Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = powder-feeding device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3409 KiB  
Article
Controlled and Safe Hydrogen Generation from Waste Aluminum and Water, a New Approach to Hydrogen Generation
by Xavier Salueña-Berna, Marc Marín-Genescà, Ramon Mujal Rosas and Manuel-Jose Lis Arias
Materials 2024, 17(23), 5885; https://doi.org/10.3390/ma17235885 - 30 Nov 2024
Viewed by 2058
Abstract
A new method is proposed to generate hydrogen in situ at low pressure from powder-pressed recycled aluminum turnings activated with small amounts of NaOH and drops of water. The contribution of this system is that the user can obtain small flows of high-purity [...] Read more.
A new method is proposed to generate hydrogen in situ at low pressure from powder-pressed recycled aluminum turnings activated with small amounts of NaOH and drops of water. The contribution of this system is that the user can obtain small flows of high-purity hydrogen (>99%) to charge their portable electronic devices in remote places, in a simple, controlled, and safe way, since only water is used. Test tubes that contain tiny amounts of NaOH on their surface can be transported and used without contact. In addition to being a safer system, a smaller amount of NaOH and water is needed compared to other systems, there is no need to preheat the water, and the system can even generate heat. As the feeding is drop by drop, the hydrogen flow can be easily controlled by manual or automatic dosing. The waste obtained is solid and contains mostly aluminum hydroxide with some NaOH and impurities from the waste of origin, which are easy to sell and recycle. A study has been carried out to optimize the type of test tubes and establish critical parameters. The results show that a constant and controllable flow rate of hydrogen can be obtained depending on the drip frequency where the chemical reaction predominates over diffusion, that the optimal amount of NaOH is 20 wt%, that a finer grain size can increase the H2 yield with respect to the stoichiometric value but reduces the instantaneous flow with respect to that obtained with larger grains, and that it is very important to control the density and the impurities to increase porosity and therefore water diffusion. The estimated cost of the hydrogen produced is 3.15 EUR/kgH2 and an energy density of 1.12 kWh/kg was achieved with a test tube of 92% aluminum purity and 20 wt% NaOH. Full article
Show Figures

Figure 1

14 pages, 8622 KiB  
Article
Design and Numerical Analysis of an Inside-Beam Powder Feeding Nozzle for Wide-Band Laser Cladding
by Lin Lu, Tuo Shi, Gang Li, Chao Wei and Geyan Fu
Materials 2024, 17(1), 12; https://doi.org/10.3390/ma17010012 - 19 Dec 2023
Cited by 3 | Viewed by 1547
Abstract
Wide-band laser cladding technology has emerged as a solution to the limitations of traditional cladding techniques, which are small single-path dimensions and low processing efficiency. The existing wide-band cladding technology presents challenges related to the high precision required for the laser–powder coupling and [...] Read more.
Wide-band laser cladding technology has emerged as a solution to the limitations of traditional cladding techniques, which are small single-path dimensions and low processing efficiency. The existing wide-band cladding technology presents challenges related to the high precision required for the laser–powder coupling and the significant powder-divergence phenomenon. Based on the inside-beam powder-feeding technology, a wide-band powder-feeding nozzle was designed using the multi-channel powder flow shaping method. The size of the powder spot obtained at the processing location can reach 40 mm × 3 mm. A computational fluid dynamics analysis using the FLUENT software was conducted to investigate the impact of the nozzle’s structural parameters on the powder distribution. It was determined that the optimal configuration was achieved when the powder-feeding channel was 8, and the transverse and longitudinal dimensions for the collimating gas outlet were 0.5 mm and 1 mm, respectively. Among the process parameters, an increase in the carrier gas flow rate was found to effectively enhance the stability of powder transportation. However, the powder feed rate had minimal impact on the powder concentration distribution, and the collimating gas flow rate appeared to have a minimal effect on the divergence angle of the powder stream. Wide-band laser cladding experiments were conducted using the designed powder-feeding nozzle, and a single-path cladding with a width of 39.96 mm was finally obtained. Full article
Show Figures

Figure 1

10 pages, 1070 KiB  
Article
Device for Controlled Production of Hydrogen
by Alfonso Pozio
Hydrogen 2023, 4(3), 434-443; https://doi.org/10.3390/hydrogen4030029 - 15 Jul 2023
Viewed by 2175
Abstract
In this work, the production of hydrogen from the sodium borohydride (NaBH4) reaction was studied using an experimental bench test in a passive device operating with or without minimal external energy input. The system consists of a reactor in which a [...] Read more.
In this work, the production of hydrogen from the sodium borohydride (NaBH4) reaction was studied using an experimental bench test in a passive device operating with or without minimal external energy input. The system consists of a reactor in which a mixture based on sodium borohydride powders and an organic acid is confined. A flow of water feeds the area in which the solid mixture is confined, which undergoes a hydrolysis reaction and this generates gaseous hydrogen. The hydrogen thus produced, already saturated with water vapor, is particularly suitable for feeding polymer electrolyte fuel cells for the production of electricity because it does not require further humidification. The borohydride–organic acid coupling studied for this device, and its chemical process, provides high reaction and conversion kinetics, presenting remarkable chemical stability over time. Full article
(This article belongs to the Topic Hydrogen Generation, Storage, and Utilization)
Show Figures

Figure 1

13 pages, 3109 KiB  
Article
Handheld Fluorescence Spectrometer Enabling Sensitive Aflatoxin Detection in Maize
by Lien Smeesters, Thomas Kuntzel, Hugo Thienpont and Ludovic Guilbert
Toxins 2023, 15(6), 361; https://doi.org/10.3390/toxins15060361 - 27 May 2023
Cited by 15 | Viewed by 4068
Abstract
Aflatoxins are among the main carcinogens threatening food and feed safety while imposing major detection challenges to the agrifood industry. Today, aflatoxins are typically detected using destructive and sample-based chemical analysis that are not optimally suited to sense their local presence in the [...] Read more.
Aflatoxins are among the main carcinogens threatening food and feed safety while imposing major detection challenges to the agrifood industry. Today, aflatoxins are typically detected using destructive and sample-based chemical analysis that are not optimally suited to sense their local presence in the food chain. Therefore, we pursued the development of a non-destructive optical sensing technique based on fluorescence spectroscopy. We present a novel compact fluorescence sensing unit, comprising both ultraviolet excitation and fluorescence detection in a single handheld device. First, the sensing unit was benchmarked against a validated research-grade fluorescence setup and demonstrated high sensitivity by spectrally separating contaminated maize powder samples with aflatoxin concentrations of 6.6 µg/kg and 11.6 µg/kg. Next, we successfully classified a batch of naturally contaminated maize kernels within three subsamples showing a total aflatoxin concentration of 0 µg/kg, 0.6 µg/kg and 1647.8 µg/kg. Consequently, our novel sensing methodology presents good sensitivity and high potential for integration along the food chain, paving the way toward improved food safety. Full article
(This article belongs to the Special Issue Non-destructive Optical Sensing of Toxins in Agrifood Applications)
Show Figures

Figure 1

14 pages, 1107 KiB  
Article
Factors Influencing Biofilm Formation by Salmonella enterica sv. Typhimurium, E. cloacae, E. hormaechei, Pantoea spp., and Bacillus spp. Isolated from Human Milk Determined by PCA Analysis
by Mateusz Gemba, Elżbieta Rosiak, Zuzanna Nowak-Życzyńska, Paulina Kałęcka, Elżbieta Łodykowska and Danuta Kołożyn-Krajewska
Foods 2022, 11(23), 3862; https://doi.org/10.3390/foods11233862 - 30 Nov 2022
Cited by 8 | Viewed by 2509
Abstract
Bacteria enter milk during poor hygiene practices and can form a biofilm on surfaces that come into contact with human milk. The presence of a biofilm increases the risk of infections among newborns as bacteria protected by biofilm are resistant to washing and [...] Read more.
Bacteria enter milk during poor hygiene practices and can form a biofilm on surfaces that come into contact with human milk. The presence of a biofilm increases the risk of infections among newborns as bacteria protected by biofilm are resistant to washing and disinfection processes. The formation of the biofilm depends on the microbial species, environmental conditions, and the specific materials colonized. The aim of this study is to analyze the effects of factors such as temperature, incubation time, and initial cell concentration on biofilm formation by pathogenic bacteria isolated from human milk on model hydrophobic polystyrene surfaces. Model studies confirm that pathogenic bacteria appearing in human milk as a result of cross-contamination tend to form a biofilm. The majority of isolates formed biofilm at both 25 and 37 °C after 12 h at 1 × 103 CFU/mL inoculum count. Multivariate principal component analysis (PCA) showed that at lower temperatures, biofilm formation by bacterial isolates was the main determinant of biofilm formation, other factors were less important; however, at 37 °C, time was a factor in biofilm formation. The model research performed underlines the importance of maintaining the proper hygiene of rooms, surfaces, and devices for expressing, storing, and preparing mothers’ milk and powdered infant formula (PIF) in facilities responsible for feeding newborns and premature babies. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

17 pages, 5653 KiB  
Article
Parametric Studies on Finishing of AZ31B Magnesium Alloy with Al2O3 Magnetic Abrasives Prepared by Combining Plasma Molten Metal Powder with Sprayed Abrasive Powder
by Zhihao Li, Yugang Zhao, Guangxin Liu, Chen Cao, Qian Liu, Dandan Zhao, Xiajunyu Zhang, Chuang Zhao and Hanlin Yu
Micromachines 2022, 13(9), 1369; https://doi.org/10.3390/mi13091369 - 23 Aug 2022
Cited by 4 | Viewed by 2232
Abstract
High-performance iron-based Al2O3 magnetic abrasive powder (MAP) prepared by combining plasma molten metal powder with sprayed abrasive powder is used for magnetic abrasive finishing (MAF) of AZ31B magnesium alloy to remove surface defects such as creases, cracks, scratches, and pits [...] Read more.
High-performance iron-based Al2O3 magnetic abrasive powder (MAP) prepared by combining plasma molten metal powder with sprayed abrasive powder is used for magnetic abrasive finishing (MAF) of AZ31B magnesium alloy to remove surface defects such as creases, cracks, scratches, and pits generated during the manufacturing process of the workpiece, and to reduce surface roughness and improve its wear and corrosion resistance. In order to solve the problem of magnetic abrasive powder splash in the MAF process, the force analysis of the MAP in the processing area is conducted, and a composite magnetic pole processing device was designed and simulated to compare the effects of both devices on MAF, confirming the feasibility of composite magnetic pole grinding. Then, experiments have been designed using Response Surface Methodology (RSM) to investigate the effect of four factors-magnetic pole rotation speed, grinding gap, magnetic pole feed rate, magnetic abrasive filling quantity-on surface roughness and the interactions between them. The minimum surface roughness value that can be obtained is used as the index for parameter optimization, and the optimized parameters are used for experiments, and the results show that the established surface roughness model has good predictive ability. Full article
(This article belongs to the Special Issue Ultra-Precision Manufacturing Technology)
Show Figures

Figure 1

11 pages, 2772 KiB  
Article
A Novel Centrifugal Filtration Device
by Chia-Cheng Lin and Jung-Ming Wu
Separations 2022, 9(5), 129; https://doi.org/10.3390/separations9050129 - 21 May 2022
Cited by 6 | Viewed by 6207
Abstract
In the proposed centrifugal filtration device, a filter is mounted in the center of the centrifugal chamber. The particles move towards the centrifuge wall away from the filter under centrifugal force, so a filtration cake is unlikely to accumulate here. The working fluid [...] Read more.
In the proposed centrifugal filtration device, a filter is mounted in the center of the centrifugal chamber. The particles move towards the centrifuge wall away from the filter under centrifugal force, so a filtration cake is unlikely to accumulate here. The working fluid is injected continuously, so the feed pressure is higher than the discharge pressure, which compels the light-phase fluid to leave through the filter as filtrate. The filtrate flux rate and the movement of particles in the centrifugal chamber of the proposed filtration device were investigated using different powder particle sizes, concentrations of working fluid, centrifugal chamber rotation speeds, and filters. With a higher centrifugal chamber rotation speed, the centrifugal force acting on the particles in the centrifugal chamber was stronger, and the particles were less likely to adhere to the central filter; hence, a larger amount of filtrate was produced. Full article
(This article belongs to the Special Issue Research on Separation Performance of Separator)
Show Figures

Figure 1

15 pages, 13710 KiB  
Article
Synthesis of Multiscale Ultrafine Copper Powder via Radio Frequency Induction Coupled Plasma Treatment
by Haibo Wu, Wei Zhang, Shenghan Gao, Tiejun Li and Bin Liu
Metals 2022, 12(3), 490; https://doi.org/10.3390/met12030490 - 14 Mar 2022
Viewed by 3267
Abstract
Nano-sized spherical copper powder has important applications in the fields of microelectronic devices, highly efficient catalysts and lubricant additives. In this study, nano-sized and micron-sized spherical copper powders were simultaneously prepared by radio frequency (RF) induction coupled plasma technology. The effects of processing [...] Read more.
Nano-sized spherical copper powder has important applications in the fields of microelectronic devices, highly efficient catalysts and lubricant additives. In this study, nano-sized and micron-sized spherical copper powders were simultaneously prepared by radio frequency (RF) induction coupled plasma technology. The effects of processing parameters on the powder properties were studied. The results show that by inputting copper powder with D50 = 34.6 μm, nano-sized spherical powder with a particle size of 10–220 nm and micron-sized spherical powder with a particle size of 4.0–144.0 μm were obtained. The ratio of the nano-sized powder reached 86.4 wt.%. The optimal processing parameters are as follows: powder feed rate is 5.5 g/min, carrier gas flow rate is 5–6 L/min and reaction chamber pressure is 15 Psia. When the carrier gas flow rate is 6 L/min, in the plasma zone (>10,000 K), the powder with particle size <42.0 μm is completely vaporized, which forms nano-sized powder during cooling, while the powder with particle size >42.0 μm is melted and partially vaporized, forming a micron-sized powder. The research results provide a new way for engineering the production of copper nano-powder and some other nano-powders with low melting points, such as silver powder, tin powder and so on. Full article
Show Figures

Figure 1

14 pages, 260 KiB  
Article
Performance of Tablet Splitters, Crushers, and Grinders in Relation to Personalised Medication with Tablets
by Herman J. Woerdenbag, J. Carolina Visser, Marlyn P. A. M. Leferink op Reinink, Roël R. van Orsoy, Anko C. Eissens, Paul Hagedoorn, Hilda Dijkstra, Derk P. Allersma, Shi W. Ng, Oscar S. N. M. Smeets and Henderik W. Frijlink
Pharmaceutics 2022, 14(2), 320; https://doi.org/10.3390/pharmaceutics14020320 - 28 Jan 2022
Cited by 16 | Viewed by 5395
Abstract
Swallowing problems and the required dose adaptations needed to obtain optimal pharmacotherapy may be a hurdle in the use of tablets in daily clinical practice. Tablet splitting, crushing, or grinding is often applied to personalise medication, especially for the elderly and children. In [...] Read more.
Swallowing problems and the required dose adaptations needed to obtain optimal pharmacotherapy may be a hurdle in the use of tablets in daily clinical practice. Tablet splitting, crushing, or grinding is often applied to personalise medication, especially for the elderly and children. In this study, the performance of different types of (commercially available) devices was studied. Included were splitters, screwcap crushers, manual grinders, and electric grinders. Unscored tablets without active ingredient were prepared, with a diameter of 9 and 13 mm and a hardness of 100–220 N. Tablets were split into two parts and the difference in weight was measured. The time needed to pulverise the tablets (crush time) was recorded. The residue remaining in the device (loss) was measured. The powder was sieved to obtain a particle fraction >600 µm and <600 µm. The median particle size and particle size distribution of the later fraction were determined using laser diffraction analysis. Splitting tablets into two equal parts appeared to be difficult with the devices tested. Most screwcap grinders yielded a coarse powder containing larger chunks. Manual and especially electric grinders produced a finer powder, making it suitable for administration via an enteral feeding tube as well as for use in individualised preparations such as capsules. In conclusion, for domestic and incidental use, a screwcap crusher may provide sufficient size reduction, while for the more demanding regular use in hospitals and nursing residences, a manual or electric grinder is preferred. Full article
16 pages, 4441 KiB  
Article
Inhalable Microparticles Embedding Calcium Phosphate Nanoparticles for Heart Targeting: The Formulation Experimental Design
by Eride Quarta, Fabio Sonvico, Ruggero Bettini, Claudio De Luca, Alessandro Dotti, Daniele Catalucci, Michele Iafisco, Lorenzo Degli Esposti, Gaia Colombo, Giovanna Trevisi, Dimitrios M. Rekkas, Alessandra Rossi, Tin Wui Wong, Francesca Buttini and Paolo Colombo
Pharmaceutics 2021, 13(11), 1825; https://doi.org/10.3390/pharmaceutics13111825 - 1 Nov 2021
Cited by 15 | Viewed by 3520
Abstract
Inhalation of Calcium Phosphate nanoparticles (CaPs) has recently unmasked the potential of this nanomedicine for a respiratory lung-to-heart drug delivery targeting the myocardial cells. In this work, we investigated the development of a novel highly respirable dry powder embedding crystalline CaPs. Mannitol was [...] Read more.
Inhalation of Calcium Phosphate nanoparticles (CaPs) has recently unmasked the potential of this nanomedicine for a respiratory lung-to-heart drug delivery targeting the myocardial cells. In this work, we investigated the development of a novel highly respirable dry powder embedding crystalline CaPs. Mannitol was selected as water soluble matrix excipient for constructing respirable dry microparticles by spray drying technique. A Quality by Design approach was applied for understanding the effect of the feed composition and spraying feed rate on typical quality attributes of inhalation powders. The in vitro aerodynamic behaviour of powders was evaluated using a medium resistance device. The inner structure and morphology of generated microparticles were also studied. The 1:4 ratio of CaPs/mannitol led to the generation of hollow microparticles, with the best aerodynamic performance. After microparticle dissolution, the released nanoparticles kept their original size. Full article
(This article belongs to the Special Issue Special Issue in Honor of Professor Carla Caramella)
Show Figures

Graphical abstract

16 pages, 3709 KiB  
Article
Roflumilast Powders for Chronic Obstructive Pulmonary Disease: Formulation Design and the Influence of Device, Inhalation Flow Rate, and Storage Relative Humidity on Aerosolization
by Mohammad A. M. Momin, Bishal Raj Adhikari, Shubhra Sinha, Ian Larson and Shyamal C. Das
Pharmaceutics 2021, 13(8), 1254; https://doi.org/10.3390/pharmaceutics13081254 - 13 Aug 2021
Cited by 10 | Viewed by 4545
Abstract
Roflumilast is currently administered orally to control acute exacerbations in chronic obstructive pulmonary disease (COPD). However, side effects such as gastrointestinal disturbance and weight loss have limited its application. This work aimed to develop an inhalable roflumilast formulation to reduce the dose and [...] Read more.
Roflumilast is currently administered orally to control acute exacerbations in chronic obstructive pulmonary disease (COPD). However, side effects such as gastrointestinal disturbance and weight loss have limited its application. This work aimed to develop an inhalable roflumilast formulation to reduce the dose and potentially circumvent the associated toxicity. Roflumilast was cospray-dried with trehalose and L-leucine with varied feed concentrations and spray-gas flow rates to produce the desired dry powder. A Next-Generation Impactor (NGI) was used to assess the aerosolization efficiency. In addition, different devices (Aerolizer, Rotahaler, and Handihaler) and flow rates were used to investigate their effects on the aerosolization efficiency. A cytotoxicity assay was also performed. The powders produced under optimized conditions were partially amorphous and had low moisture content. The powders showed good dispersibility, as evident by the high emitted dose (>88%) and fine particle fraction (>52%). At all flow rates (≥30 L/min), the Aerolizer offered the best aerosolization. The formulation exhibited stable aerosolization after storage at 25 °C/15% Relative Humidity (RH) for one month. Moreover, the formulation was non-toxic to alveolar basal epithelial cells. A potential inhalable roflumilast formulation including L-leucine and trehalose has been developed for the treatment of COPD. This study also suggests that the choice of device is crucial to achieve the desired aerosol performance. Full article
(This article belongs to the Special Issue Dry Powders for Inhalation: Formulation Design and Quality Assessment)
Show Figures

Graphical abstract

23 pages, 10691 KiB  
Article
Effects of Machining Parameters on Finishing Additively Manufactured Nickel-Based Alloy Inconel 625
by Jixiong Fei, Guoliang Liu, Kaushalendra Patel and Tuğrul Özel
J. Manuf. Mater. Process. 2020, 4(2), 32; https://doi.org/10.3390/jmmp4020032 - 21 Apr 2020
Cited by 36 | Viewed by 5419
Abstract
Metal additive manufacturing processes such as selective laser melting (SLM), laser powder bed fusion (L-PBF), electron beam melting (EBM) and laser metal deposition (LMD) can produce additively manufactured nearly fully dense parts with high geometrical complexity. These are often used as components in [...] Read more.
Metal additive manufacturing processes such as selective laser melting (SLM), laser powder bed fusion (L-PBF), electron beam melting (EBM) and laser metal deposition (LMD) can produce additively manufactured nearly fully dense parts with high geometrical complexity. These are often used as components in automotive, aerospace and medical device industries. Finish machining of these components is required to achieve the desired surface finish and dimensional tolerances. The investigations on additively manufactured alloys, as reported in the literature, indicate that a layer-wise scan strategy (orthogonal or layer-to-layer rotation) and process parameters have significant influences on the resultant microstructure which affects the final mechanical properties and fatigue life. The solidification microstructure depicts that growth directions of columnar grains and sizes of cellular grains that are affected by the layer-wise scan strategy. This paper presents experimental investigations on finish milling parameters on a nickel-based alloy manufactured with L-PBF using two distinct layer-wise scan strategies. The results reveal some effects of milling direction against the layer-wise build direction. The effects of cutting speed and feed rate on resultant cutting forces, chip formation, as well as surface finish at various cutting orientations in nickel-based alloy workpieces are reported. Full article
Show Figures

Figure 1

17 pages, 4024 KiB  
Article
Metal Micro-Monoliths for the Kinetic Study and the Intensification of the Water Gas Shift Reaction
by Nuria García-Moncada, Gianpiero Groppi, Alessandra Beretta, Francisca Romero-Sarria and José Antonio Odriozola
Catalysts 2018, 8(12), 594; https://doi.org/10.3390/catal8120594 - 30 Nov 2018
Cited by 14 | Viewed by 4444
Abstract
A kinetic study of the water gas shift (WGS) reaction has been carried out on a Pt-based catalyst promoted by a Zr-based proton conductor. The investigation was first performed on powders with diluted feed mixtures and then extended to more severe and representative [...] Read more.
A kinetic study of the water gas shift (WGS) reaction has been carried out on a Pt-based catalyst promoted by a Zr-based proton conductor. The investigation was first performed on powders with diluted feed mixtures and then extended to more severe and representative conditions by using a catalyst coated metallic micromonolith. Temperature measurements reveal that isothermal conditions were obtained along the micromonolith during the tested conditions. In addition, the very thin catalytic layer allows for the discarding of intraporous resistances, providing excellent conditions to analyse the kinetics of the WGS reaction under the integral regime. The proposed rate expression accounts for independence on CO concentration, an inhibiting effect of H2 and a promoting effect of H2O; kinetic orders on CO and H2 are in line with those reported in the literature for the Pt-based catalyst. Instead, the obtained reaction order of water (0.36) is significantly lower than that reported for unpromoted catalysts (typically 0.77–1.10) in good agreement with the proposed water-enhancer effect of the proton conductor on the rate-limiting step. Metallic micromonoliths turn out to be a powerful tool for the kinetic investigation, due to the absence of mass and heat transport limitations and represent a strategy for the intensification of the WGS unit for future applications of fuel processors in small mobile devices. Full article
(This article belongs to the Special Issue Structured Catalysts for Catalytic Processes Intensification)
Show Figures

Graphical abstract

Back to TopTop