Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = power dependent photoluminescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2206 KB  
Article
Protic Ionic-Liquid Precursor Engineering with Methylammonium Acetate for Efficient and Stable Inverted Triple-Cation Perovskite Solar Cells
by Hanhong Zhang, Jun Song and Yuanlong Deng
Crystals 2026, 16(1), 19; https://doi.org/10.3390/cryst16010019 - 26 Dec 2025
Viewed by 289
Abstract
Perovskite solar cells (PSCs) have achieved remarkable efficiencies, yet further progress is limited by defect-induced nonradiative recombination and instability associated with uncontrolled crystallization. Here, we develop a protic ionic-liquid precursor engineering strategy based on methylammonium acetate (MAAc) for high-performance inverted (p–i–n) triple-cation perovskite [...] Read more.
Perovskite solar cells (PSCs) have achieved remarkable efficiencies, yet further progress is limited by defect-induced nonradiative recombination and instability associated with uncontrolled crystallization. Here, we develop a protic ionic-liquid precursor engineering strategy based on methylammonium acetate (MAAc) for high-performance inverted (p–i–n) triple-cation perovskite solar cells. Systematic variation of the MAAc content reveals that a moderate concentration yields perovskite films with enlarged grains, suppressed pinholes, and strongly reduced residual PbI2. Steady-state and time-resolved photoluminescence measurements, together with electrochemical impedance spectroscopy and light-intensity-dependent analysis, demonstrate that MAAc effectively suppresses trap-assisted nonradiative recombination, prolongs carrier lifetime, and increases recombination resistance without introducing additional transport losses. As a result, optimized inverted devices deliver a champion power conversion efficiency of 23.68% with a high open-circuit voltage of 1.21 V, a fill factor of ~0.83, negligible J–V hysteresis, and excellent device-to-device reproducibility. Moreover, the MAAc-2M devices exhibit markedly improved operational and shelf stability, retaining 73.2% of their initial efficiency after 30 days, compared to 53.2% for the control. This work establishes MAAc as an effective ionic-liquid additive that simultaneously governs crystallization and defect chemistry, offering a general route to efficient and stable inverted perovskite solar cells via protic ionic-liquid-assisted precursor engineering. Full article
(This article belongs to the Special Issue Advanced Research on Perovskite Solar Cells)
Show Figures

Figure 1

10 pages, 1620 KB  
Communication
Observation of Excitonic Doublet Structure, Biexcitons and Their Temperature Dependence in High-Quality β-InSe Single Crystals
by Tran Thi Thu Huong, Long V. Le, Nguyen Thu Loan, Man Hoai Nam, Tien-Thanh Nguyen, Thi Thuong Huyen Tran, Ung Thi Dieu Thuy, Thi Huong Nguyen and Tae Jung Kim
Materials 2025, 18(19), 4451; https://doi.org/10.3390/ma18194451 - 23 Sep 2025
Viewed by 838
Abstract
We present a systematic study of the fundamental optical properties of indium selenide (InSe) single crystals over a temperature range of 17 K to 300 K. The high structural quality of the β-polytype crystals was confirmed through X-ray diffraction, Raman spectroscopy, and high-resolution [...] Read more.
We present a systematic study of the fundamental optical properties of indium selenide (InSe) single crystals over a temperature range of 17 K to 300 K. The high structural quality of the β-polytype crystals was confirmed through X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy, demonstrating excellent crystallinity and a nearly stoichiometric In:Se ratio. The temperature-dependent absorption and photoluminescence (PL) spectra are characterized by a prominent free exciton (FX) resonance. At 17 K, the photoluminescence spectrum exhibits a distinct fine-structure splitting of the Wannier–Mott exciton, yielding a triplet state at 1.333 eV and a singlet state at 1.336 eV. Additionally, a biexciton (XX) is localized at an energy of 1.322 eV as confirmed by the nonlinear dependence of intensity on excitation power density. At low temperatures, the absorption spectrum exhibits the free exciton ground state (n = 1) at 1.338 eV together with the first excited state (n = 2) at 1.350 eV. We systematically tracked and analyzed the temperature evolution of these quasiparticle energies. These findings enhance our understanding of the intrinsic many-body interactions in high-quality InSe, providing essential parameters for advancing its applications in innovative optoelectronic and quantum light-emitting devices. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

13 pages, 2422 KB  
Article
Luminescence of (YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce Radiation-Synthesized Ceramics
by Aida Tulegenova, Victor Lisitsyn, Gulnur Nogaibekova, Renata Nemkayeva and Aiymkul Markhabayeva
Ceramics 2025, 8(3), 112; https://doi.org/10.3390/ceramics8030112 - 5 Sep 2025
Viewed by 770
Abstract
(YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce ceramics were synthesized for the first time by direct exposure of a powerful electron flux to a mixture of the [...] Read more.
(YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce ceramics were synthesized for the first time by direct exposure of a powerful electron flux to a mixture of the corresponding oxide components. Five-component ceramics were obtained from oxide powders of Y2O3, Lu2O3, Gd2O3, Al2O3, Ga2O3, and Ce2O3 in less than 1 s, without the use of any additional reagents or process stimulants. The average productivity of the synthesis process was approximately 5 g/s. The reaction yield, defined as the mass ratio of the synthesized ceramic to the initial mixture, ranged from 94% to 99%. The synthesized ceramics exhibit photoluminescence when excited by radiation in the 340–450 nm spectral range. The position of the luminescence bands depends on the specific composition, with the emission maxima located within the 525–560 nm range. It is suggested that under high radiation power density, the element exchange rate between the particles of the initial materials is governed by the formation of an ion–electron plasma. Full article
Show Figures

Figure 1

12 pages, 2645 KB  
Article
Inference of Indium Competition on the Optical Characteristics of GaAs/InxGa1−xAs Core–Shell Nanowires with Reverse Type-I Band Alignment
by Puning Wang, Huan Liu, Yubin Kang, Jilong Tang, Qun Hao and Zhipeng Wei
Materials 2025, 18(17), 4030; https://doi.org/10.3390/ma18174030 - 28 Aug 2025
Viewed by 765
Abstract
One-dimensional GaAs/InGaAs core–shell nanowires (NWs) with reverse type-I band alignment are promising candidates for next-generation optoelectronic devices. However, the influence of composition gradients and atomic interdiffusion at the core–shell interface on their photoluminescence (PL) behavior remains to be clarified. In this work, GaAs/In [...] Read more.
One-dimensional GaAs/InGaAs core–shell nanowires (NWs) with reverse type-I band alignment are promising candidates for next-generation optoelectronic devices. However, the influence of composition gradients and atomic interdiffusion at the core–shell interface on their photoluminescence (PL) behavior remains to be clarified. In this work, GaAs/InxGa1−xAs NW arrays with different indium (In) compositions were prepared using molecular beam epitaxy (MBE), and their band alignment and optical responses were systematically investigated through power and temperature-dependent PL spectra. The experiments reveal that variations in the In concentration gradient modify the characteristics of potential wells within the composition graded layer (CGL), as reflected by distinct PL emission features and thermal activation energies. At elevated temperatures, carrier escape from these wells is closely related to the observed PL saturation and emission quenching. These results provide experimental insight into the relationship between composition gradients, carrier dynamics, and emission properties in GaAs/InGaAs core–shell NWs, making them promising candidates for high-performance nanoscale optoelectronic device design. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

16 pages, 2018 KB  
Article
Toward Sustainable Solar Energy: Predicting Recombination Losses in Perovskite Solar Cells with Deep Learning
by Syed Raza Abbas, Bilal Ahmad Mir, Jihyoung Ryu and Seung Won Lee
Sustainability 2025, 17(12), 5287; https://doi.org/10.3390/su17125287 - 7 Jun 2025
Cited by 2 | Viewed by 2536
Abstract
Perovskite solar cells (PSCs) are emerging as leading candidates for sustainable energy generation due to their high power conversion efficiencies and low fabrication costs. However, their performance remains constrained by non-radiative recombination losses primarily at grain boundaries, interfaces, and within the perovskite bulk [...] Read more.
Perovskite solar cells (PSCs) are emerging as leading candidates for sustainable energy generation due to their high power conversion efficiencies and low fabrication costs. However, their performance remains constrained by non-radiative recombination losses primarily at grain boundaries, interfaces, and within the perovskite bulk that are difficult to characterize under realistic operating conditions. Traditional methods such as photoluminescence offer valuable insights but are complex, time-consuming, and often lack scalability. In this study, we present a novel Long Short-Term Memory (LSTM)-based deep learning framework for dynamically predicting dominant recombination losses in PSCs. Trained on light intensity-dependent current–voltage (J–V) characteristics, the proposed model captures temporal behavior in device performance and accurately distinguishes between grain boundary, interfacial, and band-to-band recombination mechanisms. Unlike static ML approaches, our model leverages sequential data to provide deeper diagnostic capability and improved generalization across varying conditions. This enables faster, more accurate identification of efficiency limiting factors, guiding both material selection and device optimization. While silicon technologies have long dominated the photovoltaic landscape, their high-temperature processing and rigidity pose limitations. In contrast, PSCs—especially when combined with intelligent diagnostic tools like our framework—offer enhanced flexibility, tunability, and scalability. By automating recombination analysis and enhancing predictive accuracy, our framework contributes to the accelerated development of high-efficiency PSCs, supporting the global transition to clean, affordable, and sustainable energy solutions. Full article
Show Figures

Figure 1

16 pages, 3307 KB  
Article
Synaptic Plasticity and Memory Retention in ZnO–CNT Nanocomposite Optoelectronic Synaptic Devices
by Seung Hun Lee, Dabin Jeon and Sung-Nam Lee
Materials 2025, 18(10), 2293; https://doi.org/10.3390/ma18102293 - 15 May 2025
Cited by 8 | Viewed by 1191
Abstract
This study presents the fabrication and characterization of ZnO–CNT composite-based optoelectronic synaptic devices via a sol–gel process. By incorporating various concentrations of CNTs (0–2.0 wt%) into ZnO thin films, we investigated their effects on synaptic behaviors under ultraviolet (UV) stimulation. The CNT addition [...] Read more.
This study presents the fabrication and characterization of ZnO–CNT composite-based optoelectronic synaptic devices via a sol–gel process. By incorporating various concentrations of CNTs (0–2.0 wt%) into ZnO thin films, we investigated their effects on synaptic behaviors under ultraviolet (UV) stimulation. The CNT addition enhanced the electrical and optical performance by forming a p–n heterojunction with ZnO, which promoted charge separation and suppressed recombination. As a result, the 1.5 wt% CNT device exhibited the highest excitatory postsynaptic current (EPSC), improved paired-pulse facilitation, and prolonged memory retention. Learning–forgetting cycles revealed that repeated stimulation reduced the number of pulses required for relearning while extending the forgetting time, mimicking biological memory reinforcement. Energy consumption per pulse was estimated at 16.34 nJ, suggesting potential for low-power neuromorphic applications. A 3 × 3 device array was also employed for visual memory simulation, showing spatially controllable and stable memory states depending on CNT content. To support these findings, structural and optical analyses were conducted using scanning electron microscopy (SEM), UV-visible absorption spectroscopy, photoluminescence (PL) spectroscopy, and Raman spectroscopy. These findings demonstrate that the synaptic characteristics of ZnO-based devices can be finely tuned through CNT incorporation, providing a promising pathway for the development of energy-efficient and adaptive optoelectronic neuromorphic systems. Full article
Show Figures

Figure 1

21 pages, 3887 KB  
Article
Analyzing Structural Optical and Phonon Characteristics of Plasma-Assisted Molecular-Beam Epitaxy-Grown InN/Al2O3 Epifilms
by Devki N. Talwar, Li Chyong Chen, Kuei Hsien Chen and Zhe Chuan Feng
Nanomaterials 2025, 15(4), 291; https://doi.org/10.3390/nano15040291 - 14 Feb 2025
Cited by 1 | Viewed by 1442
Abstract
The narrow bandgap InN material, with exceptional physical properties, has recently gained considerable attention, encouraging many scientists/engineers to design infrared photodetectors, light-emitting diodes, laser diodes, solar cells, and high-power electronic devices. The InN/Sapphire samples of different film thicknesses that we have used in [...] Read more.
The narrow bandgap InN material, with exceptional physical properties, has recently gained considerable attention, encouraging many scientists/engineers to design infrared photodetectors, light-emitting diodes, laser diodes, solar cells, and high-power electronic devices. The InN/Sapphire samples of different film thicknesses that we have used in our methodical experimental and theoretical studies are grown by plasma-assisted molecular-beam epitaxy. Hall effect measurements on these samples have revealed high-electron-charge carrier concentration, η. The preparation of InN epifilms is quite sensitive to the growth temperature T, plasma power, N/In ratio, and pressure, P. Due to the reduced distance between N atoms at a higher P, one expects the N-flow kinetics, diffusion, surface components, and scattering rates to change in the growth chamber which might impact the quality of InN films. We believe that the ionized N, rather than molecular, or neutral species are responsible for controlling the growth of InN/Sapphire epifilms. Temperature- and power-dependent photoluminescence measurements are performed, validating the bandgap variation (~0.60–0.80 eV) of all the samples. High-resolution X-ray diffraction studies have indicated that the increase in growth temperature caused the perceived narrow peaks in the X-ray-rocking curves, leading to better-quality films with well-ordered crystalline structures. Careful simulations of the infrared reflectivity spectra provided values of η and mobility μ, in good accordance with the Hall measurements. Our first-order Raman scattering spectroscopy study has not only identified the accurate phonon values of InN samples but also revealed the low-frequency longitudinal optical phonon plasmon-coupled mode in excellent agreement with theoretical calculations. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

10 pages, 1806 KB  
Article
Controlled Oxidation of Metallic Molybdenum Patterns via Joule Heating for Localized MoS2 Growth
by Norah Aldosari, William Poston, Gregory Jensen, Maryam Bizhani, Muhammad Tariq and Eric Stinaff
Nanomaterials 2025, 15(2), 131; https://doi.org/10.3390/nano15020131 - 16 Jan 2025
Cited by 2 | Viewed by 1665
Abstract
High-quality two-dimensional transition metal dichalcogenides (2D TMDs), such as molybdenum disulfide (MoS2), have significant potential for advanced electrical and optoelectronic applications. This study introduces a novel approach to control the localized growth of MoS2 through the selective oxidation of bulk [...] Read more.
High-quality two-dimensional transition metal dichalcogenides (2D TMDs), such as molybdenum disulfide (MoS2), have significant potential for advanced electrical and optoelectronic applications. This study introduces a novel approach to control the localized growth of MoS2 through the selective oxidation of bulk molybdenum patterns using Joule heating, followed by sulfurization. By passing an electric current through molybdenum patterns under ambient conditions, localized heating induced the formation of a molybdenum oxide layer, primarily MoO2 and MoO3, depending on the applied power and heating duration. These oxides act as nucleation sites for the subsequent growth of MoS2. The properties of the grown MoS2 films were investigated using Raman spectroscopy and photoluminescence measurements, showing promising film quality. This study demonstrates that Joule heating can be an effective method for precise control over TMD growth, offering a scalable approach for producing high-quality 2D materials that have the potential to be integrated into next-generation electrical and optoelectronic technologies. Full article
(This article belongs to the Special Issue Functional Two-Dimensional Materials, Thin Films and Coatings)
Show Figures

Figure 1

8 pages, 4545 KB  
Article
Study of Thermalization Mechanisms of Hot Carriers in BABr-Added MAPbBr3 for the Top Layer of Four-Junction Solar Cells
by Yi Zhang, Huilong Chen, Junfeng Qu, Jiayu Zhang and Gavin Conibeer
Nanomaterials 2024, 14(24), 2041; https://doi.org/10.3390/nano14242041 - 19 Dec 2024
Cited by 2 | Viewed by 1403
Abstract
The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient (Q [...] Read more.
The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient (Qth) has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE. However, there have been no studies calculating the Qth of MAPbBr3 quantum dots so far. In this work, the Qth values of MAPbBr3 quantum dots and after BABr addition were calculated based on power-dependent steady-state photoluminescence (PD-SSPL). Their peak positions in PD-SSPL increased from 2.37 to 2.71 eV after adding BABr. The fitting shows that, after adding BABr, the Qth decreased from 2.64 ± 0.29 mW·K−1·cm−2 to 2.36 ± 0.25 mW·K−1·cm−2, indicating a lower relaxation rate. This is because BABr passivates surface defects, slowing down the carrier thermalization process. This work lays the foundation for the theoretical framework combining perovskite materials, which suggests that the appropriate passivation of BABr has the potential to further reduce Qth and make MAPbBr3 QDs with BABr modified more suitable as the top absorption layer of HCMJCs. Full article
Show Figures

Figure 1

8 pages, 2451 KB  
Article
Large-Scale Synthesis of Carbon Dots Driven by Schiff Base Reaction at Room Temperature
by Jifen Shi, Shuai Chang, Yating Gao, Jian Lv, Ruocan Qian, Binbin Chen and Dawei Li
Inorganics 2024, 12(12), 310; https://doi.org/10.3390/inorganics12120310 - 27 Nov 2024
Cited by 2 | Viewed by 2234
Abstract
Photoluminescent carbon dots (CDs) have received increasing attention because of their admirable photophysical performances. The current strategies for synthesizing CDs typically require high energy consumption levels, and the ability to synthesize CDs at ambient temperature would be highly desirable. Herein, we design an [...] Read more.
Photoluminescent carbon dots (CDs) have received increasing attention because of their admirable photophysical performances. The current strategies for synthesizing CDs typically require high energy consumption levels, and the ability to synthesize CDs at ambient temperature would be highly desirable. Herein, we design an energy-efficient approach to synthesize CDs through a Schiff base crosslinking between 2,5-dihydroxy-1,4-benzoquinone and tetraethylenepentamine at room temperature. The obtained CDs possess maximum photoluminescence (PL) emissions of 492 nm. Moreover, the proposed CDs possess good stability and a concentration-dependent PL and their maximum emissions can redshift from 492 to 621 nm as the CDs concentration increases. Because of their good luminescent properties, the CDs can be employed as optical probes for doxorubicin detection using the inner filter effect. This study develops a powerful approach for the large-scale synthesis of CDs with a superior performance. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials, 2nd Edition)
Show Figures

Graphical abstract

11 pages, 2387 KB  
Article
Excitation-Power-Dependent Color Tuning in a Single Sn-Doped CdS Nanowire
by Ye Tian, Shangfei Yao and Bingsuo Zou
Molecules 2024, 29(22), 5389; https://doi.org/10.3390/molecules29225389 - 15 Nov 2024
Cited by 3 | Viewed by 1125
Abstract
Multicolor emission and dynamic color tuning with large spectral range are challenging to realize but critically important in many areas of technology and daily life, such as general lighting, display, multicolor detection and multi-band communication. Herein, we report an excitation-power-dependent color-tuning emission from [...] Read more.
Multicolor emission and dynamic color tuning with large spectral range are challenging to realize but critically important in many areas of technology and daily life, such as general lighting, display, multicolor detection and multi-band communication. Herein, we report an excitation-power-dependent color-tuning emission from an individual Sn-doped CdS nanowire with a large spectral range and continuous color tuning. Its photoluminescence (PL) spectrum shows a broad trap-state emission band out of Sn dopants, which is superposed by whispering-gallery (WG) microcavity due to the nanostructure size and its structure, besides the CdS band-edge emission. By simply changing the excitation power from 0.25 to 1.36 mW, we demonstrate that the typical Sn-doped CdS nanowire with the weight ratio of 10:1 of CdS and SnO2, the emission color can change from red to orange to yellow to green. In view of the stable properties and large spectral range, the Sn-doped CdS nanowires are very promising potential candidates in nanoscale optoelectronic devices. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

14 pages, 3618 KB  
Article
Original Blue Light-Emitting Diphenyl Sulfone Derivatives as Potential TADF Emitters for OLEDs
by Margarita Anna Zommere, Natalija Tetervenoka, Anna Pidluzhna, Raitis Grzibovskis, Dovydas Blazevicius, Gintare Krucaite, Daiva Tavgeniene, Saulius Grigalevicius and Aivars Vembris
Coatings 2024, 14(10), 1294; https://doi.org/10.3390/coatings14101294 - 11 Oct 2024
Cited by 2 | Viewed by 2213
Abstract
Organic light-emitting diodes (OLEDs) have emerged as one of the dominant technologies in displays due to their high emission efficiency and low power consumption. However, the development of blue color emitters has fallen behind that of red and green emitters, posing challenges in [...] Read more.
Organic light-emitting diodes (OLEDs) have emerged as one of the dominant technologies in displays due to their high emission efficiency and low power consumption. However, the development of blue color emitters has fallen behind that of red and green emitters, posing challenges in achieving optimal efficiency, stability, and accessibility. In this context, thermally activated delayed fluorescence (TADF) emitters hold promise as a potential solution for cost-effective, exceptionally efficient, and stable blue OLEDs due to their potential high efficiency and stability. TADF is a principle where certain organic materials can efficiently convert both singlet and triplet excitons, theoretically achieving up to 100% internal quantum efficiency. This research focused on diphenyl sulfone derivatives with carbazole groups as TADF compounds. Quantum chemical calculations and photoluminescence properties show the potential TADF properties of the molecules. New materials exhibit glass transition temperatures that would classify them as molecular glasses. Depending on the structure of the molecule, the photoluminescence emission is in the blue or green spectral region. Organic light-emitting diodes were fabricated from neat thin films of emitters by the wet casting method. The best performance in the deep blue emission region was achieved by a device with a turn-on voltage of 4 V and a maximum brightness of 178 cd/m2. In the blue-green emission region, the best performance was observed by an OLED with a turn-on voltage of 3.5 V, reaching a maximum brightness of 660 cd/m2. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

16 pages, 3426 KB  
Article
Maximizing Upconversion Luminescence of Co-Doped CaF₂:Yb, Er Nanoparticles at Low Laser Power for Efficient Cellular Imaging
by Neha Dubey, Sonali Gupta, Sandeep B. Shelar, K. C. Barick and Sudeshna Chandra
Molecules 2024, 29(17), 4177; https://doi.org/10.3390/molecules29174177 - 3 Sep 2024
Cited by 11 | Viewed by 3642
Abstract
Upconversion nanoparticles (UCNPs) are well-reported for bioimaging. However, their applications are limited by low luminescence intensity. To enhance the intensity, often the UCNPs are coated with macromolecules or excited with high laser power, which is detrimental to their long-term biological applications. Herein, we [...] Read more.
Upconversion nanoparticles (UCNPs) are well-reported for bioimaging. However, their applications are limited by low luminescence intensity. To enhance the intensity, often the UCNPs are coated with macromolecules or excited with high laser power, which is detrimental to their long-term biological applications. Herein, we report a novel approach to prepare co-doped CaF2:Yb3+ (20%), Er3+ with varying concentrations of Er (2%, 2.5%, 3%, and 5%) at ambient temperature with minimal surfactant and high-pressure homogenization. Strong luminescence and effective red emission of the UCNPs were seen even at low power and without functionalization. X-ray diffraction (XRD) of UCNPs revealed the formation of highly crystalline, single-phase cubic fluorite-type nanostructures, and transmission electron microscopy (TEM) showed co-doped UCNPs are of ~12 nm. The successful doping of Yb and Er was evident from TEM–energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy (XPS) studies. Photoluminescence studies of UCNPs revealed the effect of phonon coupling between host lattice (CaF2), sensitizer (Yb3+), and activator (Er3+). They exhibited tunable upconversion luminescence (UCL) under irradiation of near-infrared (NIR) light (980 nm) at low laser powers (0.28–0.7 W). The UCL properties increased until 3% doping of Er3+ ions, after which quenching of UCL was observed with higher Er3+ ion concentration, probably due to non-radiative energy transfer and cross-relaxation between Yb3+-Er3+ and Er3+-Er3+ ions. The decay studies aligned with the above observation and showed the dependence of UCL on Er3+ concentration. Further, the UCNPs exhibited strong red emission under irradiation of 980 nm light and retained their red luminescence upon internalization into cancer cell lines, as evident from confocal microscopic imaging. The present study demonstrated an effective approach to designing UCNPs with tunable luminescence properties and their capability for cellular imaging under low laser power. Full article
Show Figures

Graphical abstract

11 pages, 2495 KB  
Article
Photophysical Properties, Stability and Microstructures of Temperature-Dependent Evolution of Methylammonium Lead Bromide Perovskite
by Yuming Lai, Lin Ma, Shi Zheng, Xiao Li, Shuangyu Cai and Hai Chang
Crystals 2024, 14(7), 589; https://doi.org/10.3390/cryst14070589 - 27 Jun 2024
Cited by 2 | Viewed by 2351
Abstract
Organic/inorganic hybrid perovskite materials, such as CH3NH3PbX3 (X = I, Br), have attracted the attention of the scientific community due to their excellent properties such as a widely tunable bandgap, high optical absorption coefficient, excellent power [...] Read more.
Organic/inorganic hybrid perovskite materials, such as CH3NH3PbX3 (X = I, Br), have attracted the attention of the scientific community due to their excellent properties such as a widely tunable bandgap, high optical absorption coefficient, excellent power conversion efficiency, etc. The exposure of perovskite solar cells and photovoltaic devices to heat can significantly degrade their performance. Therefore, elucidating their temperature-dependent optical properties is essential for performance optimization of perovskite solar cells. We synthesized CH3NH3PbBr3 (MAPbBr3) single crystals through the polymer-controlled nucleation route and investigated the optical properties and molecular structure evolution of them with temperature. Through temperature evolution photoluminescence (PL) spectroscopy, we found that the fluorescence intensity was greatly affected by increasing the temperature, with an asymmetric PL profile suggesting that more captured excitons undergo radiative complexation. The optical photographs showed that the color of MAPbBr3 single crystals faded. Raman spectroscopy revealed that during the heating process, the structure of MAPbBr3 was still preserved at 90 °C since all of the Raman bands were very clear. When the temperature increased to 120 °C, the Raman bands of the internal modes became very weak. On further heating, the inorganic framework on sample’s surface started to disintegrate above 210 °C. During the heating process, the PL spectra exhibited significant changes in spectral intensity, peak position and Full Width Half Maximum (FWHM). The PL spectral intensity decreased abruptly with increasing temperature. The peak position was blue shifted with increasing temperature, and the peak shape showed an obvious asymmetry. The FMWH of the PL spectra was gradually broadened with the increase in the temperature, and there was a sharp increase from 270 °C to 300 °C. These variations in the PL spectra with temperature indicate that the optical properties of MAPbBr3 are greatly affected by temperature, which in turn affects the application of MAPbBr3 in fields such as optical devices. These results may be instructive for the application of MAPbBr3. Full article
(This article belongs to the Special Issue Advances in Halide Perovskites)
Show Figures

Figure 1

17 pages, 3251 KB  
Article
Bicarbazole-Benzophenone Based Twisted Donor-Acceptor Derivatives as Potential Blue TADF Emitters for OLEDs
by Iram Siddiqui, Prakalp Gautam, Dovydas Blazevicius, Jayachandran Jayakumar, Sushanta Lenka, Daiva Tavgeniene, Ernestas Zaleckas, Saulius Grigalevicius and Jwo-Huei Jou
Molecules 2024, 29(7), 1672; https://doi.org/10.3390/molecules29071672 - 8 Apr 2024
Cited by 7 | Viewed by 2819
Abstract
Over the past few decades, organic light-emitting diodes (OLEDs) find applications in smartphones, televisions, and the automotive sector. However, this technology is still not perfect, and its application for lighting purposes has been slow. For further development of the OLEDs, we designed twisted [...] Read more.
Over the past few decades, organic light-emitting diodes (OLEDs) find applications in smartphones, televisions, and the automotive sector. However, this technology is still not perfect, and its application for lighting purposes has been slow. For further development of the OLEDs, we designed twisted donor-acceptor-type electroactive bipolar derivatives using benzophenone and bicarbazole as building blocks. Derivatives were synthesized through the reaction of 4-fluorobenzophenone with various mono-alkylated 3,3′-bicarbazoles. We have provided a comprehensive structural characterization of these compounds. The new materials are amorphous and exhibit suitable glass transition temperatures ranging from 57 to 102 °C. They also demonstrate high thermal stability, with decomposition temperatures reaching 400 °C. The developed compounds exhibit elevated photoluminescence quantum yields (PLQY) of up to 75.5% and favourable HOMO-LUMO levels, along with suitable triplet-singlet state energy values. Due to their good solubility and suitable film-forming properties, all the compounds were evaluated as blue TADF emitters dispersed in commercial 4,4′-bis(N-carbazolyl)-1,10-biphenyl (CBP) host material and used for the formation of emissive layer of organic light-emitting diodes (OLEDs) in concentration-dependent experiments. Out of these experiments, the OLED with 15 wt% of the emitting derivative 4-(9′-{2-ethylhexyl}-[3,3′]-bicarbazol-9-yl)benzophenone exhibited superior performance. It attained a maximum brightness of 3581 cd/m2, a current efficacy of 5.7 cd/A, a power efficacy of 4.1 lm/W, and an external quantum efficacy of 2.7%. Full article
(This article belongs to the Special Issue Novel Functional Materials: Design, Modeling and Characterization)
Show Figures

Figure 1

Back to TopTop