-acquired corresponding reconstruction of the yolk sac vasculature, illustrating a more
complex and well-defined vascular structure. The major ticks in (a,b) correspond to 50 µm (adapted
from [30]).

In particular, cancer, cardiovascular diseases, and the cells surrounding the scars aid
cells in manipulating their microenvironment for remodeling [31–33]. This has given rise
to a growing interest in animal model studies to understand vascular remodeling [34,35].
Due to the complexity of the vascular remodeling process, a non-invasive quantification
of in vivo vascular remodeling, which can be studied over the entire remodeling process,
serves to be highly beneficial. However, obtaining data with high accuracy and visualizing
and understanding the overall ongoing process during the course of remodeling can be
challenging with conventional histological assessments and other optical medical imaging
methods [36–38]. Although conventional OCT provides qualitative information with high
resolution, quantitative metrics of vascular morphology were not sufficient to assess the
overall condition of vasculature in its entirety [39]. To overcome this, Poole et al. used
SV-OCT to understand the mechanisms and dynamics of the vascular remodeling process
for different pathological conditions, from ischemia to cancer [40]. In this demonstration,
mouse models with robust (Friend Virus B-type—FVB) [41] and poor (Balb/C) recovery [42]
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to hind limb ischemia were used to acquire quantitative vascular SV-OCT images. Figure 4
presents SV-OCT images of the ischemia limb adductor from each mouse strain, as demon-
strated in the Poole et al. study [40], confirming the visualization of vessel remodeling
over time. The results emphasize that the average intensity projection of volumetric SV
over 1.5 mm depth revealed notable variances in vascular response. The results provide a
clear dimensional comparison between data acquired on each monitoring day. Figure 5
depicts the acquired SV-OCT quantitative information from two different mouse models.
The promising capability of SV-OCT to assess various vascular responses was successfully
confirmed through the results.
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Figure 4. Representative SV-OCT images of the adductor muscle in Balb/c (top row) and FVB
(bottom row) mice, including the contralateral control limb on the far left and the ischemic limb.
Imaging was conducted non-invasively over time, with the final time point at day 19 for Balb/c mice
and day 21 for FVB mice (adapted from [40]).

To further enhance the qualitative representation, Fourier domain mode-locking [43,44]
provides efficient microvascular detection, as reported in [20,45,46]. This implementation
enables the detection of vessels within the range of 0–25 µm through the maximum intensity
projection of enface maps. As illustrated in Figure 6, real-time implementation and addi-
tional Doppler angle-independent microvascular information [47] are the main advantages
of SV-OCT over conventional Doppler-OCT. Figure 6 illustrates the identification of mi-
crovascular changes induced by Visudyne photodynamic therapy (PDT) through imaging
before (Figure 6a), during (Figure 6c–e), and immediately post-treatment (Figure 6f).

Cutaneous tissue swelling is another challenging skin disease that requires accurate
quantification [48], where histological and weight measurements have been primarily
applied for assessments [49]. The results from the Li, W et al. study, as shown in Figure 7a,
demonstrated that the changes in OCT image grey values corresponded to the presence
of histamine in sub-surface layers. Conversely, Figure 7b depicts the disappearance of the
bright corneum line in the OCT image following pre-treatment with acetone, indicating the
effect of acetone-induced exfoliating on the mouse ear skin. Moreover, the results shown in
Figure 8 indicate the color map and normalized quantitative information of the difference
value measurements acquired before (Figure 8a) and after exfoliation (Figure 8b). Although
the obtained results exhibited potential benefits, the information was limited to a specific
depth range and only to a small portion of the mouse ear, which are essential parameters
for examining tissue swelling.
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Figure 5. Assessment of vascular morphology metrics using SV-OCT projection images for Balb/c
(n = 4) and FVB (n = 3) mice. FVB mice demonstrated increased (A) vessel area density and (B) vessel
length fraction at day seven and subsequent post-surgery time points in the ischemic adductor
region compared to Balb/c mice (* p < 0.05 between strains). Balb/c mice showed a decrease in
both parameters between days 7 and 19 (p < 0.05), while FVB mice exhibited an increase in vessel
area density and length fraction between days 3 and 7 and days 3 and 14, respectively (p < 0.05).
(C) Notably, significant differences in the length of vasculature within a specified range of vessel
diameters were also observed (* p < 0.05 for the indicated diameter range). The imaging concluded
on day 19 for Balb/c mice and day 21 for FVB mice (adapted from [40]).
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Figure 6. (Color online) SV-OCT records Visudyne-mediated PDT in a 1 mm × 1 mm region of the
dorsal skinfold window chamber mouse model (fluence rate = 42 mW/cm2, total fluence = 25 J/cm2,
treatment time = 10 min). (a) Presents vasculature before laser irradiation. (b) Depicts one minute
after the start of laser irradiation. (c) Demonstrates the total shutdown of the right branch. (d) Shows
the reperfusion of the right branch with an imaging artifact. (e) Illustrates the reperfusion of the
right branch without imaging artifact. (f) Displays the condition 10 min post-end of laser irradiation,
indicating reperfusion, but main vessels still appear constricted (adapted from [20]).
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As mentioned above, investigating scar progression [51] is another SV-OCT applica-
tion where OCT monitors the vasculature during wound healing. Though numerous op-
tical techniques were performed to assess scar progression, SV-OCT was favored as one 
of the most feasible techniques. As a precise verification, P. Gong et al. [52] examined mi-
crovascular changes during wound healing of burn scars, which were treated using frac-
tional laser [53]. Several patients were continuously monitored over a period using SV-
OCT. The SV-OCT results shown in Figure 9 confirmed that the wounded or scar tissues 
(Figure 9a–i) have a higher degree of vasculature than normal tissues (Figure 9j,k). In con-
trast, a reduction of vasculature degree was observed along with the laser treatment. 
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Figure 8. Color map and normalized curve of gray value in the longitudinal distribution.
(a) Illustrates the condition before acetone treatment. (b) Shows the state after acetone treatment. The
black arrow indicates the disappearance of the corneum peaks (adapted from [50]).

As mentioned above, investigating scar progression [51] is another SV-OCT appli-
cation where OCT monitors the vasculature during wound healing. Though numerous
optical techniques were performed to assess scar progression, SV-OCT was favored as
one of the most feasible techniques. As a precise verification, P. Gong et al. [52] examined
microvascular changes during wound healing of burn scars, which were treated using
fractional laser [53]. Several patients were continuously monitored over a period using
SV-OCT. The SV-OCT results shown in Figure 9 confirmed that the wounded or scar tissues
(Figure 9a–i) have a higher degree of vasculature than normal tissues (Figure 9j,k). In
contrast, a reduction of vasculature degree was observed along with the laser treatment.

In addition to cardiovascular assessments, high spatial and temporal resolutions of SV-
OCT offer unique advantages for investigating rodent vasculature [32], which are beneficial
for treating the spinal cord. The SV-OCT imaging technology can provide depth-resolved
imaging of microvascular networks without limiting sensitivity to the Doppler angle. Also,
it is yet to be discovered that the neurovascular signaling mechanisms underlying functional
hyperemia in the spinal cord are similar to those in the cerebral cortex. The neurovascular
coupling mechanisms differ across neuroanatomical pathways in the cerebral cortex and
across brain regions. These mechanistic differences exist in the evolutionary older spinal
cord, and remain to be determined, as does their effect on functional hyperemia. SV-OCT
technology has performed as a promising tool in discovering this information in healthy
spinal cord states and certain disease states. The results of the Cadotte, D.W. et al. study, as
illustrated in Figure 10 encompassing panels A to E, demonstrate the SV-OCT information
with a significant visualization of cardiorespiratory motion in the lumbar region of the
mouse spinal cord [22]. Although the acquired results confirmed vital discoveries of the
spinal cord, an optimized method is required to overcome the limitations of bulk motions.
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Figure 9. Imagine blood vessels within a mature scar (a–i) and adjacent normal skin (j,k). Photographs
(a,d,g) alongside corresponding vasculature maximum intensity projections (MIPs) (b,e,h) depict
central regions within the blue square outlines (10 mm × 10 mm) on the scar at time points A, B,
and C. Noteworthy vessel patterns are highlighted by green dashed circles. Overlapping regions are
shown in (c,f,i). A photograph of normal skin is presented in (j), with the corresponding vasculature
MIP in (k). Vasculature area density in the scar at time points A, B, and C, along with normal skin,
is indicated in (l). The small cyan and purple solid circles in (e,f) represent microthermal treatment
zones (MTZs) from the first laser treatment, corresponding to two adjacent scan paths of the laser
microscanner. After registration, their locations are illustrated as a guide in (c,i) using dashed circles.
Scale bars: 0.5 mm. All vasculature MIPs are derived from the skin surface to a depth of 300 µm
(adapted from [52]).

Thermal-induced protein denaturation and coagulation [54] occur in biological tissues
by changes in temperature since the stability of the 3D protein structure changes when
exposed to radiation or heat. Conventional methods include techniques such as differential
scanning calorimetry, fluorescence dyeing, and imaging, or spectroscopic methods such
as ultraviolet absorbance and infrared. However, these pose a challenge when trying to
understand the sub-micro level changes occurring within the biological tissues, whereas
SV-OCT can be reliably used for measuring such minute changes in structures and can
be relied upon for characterization and visualization of changes occurring during these
processes. Lee, C. et al., in 2016, employed SV-OCT to demonstrate the protein denaturation
and coagulation using thermal-induced egg white for experimental confirmation regarding
the temperature effects as mentioned above [55]. An egg white specimen was placed on a
heat plate and examined at 16 different temperatures for a homogeneous temperature dis-
tribution. The acquired 2D OCT images assessed SV both quantitatively and qualitatively,
as shown in Figure 11a–d. The intensity enhancement of different regions of interest was
examined, and the variance of speckles was observed as a function of temperature [55]. The
quantitative parameters, such as intensity, SV, and cross-correlations, were examined as a
function of temperature, and the results successfully confirmed the capability of monitoring
the molecular motions of a biological specimen through the variance of speckles.
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Figure 10. The experimental setup for mouse SV-OCT imaging included correcting the bulk motion
of the spinal column using a custom jig, as depicted in (Panel A). This technique involved delicately
grasping the spinal column with two pairs of forceps, positioned one vertebral body level above and
below the exposed spinal cord. (Panel B) illustrates a histology specimen showing the dorsal vein (1),
dorsal white matter (2), and dorsal gray matter (3). In (Panel C), a structural OCT image displays the
dorsal vein and dorsal white and gray matter. (Panel D) showcases SV-OCT images revealing the
intricate microvascular network of the mouse spinal cord, resolving vessels with a diameter of about
10–20 µm. Furthermore, (Panel E) presents a depth-dependent false color map of the mouse spinal
cord (adapted from [22]).

Cutaneous laser therapy treats port wine stains, wrinkles, and acne scars [56]. During
this therapy, tissues are targeted with laser-based heating, causing minimal damage to sur-
rounding structures. SV-OCT monitors temperature changes in ex vivo skin tissue during
pulsed laser-based treatment [57]. The therapy generates heat, and SV-OCT helps observe
molecular motions and SV caused by the induced heat. This assists in understanding and
controlling temperature distribution during the treatment. The verifications of cutaneous
laser therapy were obtained by conducting spatial and temporal temperature modeling.
A normalized SV value as a function of tissue temperature is illustrated in Figure 12a,b.
In contrast, the linear regressions between normalized SV and tissue temperature are de-
picted in Figure 12c,d. Although a rapid increase of the temperature excised in biological
specimens was successfully measured in both afore-stated reports, in vivo assessments are
required for high precision.
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Figure 11. Evaluation of regions of interest (ROIs) at 16 heating temperatures. (a) Exhibits five cho-
sen ROIs in the SV-OCT image at 76.4 °C. (b) Demonstrates OCT intensity enhancement, (c) illus-
trates SV enhancement, and (d) displays cross-correlation coefficients at these five selected ROIs 
over 16 heating temperatures. Abbreviations: S1, stage 1; S2, stage 2; and S3, stage 3 (adapted from 
[55]). 

 
Figure 12. The illustration provides an overview of (a1,b1) OCT images based on average intensity 
and (a2,b2) their corresponding SV-OCT counterparts, capturing the “dog-ear” sample on the back 
throughout eight diverse heating temperatures. (c) Displays the linear regression relationship be-
tween normalized SV and tissue temperature before coagulation, while (d) demonstrates calibration 
outcomes on the “dog-ear” sample taken from three sites (adapted from [57]). 

Since most of the SV-OCT implementations have been focused on pre-clinical re-
search studies, translating SV-OCT into clinical settings has gained enormous interest. 

Figure 11. Evaluation of regions of interest (ROIs) at 16 heating temperatures. (a) Exhibits five chosen
ROIs in the SV-OCT image at 76.4 ◦C. (b) Demonstrates OCT intensity enhancement, (c) illustrates
SV enhancement, and (d) displays cross-correlation coefficients at these five selected ROIs over 16
heating temperatures. Abbreviations: S1, stage 1; S2, stage 2; and S3, stage 3 (adapted from [55]).
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Figure 12. The illustration provides an overview of (a1,b1) OCT images based on average intensity
and (a2,b2) their corresponding SV-OCT counterparts, capturing the “dog-ear” sample on the back
throughout eight diverse heating temperatures. (c) Displays the linear regression relationship be-
tween normalized SV and tissue temperature before coagulation, while (d) demonstrates calibration
outcomes on the “dog-ear” sample taken from three sites (adapted from [57]).
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Since most of the SV-OCT implementations have been focused on pre-clinical research
studies, translating SV-OCT into clinical settings has gained enormous interest. Ongoing
research studies are underway to adapt SV-OCT systems for human imaging and clinical
diagnosis. The existing challenges, such as imaging protocols, regulatory compliance, data
validation, reliability, and low accuracy, must be successfully addressed to accomplish
clinical translation. In clinical settings, quantitative analysis is crucial in understanding
disease progression and treatment response. Thus, researchers are actively developing and
refining quantitative analysis techniques for in vivo SV-OCT images, which can be utilized
to extract quantitative parameters, such as tissue thickness, blood flow velocity, volumetric
measurements, and other morphological features.

3. SV-OCT in Therapeutic Assessments of Various Medical Treatments

The efficacy of tumor treatments has been enhanced by applying promising targeted
cancer therapy methods with lower side effects compared to conventional methods [58].
However, identifying the damages or alterations in blood vessels, blood volume, and
surrounding tissues is still challenging [59]. The non-destructive and high-resolution
inspection capability to assess the therapeutic effects of medical therapies is one of the
most robust applications of SV-OCT. PDT is one of the frequently applied cancer treatment
methods with low tissue toxicity [60,61]. However, as mentioned above, particular damages
that occur in blood vessels, immune responses, and surrounding tissues are the most
discussed mechanisms of PDT [62]. To examine the early microvascular PDT response-
based speckle variations, M-mode-like OCT/angiography (MML-OCT/MML-OCA) was
developed by Sirotkina, M.A et al. [63]. MML-OCA outperforms Doppler-OCT in flow
measurements. In this MML-OCA method, bulk tissue motion artifacts resulting from
tissue displacements can be significantly compensated owing to a short time lag between
A-scans. As illustrated in Figure 13a–e, the monitored MML-OCA results (monitored
within 6-h intervals) successfully confirmed the microvascular network and the early tumor
reaction for final tumor necrosis and tumor volume reduction. In contrast, PDT-induced
microvascular alteration and blood vessel injuries were further identified. The acquired
results were confirmed through histology, and in vivo, human assessments are required
before clinical application. It is worth noting that, in addition to SV-OCT, fluorescence
microscopic methods have been employed for the monitoring process of PDT. However, SV-
OCT is marginally superior to fluorescence microscopy due to its strong advantages, such
as label-free imaging without using contrast agents, real-time monitoring capability, high-
depth penetration, non-invasiveness, compatibility with other imaging modalities, and
quantitative assessments. Thus, these advantages make the SV-OCT method a promising
tool for assessing treatment response and optimizing PDT protocols.

Near-infrared photoimmunotherapy (NIT-PIT) is another promising cancer therapy
method with lower side effects [64,65]. This method is based on monoclonal antibody-
photon absorber conjugate (APC) [66]. However, similar limitations to PDT can be found
in NIT-PIT since identifying the effects on surrounding tissues takes time and effort. The
utilization of conventional OCT along with SS-OCT-based SV-OCT for real-time visualiza-
tion of the lumen in tumor blood vessels during NIR-PIT for in situ and in vivo specimens
was reported in [67,68]. Since exposure to light-emitting diode (LED) radiation impacts
tumor specimens, the SV-OCT assessments were acquired at non-LED-exposing and LED-
exposing illumination stages to the specimen. The results shown in Figure 14 emphasize
the vascular changes during non-exposure (Figure 14a,b) and exposure to LED radiation
(Figure 14c,d). Although the locations of the tumor model were identified through the cross-
sections of both OCT systems, SV-OCT was solely capable of visualizing the changes in
diameter, lumen density [69], and blood volume of blood vessels during the treatment. Nev-
ertheless, the technical functionality of the system has to be further enhanced to overcome
the limitations of imaging artifacts by optimizing the repetition rate of B-scans.
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Figure 13. MML-OCA images depict microvascular dynamics before, immediately after, 6 h post, 
and a day after PDT (100 J/cm2, 100 mW/cm2). A maximum intensity projection 2D display facilitates 
comparison, representing 3D data to a depth of approximately 1.3 mm. Examples (a–c) show re-
sponding tumors, Example (d) a mildly responding tumor, and (e) no changes in the control. Sche-
matic (f) of the scanning zone. Microvascular inhibition in responding tumors (t < 24 h) was con-
firmed by histology (t = 7 days). Scale bar = 500 µm on all images (adapted from [63]). 
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Figure 13. MML-OCA images depict microvascular dynamics before, immediately after, 6 h post,
and a day after PDT (100 J/cm2, 100 mW/cm2). A maximum intensity projection 2D display
facilitates comparison, representing 3D data to a depth of approximately 1.3 mm. Examples (a–c)
show responding tumors, Example (d) a mildly responding tumor, and (e) no changes in the control.
Schematic (f) of the scanning zone. Microvascular inhibition in responding tumors (t < 24 h) was
confirmed by histology (t = 7 days). Scale bar = 500 µm on all images (adapted from [63]).

Moreover, the temporal vascular effects during focused ultrasound (FUS) treatment
were investigated using SV-OCT by Tsai, M.T. et al. [23]. FUS is a method that increases drug
delivery through blood vessels by concentrating the ultrasound energy on a target, which
is applied locally and temporally, improving the vascular permeability [70]. However,
non-invasively discovering the effects induced by FUS is a challenging task, which SV-
OCT can sufficiently resolve. During the experimental procedure, mice were used in vivo,
and the animals were sequentially exposed to several power limits. The results shown
in Figures 15a–j and 16a–g depict the SV that occurred due to the contributions from red
blood cell extravasations. Figure 16 illustrates the 3D projection of a mouse ear specimen
at the exposure of various power limits. Figure 15 shows that, to obtain the results of the
exposures in the absence of microbubbles, regions I and II were chosen for estimating the
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changes in vascular areas. In contrast, regions III and IV were chosen for the case in which
microbubbles were present during the FUS exposure.

Micromachines 2024, 15, 564 14 of 24 
 

 

through the cross-sections of both OCT systems, SV-OCT was solely capable of visualizing 
the changes in diameter, lumen density [69], and blood volume of blood vessels during 
the treatment. Nevertheless, the technical functionality of the system has to be further en-
hanced to overcome the limitations of imaging artifacts by optimizing the repetition rate 
of B-scans.  

 
Figure 14. Tumor vasculature changes during and after NIR-PIT. (a) Illustrates the blood vessel lu-
men, pseudo-colored with depth (0 µm to 480 µm) during light emitting diode (LED) ON for 30 
min. (b) Displays the corresponding 3D vessels with SV-OCT during LED ON. (c) Depicts the vessel 
lumen pseudo-colored with depth within 30 min after turning off the LED. (d) Shows the corre-
sponding 3D vessels within 30 min post LED-OFF. Scale bar = 200 µm (adapted from [67]). 

Moreover, the temporal vascular effects during focused ultrasound (FUS) treatment 
were investigated using SV-OCT by Tsai, M.T. et al. [23]. FUS is a method that increases 
drug delivery through blood vessels by concentrating the ultrasound energy on a target, 
which is applied locally and temporally, improving the vascular permeability [70]. How-
ever, non-invasively discovering the effects induced by FUS is a challenging task, which 
SV-OCT can sufficiently resolve. During the experimental procedure, mice were used in 
vivo, and the animals were sequentially exposed to several power limits. The results 
shown in Figures 15a–j and 16a–g depict the SV that occurred due to the contributions 
from red blood cell extravasations. Figure 16 illustrates the 3D projection of a mouse ear 
specimen at the exposure of various power limits. Figure 15 shows that, to obtain the re-
sults of the exposures in the absence of microbubbles, regions I and II were chosen for 
estimating the changes in vascular areas. In contrast, regions III and IV were chosen for 
the case in which microbubbles were present during the FUS exposure.  

Figure 14. Tumor vasculature changes during and after NIR-PIT. (a) Illustrates the blood vessel
lumen, pseudo-colored with depth (0 µm to 480 µm) during light emitting diode (LED) ON for 30 min.
(b) Displays the corresponding 3D vessels with SV-OCT during LED ON. (c) Depicts the vessel lumen
pseudo-colored with depth within 30 min after turning off the LED. (d) Shows the corresponding 3D
vessels within 30 min post LED-OFF. Scale bar = 200 µm (adapted from [67]).
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posure to different FUS powers: (b) 1 W, (c) 5 W, (d) 10 W, and (e) 15 W. Moreover, SV images 
derived from OCT images obtained (f) before FUS exposure and during exposure to various FUS 
powers: (g) 1 W, (h) 5 W, (i) 10 W, and (j) 15 W. Regions I and II in (a) are at without microbubbles, 
regions III and IV in (f) are regions with microbubbles (adapted from [23]). 

Although SV-OCT images revealed various speckles according to the induced power 
range, the overall results verified that the intensity and distribution of the SV are propor-
tional to the FUS power. In addition to qualitative representation, quantitative results of 
SV-OCT observed the blood leakage due to the permeability enhancement induced by 
FUS. Here, SV-OCT was utilized to calculate SV due to blood flow and leakage, confirming 
the real-time applicability to assess FUS therapy. To quantitatively evaluate the change in 
the distribution of speckle variance, three regions depicted in Figure 16a (I, II, and III), 
indicated by the rectangular regions bounded by dashed lines, were chosen for estimation 
of the change in vascular area.  

 
Figure 16. 3D projection view of SV-OCT images of the mouse ear acquired (a) before FUS exposure 
and after FUS exposures of (b) 1 W, (c) 5 W, (d) 10 W, and (e) 15 W. In addition, (f,g) illustrate a 

Figure 15. SV images derived from OCT images obtained (a) before FUS exposure and during
exposure to different FUS powers: (b) 1 W, (c) 5 W, (d) 10 W, and (e) 15 W. Moreover, SV images
derived from OCT images obtained (f) before FUS exposure and during exposure to various FUS
powers: (g) 1 W, (h) 5 W, (i) 10 W, and (j) 15 W. Regions I and II in (a) are at without microbubbles,
regions III and IV in (f) are regions with microbubbles (adapted from [23]).
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Figure 16. 3D projection view of SV-OCT images of the mouse ear acquired (a) before FUS exposure
and after FUS exposures of (b) 1 W, (c) 5 W, (d) 10 W, and (e) 15 W. In addition, (f,g) illustrate a
comparison between 3D SV-OCT images before and after FUS exposure of 15 W. In (a) I, II, and III are
highlighted regions to evaluate the change in the distribution of speckle variance when FUS exposure
increased (partially adapted from [23]).

Although SV-OCT images revealed various speckles according to the induced power
range, the overall results verified that the intensity and distribution of the SV are propor-
tional to the FUS power. In addition to qualitative representation, quantitative results of
SV-OCT observed the blood leakage due to the permeability enhancement induced by
FUS. Here, SV-OCT was utilized to calculate SV due to blood flow and leakage, confirming
the real-time applicability to assess FUS therapy. To quantitatively evaluate the change
in the distribution of speckle variance, three regions depicted in Figure 16a (I, II, and III),
indicated by the rectangular regions bounded by dashed lines, were chosen for estimation
of the change in vascular area.

Laser-based treatments are frequently employed in ophthalmology for various retinal
diseases [57,71]. Among the therapies that are currently in practice, selective retina therapy
(SRT) is one of the most effective treatment methods [72]. SRT has been frequently used to
treat macula edema [73], central serous chorioretinopathy [74], and age-related macular
degeneration (AMD) [75]. Currently, operating conventional ophthalmological imaging
equipment has limitations in examining excessively laser-burnt regions and collateral
damages [76] due to laser energy, where adjusting the laser energy is crucial. To overcome
this limitation, a microsecond pulsed laser system [77] of the SRT was integrated with
SV-OCT to non-invasively examine the treatment method in real time using ex vivo bovine
eye specimens. The results of the Lee, S. et al. study, as shown in Figure 17a, reveal the
average of SV-OCT peak values as a function of pulsed laser energy. The representative
data in blue circles indicate when the laser pulses induce a lesion in the upper neural layers
and in the retinal pigment epithelium (RPE) layer. At the same time, orange color squares
represent the cases when the lesions were induced only on the RPE layer. Thus, the results
confirmed that they successfully treated the exact locations precisely. The detailed results
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of the study further confirmed that SRT was successfully monitored using SV-OCT with
distinctive signal variations corresponding to laser pulse irradiation.
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Figure 17. (a) Average peak values associated with pulse laser energy and damage range. (b) Shows
simulated temperature profiles (lines) and estimated temperatures derived from SV-OCT intensity
(shapes) at the neural retina and RPE. (c) Illustrates the simulated temperature at the neural retina
and the RPE, varying with laser energy levels for three pulse durations—2, 5, and 10 µs (adapted
from [78]).

To obtain precise assessments in ophthalmology, 2D and 3D results are essential fac-
tors [79]. Though real-time 2D SV-OCT results were feasible in most SV-OCT literature
reports, acquiring 3D voxels is challenging due to the required acquisition time of volu-
metric variances. During the acquisition of a 3D retinal image, the subject’s movement can
lead to a vague visualization of retinal vasculature [80]. Hence, to overcome this drawback,
multiple volumetric composites were acquired sequentially by integrating a motion artifact
elimination method [81]. To resolve the abovementioned drawback, automated image
registration for motion correlation using multiple sets of SV-OCT data was utilized. This
computerized image registration procedure consists of six operational steps, namely, image
segmentation [82], motion detection, and image sub-division [83], Gabor filtering [84],
global image registration or global placement of each strip relative to a starting reference
image, local deformation of the image of the vasculature, and finally, generation of a com-
posite image [85]. The above-processed image was further mosaiced in a wide field to
obtain a visualization with a wide field of view [86].

Moreover, Figure 17b,c depicts simulated temperature profiles and variations at the
neural retina and retinal pigment epithelium (RPE), respectively, illustrating the effects of
laser energy levels on retinal temperature changes. These images were also mosaiced to
facilitate wider field visualization. Figure 18 shows the acquired widefield color encoded
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and mosaiced depth visualizations of retinal layers. The results confirmed the ability of
the developed image registration method to segment retinal data to perform layer-specific
angiography using SV-OCT.
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Figure 18. Presents a wide-field mosaic of retinal layers featuring a color-encoded depth image, incor-
porating information from registered mosaics of the three main vessel layers. In this representation,
red denotes superficial vessels, while blue indicates deeper vessels. The individual, color-encoded,
depth motion-corrected images are displayed on the left, with the nasal retina positioned on the left
side and the temporal on the right within the mosaic (adapted from [15]).

Table 1 summarizes the key features and limitations of SV-OCT applications in medical
imaging and therapy. Each application, from cardiovascular imaging to scar progression
monitoring, offers unique benefits such as reduced motion artifacts, real-time tissue tem-
perature monitoring, and non-invasive assessment of tissue changes. However, these
applications also face challenges such as limited penetration depth, artifacts from tempera-
ture variations, and the need for standardized protocols. The references provide further
insight into the research and development of these OCT-based techniques and highlight
ongoing efforts to overcome limitations and improve their clinical utility.

Table 1. Summary of key features and limitations of SV-OCT incorporated methods in
biomedical applications.

Application Key Features Limitations References

Mouse Cardiovascular
Imaging

Reduced Cardio-Respiratory Motion
Simplified Stabilization Jig
Depth Resolved Imaging
High Microvascular Network Resolution

Limited Depth Penetration
Bulk Motion Sensitivity
The trade-off with Transverse Resolution
Need of post-processing

[22,30,41,50,87]

Temperature Effects on
Tissues

Non-invasive detailed imaging of tissues
under varying temperature conditions
Monitoring protein denaturation and
coagulation in real-time
Facilitating precise quantitative
measurements of temperature effects
Consistent trends across different sites

Limited penetration depth for deeper
tissue assessment.
In vivo assessments are crucial for
achieving high precision.
The potential presence of artifacts,
attributed to temperature variations.
The challenge in post-coagulation
temperature monitoring.

[55,57]
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Table 1. Cont.

Application Key Features Limitations References

Photodynamic Therapy
(PDT)

Potential advantages of SV-OCT over
fluorescence microscopy
Detection of thrombosis, a key microvascular
reaction to PDT
Confirms microvascular network changes
and early tumor reactions through histology

Artifacts from Multiple Scattering
Influence of Interframe Bulk Tissue
Motion
Emphasizes the need for in vivo human
assessments before clinical application

[20,60–63,88]

Near-Infrared
Photoimmunotherapy

(NIT-PIT):

Visualizes vascular changes during NIT-PIT
Monitors changes in vessel diameter, lumen
density, and blood volume during treatment
Contrast Agent-Free Imaging

The technical functionality of the system
needs enhancement
Imaging Speed Limitations
Limited FOV and Spatial Resolution

[66–68]

Focused Ultrasound
Treatment

Non-invasive tissue heating and ablation
Investigates temporal vascular effects during
FUS treatment
Utilizes SV-OCT for real-time assessment of
FUS therapy
Quantitative Comparison with and without
Microbubbles
2D and 3D imaging, providing a
comprehensive view of the vascular changes
Speckle Variance for Blood Leakage Detection

SV-OCT images reveal various speckles
but limited quantitative results.
Limited FOV and Spatial Resolution
Resolution Trade-offs and Image Artifacts
Data Processing Complexity
Cost Considerations
Lack of standardized protocols for
combining OCT with FUS

[23,70]

Laser-Based Treatments in
Ophthalmology

Linear Dependence of SV-OCT Signal on
Laser Energy
Ultrahigh-resolution imaging allows for
better visualization and segmentation of
individual intraretinal layers
Phantom Study Validation
Two radiation modes, classic and ramping,
are explored
Real-time feedback from SV-OCT imaging

Melanin Concentration Variability
Handling and interpreting the large
volume of data generated by SV-OCT
Validation is needed through clinical
studies and trials

[57,71]

Scar Progression
Monitoring

Non-invasive assessment of scar progression
longitudinal monitoring of scar progression
Sensitive to various tissue changes induced
by laser treatments
Quantitative assessment of scar progression

Artifact Mitigation
Variability in optical properties of ocular
tissues
Lack of Standardization of Protocols

[31,51–53,56]

The comparison mentioned above clearly demonstrates that SV-OCT holds promise as
a label-free imaging technology for therapeutic assessments across a wide range of medical
specialties. Ongoing SV-OCT research efforts and applications in therapeutic assessments
of various medical treatments mainly focus on validating SV-OCT findings through the
optimization of image analysis algorithms. Additionally, the integration of SV-OCT with
other highly sophisticated and accurate imaging technologies to construct multimodal
imaging devices has been another well-known fact that enhances clinical practice and
treatment efficacy.

4. Concluding Remarks, Future Trends, and Prospects

This comprehensive study highlights diverse applications of SV-OCT in various biomed-
ical domains. The versatility of SV-OCT is demonstrated through pre-clinical translation and
quantification capabilities for biological tissue assessment, such as effectiveness in monitoring
scar progression, examining rodent spinal cord vasculature, and assessing temperature effects
on tissues. The usage of SV-OCT for therapeutic assessments has been well-proven through
tumor treatments, cutaneous laser therapy, and focused ultrasound treatments. Moreover,
SV-OCT proves versatility in ophthalmology, enabling real-time examination of laser-based
treatments and providing essential insights into retinal vasculature. To further compare
the previously reported methods in a contrasting manner, Table 1 illustrates a summary of
key features and limitations of SV-OCT incorporated methods in biomedical applications,
showcasing the potential non-invasive and high-resolution imaging merits with significant
applications across different fields, paving the way for future biomedical research and clinical
practices. Each application, from cardiovascular imaging to scar progression monitoring,
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offers unique benefits such as reduced motion artifacts, real-time tissue temperature mon-
itoring, and non-invasive assessment of tissue changes. However, these applications also
face challenges such as limited penetration depth, artifacts from temperature variations, and
the need for standardized protocols. The references provide further insight into the research
and development of these OCT-based techniques and highlight ongoing efforts to overcome
limitations and improve their clinical utility.

Exploring the future capabilities of SV-OCT reveals novel paths for advancement that
could reshape various domains beyond current applications. In healthcare, democratized
access is one of the focal points, emphasizing miniaturization for affordability and porta-
bility to everyone. Furthermore, the rapid assessment of skin lesions, wound healing, or
ophthalmic conditions directly at the point of care facilitates timely diagnosis and treatment,
while transmission of this vital medical information via a reliable communication network
enables physicians to assess patients in remote conditions through telemedicine applica-
tions. Also, the high-resolution images of SV-OCT reveal deep tissue structures, which hold
potential significance in monitoring various neurological disorders like multiple sclerosis,
Alzheimer’s disease, or Parkinson’s disease. This label-free imaging capability allows
the visualization of alterations in brain tissue morphology, tracking disease advancement,
and evaluating the effectiveness of neuroprotective therapies. Moreover, SV-OCT might
advance the development of brain–computer interfaces through its detailed imaging of
neural tissue and connectivity patterns. In the meantime, pushing the resolution limits of
SV-OCT uncovers promising significance for future progress. Therefore, exploring novel
light sources, such as supercontinuum lasers or ultrafast lasers with adaptive optics, could
enable deeper tissue penetration and higher-resolution imaging. Moreover, SV-OCT can be
improved by adding different multimodal imaging methods, such as photoacoustic and
hyperspectral imaging. This synergy provides comprehensive information while unlocking
novel paths for diagnosis. Among the applications, measuring body functions such as
blood flow velocity, oxygen saturation, or metabolic activity in real-time through functional
imaging could enhance disease characterization. In addition, developing targeted probes
or contrast agents specifically for SV-OCT imaging could enable visualization of specific
biomarkers and early detection of diseases at the molecular level. Moreover, the high reso-
lution of SV-OCT can play a significant role in developing new brain–computer interfaces
for neurological applications and rehabilitation.

In the modern era dominated by artificial intelligence (AI), the integration of SV-OCT
with advanced technologies such as machine learning (ML) and deep learning (DL) presents
a significant prospect across various applications. AI enhances various aspects of SV-OCT,
including image acquisition, processing, analysis, and interpretation. It improves image
quality by reducing noise and automating tasks such as the segmentation of structures and
the detection of abnormalities. Using ML algorithms to reconstruct high-resolution images
from under-sampled data can significantly reduce acquisition times and improve the signal-
to-noise ratio. Through extensive training on large SV OCT datasets, DL algorithms can
accurately identify and classify lesions, enhancing diagnostic efficiency. It can be used to
obtain real-time feedback, helping surgeons with precise interventions and better outcomes.
Also, DL algorithms can be used to monitor the progression of new skin conditions,
providing valuable information for enhancing strategies. Those advanced technologies can
personalize medicine by examining specific patient information and SV-OCT images and
tailoring treatment plans according to unique disease characteristics and therapy responses.
In conclusion, the potential of the future of SV-OCT is vast. Research and development
promise revolutionary advancements, ultimately improving healthcare outcomes globally.
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