Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = pottery composition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5689 KiB  
Article
Compositional Analysis of Longshan Period Pottery and Ceramic Raw Materials in the Yongcheng Region, Henan Province
by Linyu Xia, Yinhong Li, Ge Zhang, Jialing Li and Li Jaang
Materials 2025, 18(12), 2681; https://doi.org/10.3390/ma18122681 - 6 Jun 2025
Viewed by 576
Abstract
This study systematically analyzes the composition and microstructure of Neolithic pottery unearthed from the Dazhuzhuang, Likou, and Biting Sites in the Yongcheng District using techniques such as X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), infrared spectroscopy (IR), and scanning electron microscopy with energy-dispersive [...] Read more.
This study systematically analyzes the composition and microstructure of Neolithic pottery unearthed from the Dazhuzhuang, Likou, and Biting Sites in the Yongcheng District using techniques such as X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), infrared spectroscopy (IR), and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). The results show that although the raw materials for pottery at the three sites were likely sourced from nearby ancient soil layers, significant differences in chemical composition and manufacturing techniques are evident. Pottery from the Dazhuzhuang Site is mainly composed of argillaceous gray pottery, with relatively loose raw material selection and a wide fluctuation in SiO2 content (64.98–71.07%), reflecting diversity in raw material sources. At the Likou Site, argillaceous black pottery predominates, characterized by higher Al2O3 content (17.78%) and significant fluctuations in CaO content (1.46–2.22%), suggesting the addition of calcareous fluxes and the adoption of standardized manufacturing techniques. Pottery from the Biting Site mainly consists of argillaceous gray pottery, showing higher Al2O3 content (17.36%), stable SiO2 content (65.19–69.01%), and the lowest CaO content (0.84–1.81%). The microstructural analysis further reveals that the black pottery (from the Likou Site) displays dense vitrified regions and localized iron enrichment. In contrast, the gray pottery (from the Dazhuzhuang and Biting Sites) shows clay platelet structures and vessel-type-specific differences in porosity. This research provides important scientific evidence for understanding raw material selection, manufacturing techniques, and regional cultural interactions in the Yongcheng area during the Longshan Culture period. Full article
(This article belongs to the Special Issue Materials in Cultural Heritage: Analysis, Testing, and Preservation)
Show Figures

Figure 1

21 pages, 35065 KiB  
Article
A Provenance Study of Ceramic Artifacts from the Area of Makariopolsko Village, NE Bulgaria
by Bilyana Kostova, Svetlana Todorova, Katerina Mihaylova, Chavdar Lalov and Ralitza Berberova
Geosciences 2025, 15(6), 193; https://doi.org/10.3390/geosciences15060193 - 22 May 2025
Viewed by 405
Abstract
The Roman site at Makariopolsko village in Northeastern Bulgaria has been identified as a ceramic production center, featuring single- and double-chamber kilns, abundant ceramic material, and a nearby water source. Geological assessments also reveal local clay deposits. Previous archaeological studies have noted similar [...] Read more.
The Roman site at Makariopolsko village in Northeastern Bulgaria has been identified as a ceramic production center, featuring single- and double-chamber kilns, abundant ceramic material, and a nearby water source. Geological assessments also reveal local clay deposits. Previous archaeological studies have noted similar Roman production sites in the region, primarily focusing on the study of the kilns and the macroscopic description and classification of the ceramics. However, there has been a lack of research into the pottery’s composition and the sourcing of raw materials, which is essential for understanding the area’s cultural and economic context. This study aims to determine the raw material and firing temperature of the ceramic from the site at Makariopolsko village. Clay samples (both raw and fired at 1100 °C) and ceramic were subjected to chemical, statistical, phase X-ray structural, and thermal analyses. The findings indicate the use of calcareous illite–kaolinitic clay, sourced locally, with an added sandy component. The ceramics were fired at temperatures of 570–760 °C and 920–945 °C. These results, which support the site’s identification as a pottery production center, highlight advanced pottery skills and the dual functional capabilities of the kilns. Additionally, they pave the way for further research into regional production center relationships. Full article
(This article belongs to the Section Geoheritage, Geoparks and Geotourism)
Show Figures

Figure 1

18 pages, 10811 KiB  
Article
Compositional Analysis of Cultic Clay Objects from the Iron Age Southern Levant
by David Ben-Shlomo
Religions 2025, 16(6), 661; https://doi.org/10.3390/rel16060661 - 22 May 2025
Viewed by 541
Abstract
Compositional analysis conducted on pottery and other ceramic items can shed light on their place of production and in certain cases, on technological aspects of the production sequence. The methods used, petrography and chemical analysis, can also be employed on cultic terracotta such [...] Read more.
Compositional analysis conducted on pottery and other ceramic items can shed light on their place of production and in certain cases, on technological aspects of the production sequence. The methods used, petrography and chemical analysis, can also be employed on cultic terracotta such as figurines, cult stands, models, or other clay objects. Several studies of such analyses of items from various periods in the Southern Levant have been published, mostly from temple contexts. This paper focuses particularly on two groups of items: clay models from the favissa at Yavneh and pillar figurines and other (mostly horse) figurines from Jerusalem and Tell en-Nasbeh in Iron Age Judah. These two groups are both roughly dated to the time span between the 9th and 7th centuries BCE. While the former group is of objects representing a temple context in Philistia, the latter is likely related to a domestic cult in Judah. The analysis of these objects is also examined against the background of a robust compositional analysis of regular pottery from the sites. The compositional analysis can indicate whether these objects were locally produced or imported from various regions (thus possibly brought by pilgrims), as well as whether they were “mass-produced” in a single workshop. The results can shed light on aspects of religious and cultic conducts in these occasions as well as compare domestic and temple-related cultic behaviors. Full article
Show Figures

Figure 1

26 pages, 11060 KiB  
Article
Composition and Potential Industrial Uses of Upper Cretaceous Carbonates of the Wadi Sir Limestone (WSL) and the Amman Silicified Limestone (ASL) Formations, North Jordan
by Islam Al-Dabsheh, Ahmad AlShdaifat, Aseel Almasri, Faten Al-Slaty, Nour Alzoubi, Abdulaziz M. Alsaleh and Hani Shurafat
Geosciences 2025, 15(4), 135; https://doi.org/10.3390/geosciences15040135 - 4 Apr 2025
Viewed by 673
Abstract
Upper Cretaceous carbonate rocks in Jordan are the main resources for construction and paint-related industrial applications. This study evaluates the elemental composition, mineralogy, and petrography of two main geological formations from two localities in northern Jordan (Hallabat, Turonian age, and Ajlun, Santonian–Campanian age) [...] Read more.
Upper Cretaceous carbonate rocks in Jordan are the main resources for construction and paint-related industrial applications. This study evaluates the elemental composition, mineralogy, and petrography of two main geological formations from two localities in northern Jordan (Hallabat, Turonian age, and Ajlun, Santonian–Campanian age) to shed light on their composition, depositional environments, and potential industrial end uses. The elemental composition of the Hallabat Wadi Sir Limestone (WSL) Formation indicates notable variability between the middle and upper parts of the WSL carbonates in the area, with higher CaO content in the middle part (mean 55 wt.%) and higher silica content observed in the upper part (mean 2 wt.%) compared with the middle part (mean 0.9 wt.%). Meanwhile, analysis of the elemental composition of the Ajlun Amman Silicified Limestone (ASL) Formation indicates that the CaO content is relatively higher in the upper part (mean 56 wt.%). In addition, the lower part is more influenced by detrital input when compared with the upper part of the studied section, in contrast to the Hallabat WSL Formation. Petrographic analysis demonstrates that the WSL and ASL samples are predominantly micritic limestone. The XRD results for the Hallabat WSL and Ajlun ASL show that the mineralogical composition is dominated by calcite (CaCO3). Statistical and PCA analyses also confirm these variabilities between the two sites, indicating that all samples from both sites were deposited under variable hydrodynamic and environmental conditions that affected their physical and chemical composition. The results show that all studied samples are in the range of pure limestone and can be used for specific industrial applications in addition to their current uses, including those in the pottery and porcelain ware, soda ash and caustic soda, steel industry, sugar, and textile production industries, thus contributing to the economic resources in Jordan. Full article
Show Figures

Figure 1

16 pages, 3094 KiB  
Article
Exploring the Influence of Pottery Jar Formula Variables on Flavor Substances Through Feature Ranking and Machine Learning: Case Study of Maotai-Flavored Baijiu
by Haili Yang, Xinjun Hu, Jianpin Tian, Liangliang Xie, Manjiao Chen and Dan Huang
Foods 2025, 14(6), 1063; https://doi.org/10.3390/foods14061063 - 20 Mar 2025
Viewed by 445
Abstract
The advantages of pottery jars in the aging process of Baijiu are evident, but the impact of their material composition and pore structure on the flavor of Baijiu has not been widely studied. This study systematically analyzed the effects of six types of [...] Read more.
The advantages of pottery jars in the aging process of Baijiu are evident, but the impact of their material composition and pore structure on the flavor of Baijiu has not been widely studied. This study systematically analyzed the effects of six types of pottery jars on metal ions and flavor substances during the storage process of Maotai-flavored Baijiu. It was found that changes in the content of Fe and Zn metals, as well as pore parameters in the jars, significantly affected the content of AL, Mg, K, Na, and Ca ions in Baijiu. Based on three feature ranking methods and three machine learning models, a feature selection method related to flavor substances was established, identifying the key features (i.e., key metal ions) for each flavor group. The final key features of each flavor group can accurately predict the corresponding flavor substance content (Rp2 > 0.87). The comprehensive analysis results indicate that the increase in the content of Fe, as well as the increases in P-max and P-min in the pottery jar, collectively promoted the formation of three flavor groups represented by ethyl valerate (G2), ethyl lactate (G7), and ethyl linoleate (G10), with an increase of 3% to 5%. In contrast, the increase in Zn inhibited the formation of the flavor group represented by 2,3-butanediol (G3), with a decrease of 14%. These results further clarify the impact of pottery jar formulations on the changes in flavor substances and provide a more effective method for analyzing the influence mechanism of jars on Baijiu. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

11 pages, 6234 KiB  
Article
Where Did Vessels Come from? A Study of Pottery Provenance from the Site of Velika Humska Čuka, Serbia
by Maja Gajić-Kvaščev, Ognjen Mladenović, Petar Milojević and Aleksandar Bulatović
Materials 2025, 18(5), 1083; https://doi.org/10.3390/ma18051083 - 28 Feb 2025
Cited by 1 | Viewed by 750
Abstract
The archaeological materials from the Velika Humska Čuka site on the northern fringe of the Niš Basin in southeastern Serbia were analyzed to reveal the provenance of ceramics and other artifacts. This study focused on the elemental analysis of 61 samples, including local [...] Read more.
The archaeological materials from the Velika Humska Čuka site on the northern fringe of the Niš Basin in southeastern Serbia were analyzed to reveal the provenance of ceramics and other artifacts. This study focused on the elemental analysis of 61 samples, including local clay pits, potsherds, and whole vessels. Samples were chosen based on stylistic and typological characteristics to distinguish local and “foreign” pottery. Elemental analysis was conducted using energy-dispersive X-ray fluorescence (EDXRF) spectrometry, complemented by principal component analysis (PCA) for data interpretation. Results indicated that the majority of pottery samples, over 80%, were produced using local clay from deposits near the site. However, approximately 20% of the analyzed vessels were made using clay from deposits near the Bubanj site, 8 km south of Velika Humska Čuka. A vessel on a hollow high foot combining stylistic elements of the Bubanj-Hum I group and Early Eneolithic Pannonian groups was made of clay not sourced from any identified local deposits, suggesting its non-local origin. While the predominance of local materials suggests self-sufficient production, the use of non-local clays and stylistic influences highlights long-distance connections and exchanges. The study emphasizes the importance of Velika Humska Čuka in understanding the development of ceramic traditions and the cultural dynamics of the Early Eneolithic in the Central Balkans. Full article
(This article belongs to the Special Issue Materials in Cultural Heritage: Analysis, Testing, and Preservation)
Show Figures

Figure 1

26 pages, 17771 KiB  
Article
From Andalusia to the Atlantic During Early Globalization: Multidisciplinary Archaeometric Approach to Ceramic Production from Jerez de la Frontera (Spain)
by Saúl Guerrero Rivero, Javier G. Iñañez, Fernando Amores Carredano, Joana B. Torres, André Teixeira, Gorka Arana and José Luis Sánchez Zavala
Ceramics 2025, 8(1), 20; https://doi.org/10.3390/ceramics8010020 - 24 Feb 2025
Viewed by 899
Abstract
The technological development of ceramic production during the early modern period in the Iberian Peninsula is a crucial topic in historical archaeological research. The present study analyzes pottery from Jerez de la Frontera, Andalusia, focusing on ceramic materials from the Convent of Santo [...] Read more.
The technological development of ceramic production during the early modern period in the Iberian Peninsula is a crucial topic in historical archaeological research. The present study analyzes pottery from Jerez de la Frontera, Andalusia, focusing on ceramic materials from the Convent of Santo Domingo (late 15th to early 17th centuries). Through the analysis of production wastes, including dolia and olive jars (botijas), this text unveils key aspects of regional ceramics practices. Using a multidisciplinary archaeometric approach, we applied petrography, X-ray diffraction (XRD), and inductively coupled plasma mass spectrometry (ICP-MS) to investigate compositional, technological, and provenance characteristics. The petrographic analysis identified clay matrix variability and mineral inclusions, indicating diverse raw material sources and production techniques. The XRD analysis confirmed key mineral phases that reflect controlled firing temperatures, while the ICP-MS analyses provided trace element profiles that were used to distinguish between local and non-local raw materials. Together, these results reveal technological shifts and resource diversity over time, challenging the assumption that Seville was the sole supplier of ceramics for Atlantic trade. This study establishes Jerez as a potential complementary production center, offering a new understanding of early globalization processes and ceramics manufacturing in southwestern Andalusia. Full article
Show Figures

Figure 1

28 pages, 13812 KiB  
Article
Multidisciplinary Approach to the Study of Tableware and Common Wares from Early Medieval Tokharistan
by Maura M. Bestetti, Verónica Martínez Ferreras and Josep M. Gurt Esparraguera
Heritage 2025, 8(2), 65; https://doi.org/10.3390/heritage8020065 - 7 Feb 2025
Viewed by 980
Abstract
Between the 5th and 8th centuries AD, several (semi-)nomadic populations invaded ancient Tokharistan (Central Asia), introducing political, socio-economic and cultural changes that also affected pottery production. The study of ceramic materials thereby represents a useful tool for shedding light on the transformations related [...] Read more.
Between the 5th and 8th centuries AD, several (semi-)nomadic populations invaded ancient Tokharistan (Central Asia), introducing political, socio-economic and cultural changes that also affected pottery production. The study of ceramic materials thereby represents a useful tool for shedding light on the transformations related to such historical events. Unfortunately, no systematic research on ceramics from this region and this period has been conducted to date, and the information available mostly concerns the formal characteristics and imprecise relative chronologies. Aiming to contribute to the knowledge of Early Medieval pottery production in the territory north of the Amu Darya, we present a preliminary investigation on tableware and common wares recovered in the settlements of Khosijat Tepe, Shurob Kurgan, Balalyk Tepe and Dabil Kurgan. This paper provides new data on the vessels’ morphological/stylistic characteristics and relative chronologies, allowing their contextualisation and categorisation. In order to explore the manufacturing processes and their provenance (production areas), a multidisciplinary approach that combines WD-XRF, powder XRD and thin-section optical microscopy was carried out, allowing us to determine the chemical, mineralogical and petrographic compositions, respectively. The results suggest that most vessels consist of local/regional products. The choice and processing of the raw materials are broadly similar. However, slight variations are observed among the ceramics from distinct sites, related to the procurement of clayey sediments from different sources. Although a certain degree of morphological and technological continuity regarding the preceding Kushano-Sasanian pottery tradition is attested for some functional categories, new shapes and decorations appear, confirming the introduction of new practices in the region. Full article
(This article belongs to the Section Archaeological Heritage)
Show Figures

Figure 1

24 pages, 12593 KiB  
Article
Non-Invasive Raman and XRF Study of Mīnā’ī Decoration, the First Sophisticated Painted Enamels
by Philippe Colomban, Gulsu Simsek Franci, Anh-Tu Ngo and Xavier Gallet
Materials 2025, 18(3), 575; https://doi.org/10.3390/ma18030575 - 27 Jan 2025
Cited by 1 | Viewed by 965
Abstract
Mīnā’ī wares, crafted during the 12th–13th centuries, represent some of the earliest examples of sophisticated painted enamel decoration by potters. Due to the thinness of these enamel layers, their detailed characterization remains challenging, even with the use of advanced techniques, such as Proton-Induced [...] Read more.
Mīnā’ī wares, crafted during the 12th–13th centuries, represent some of the earliest examples of sophisticated painted enamel decoration by potters. Due to the thinness of these enamel layers, their detailed characterization remains challenging, even with the use of advanced techniques, such as Proton-Induced X-ray Emission (PIXE) analysis and Rutherford Backscattering Spectrometry (RBS). This study provides the first combined non-invasive analysis, using X-ray fluorescence (XRF) and Raman spectroscopy, of five shards attributed to mīnā’ī wares. For comparison, two İznik shards from the 17th century, which feature similarly styled but thicker enamel decorations, were also analyzed. Interestingly, the mīnā’ī paste was found to contain lead and tin, suggesting the use of a lead-rich frit in its composition. This finding was confirmed through micro-destructive analysis, using Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM–EDS). Elements, such as rubidium (Rb), strontium (Sr), yttrium (Y), and zirconium (Zr), produced significant XRF signals and effectively distinguished mīnā’ī wares from İznik wares. A uniform tin-rich glaze, measuring 300–500 µm in thickness, was used as a base layer for the much thinner painted mīnā’ī enamels. The colored areas (blue, turquoise, red, green, black, white, eggplant) revealed the presence of various coloring agents and phases, such as spinels, chromite, and ions like Cu2+ and Co2+, as well as opacifiers like cassiterite and lead–calcium/potassium arsenates. Two distinct cobalt sources were identified: one associated with arsenic and the other with manganese and nickel. These cobalt sources are comparable to those used in İznik pottery. For the first time, boron was detected in the blue enamel of mīnā’ī wares. Full article
Show Figures

Figure 1

21 pages, 8676 KiB  
Article
Glazed Pottery Throughout the Middle and Modern Ages in Northern Spain
by Ainhoa Alonso-Olazabal, Juan Antonio Quirós Castillo, Maria Cruz Zuluaga and Luis Ángel Ortega
Heritage 2025, 8(1), 24; https://doi.org/10.3390/heritage8010024 - 10 Jan 2025
Viewed by 950
Abstract
A total of forty samples of medieval and modern glazed pottery from northern Spain were studied. Chemical and microstructural analyses of the glazes were performed by scanning electron microscopy coupled with electron dispersive spectroscopy (SEM-EDX), while the chemical composition of the pottery bodies [...] Read more.
A total of forty samples of medieval and modern glazed pottery from northern Spain were studied. Chemical and microstructural analyses of the glazes were performed by scanning electron microscopy coupled with electron dispersive spectroscopy (SEM-EDX), while the chemical composition of the pottery bodies and slips were determined by X-ray Fluorescence (XRF). The glazes studied come from the Santa Barbara Hill site (Tudela), the Treviño Castle site (Treviño), the Vega workshop (Burgos) and the Torrentejo village (Labastida) and correspond to transparent glazes and opaque white glazes. Transparent glazes were lead glazes with variable PbO content. Opaque white glazes were lead-tin and lead–alkaline–tin glazes. The glaze was mainly applied to a pre-fired body made of local clays, but the glazes of the Santa Barbara Hills pottery (Tudela) were applied to raw bodies. The microstructure of the interfaces indicates a single firing process for the glazed pottery from Tudela and a double firing process in the rest of the sites. Some correlation are identified between the use of specific clays to produce different glaze colours. White opaque glazes are applied to calcium-rich clays. Similarly, calcium-rich clays were used to produce dark green transparent glazes, while clays and slips aluminium–rich were used to produce light green and light honey glazes. Iron was also identified as the main colouring agent, although copper was also used. The white glazes were opacified by the addition of cassiterite and sometimes quartz and feldspar. The glazed pottery was mainly of local origin, but the identification of some non-local pottery at all sites suggests a pottery trade. Full article
Show Figures

Figure 1

24 pages, 8757 KiB  
Article
Characterization of Traditional Pottery Artifacts from Yucatán Peninsula, México: Implications for Manufacturing Process Based on Elemental Analyses
by Miguel Pérez, Oscar G. de Lucio, Hugo M. Sobral, Ciro Márquez-Herrera, Avto Goguitchaichvili and Soledad Ortiz
Minerals 2024, 14(10), 993; https://doi.org/10.3390/min14100993 - 30 Sep 2024
Viewed by 2072
Abstract
The present work is focused on developing and implementing a minimally invasive methodology for material characterization of traditional pottery from Yucatan, México. The developed methodology, which combines elemental (X-ray fluorescence spectroscopy (XRF), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and Laser-Induced Breakdown Spectroscopy (LIBS)) [...] Read more.
The present work is focused on developing and implementing a minimally invasive methodology for material characterization of traditional pottery from Yucatan, México. The developed methodology, which combines elemental (X-ray fluorescence spectroscopy (XRF), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and Laser-Induced Breakdown Spectroscopy (LIBS)) and molecular (fiber optic reflectance spectroscopy (FORS)) spectroscopic analytical techniques, allowed for the characterization of contemporary pottery objects manufactured following traditional recipes in the town of Uayma, Yucatán, México and raw materials associated with the pottery manufacturing process. The results allowed us to detect and estimate the number of selected elements and helped to infer the presence of complex materials such as iron oxides, aluminosilicates, and calcium carbonate. Additionally, the analysis indicated two pottery groups separated by their elemental and molecular composition, corresponding to the sources of raw materials employed by the potters. It confirmed the absence of toxic compounds in ceramic objects, a significant concern for potters, as some objects are intended for domestic use. The research findings provide reassurance about the safety of these products. Full article
(This article belongs to the Special Issue Geomaterials and Cultural Heritage)
Show Figures

Figure 1

15 pages, 2645 KiB  
Article
The Ceramic Production and Distribution Network in the Ancient Kingdom of Navarre (Spain) during the 12th–15th Centuries
by Iván Ruiz-Ardanaz, Sayoa Araiz-González, Esther Lasheras and Adrián Durán
Heritage 2024, 7(9), 4814-4828; https://doi.org/10.3390/heritage7090228 - 4 Sep 2024
Cited by 2 | Viewed by 1325
Abstract
The Kingdom of Navarre was a Christian kingdom located in the north of the Iberian Peninsula during the Middle Ages. Its location on the west of the isthmus between the Iberian Peninsula and the European continent allowed an exchange of cultural currents. The [...] Read more.
The Kingdom of Navarre was a Christian kingdom located in the north of the Iberian Peninsula during the Middle Ages. Its location on the west of the isthmus between the Iberian Peninsula and the European continent allowed an exchange of cultural currents. The main pottery production centres were in Estella, Lumbier, Pamplona, Tafalla, and Tudela. Ceramic pastes from various mediaeval sites were analysed for both elemental and mineralogical composition determination. The results were evaluated using Principal Component Analysis and allowed us to identify each production centre. Each manufacturing centre showed a different and characteristic composition of raw materials. Ceramics from Tudela were Ca-, Mg-, Na-, and Sr-rich. Ceramics from Estella were richer in Al, K, and Ti. Ca, Sc, and Sr contents were higher in Tafalla ceramics. Lumbier ceramics stood out for being enriched in Si, Mn, Fe, and Zr. Pamplona ceramics showed intermediate values. The analysis of samples from other Navarrese locations allowed us to begin to define what the commercial ceramic network in the Kingdom of Navarre was like during the Middle Ages. Therefore, two aims were defined for this paper: to characterise the ceramic pastes for each of the producing centres and to know where the ceramics were exported to. Full article
Show Figures

Figure 1

18 pages, 4239 KiB  
Article
The Role of Mineral and Organic Composition on the Phosphorus Content of Prehistoric Pottery (Middle Neolithic to Late Bronze Age) from NW Spain
by María Guadalupe Castro González, María Pilar Prieto Martínez and Antonio Martínez Cortizas
Minerals 2024, 14(9), 880; https://doi.org/10.3390/min14090880 - 29 Aug 2024
Viewed by 1571
Abstract
Phosphorus is a key element for identifying past human activity. Recently, phosphorus analyses have been extended to archaeological objects, aiming at distinguishing how depositional contexts contribute to its enrichment. In archaeological pottery, phosphorus might depend on several manufacturing and postdepositional processes (i.e., addition [...] Read more.
Phosphorus is a key element for identifying past human activity. Recently, phosphorus analyses have been extended to archaeological objects, aiming at distinguishing how depositional contexts contribute to its enrichment. In archaeological pottery, phosphorus might depend on several manufacturing and postdepositional processes (i.e., addition of organic temper, pigments, diagenetic incorporation). We analyzed by XRD, XRF, and mid-infrared (FTIR-ATR) spectroscopy 178 pots from eight NW Spain archaeological sites. These sites encompass different chronologies, contexts, and local geology. The phosphorus content was highly variable (224–27,722 mg kg−1) overall but also between archeological sites (1644 ± 487 to 13,635 ± 6623 mg kg−1) and within archaeological sites (4–36, max/min ratio). No phosphate minerals were identified by XRD nor FTIR-ATR, but correlations between phosphorus content and MIR absorbances showed maxima at 1515 and 980 cm−1, suggesting the presence of two sources: one organic (i.e., phosphorylated aromatic compounds) and another inorganic (i.e., albite and K-feldspar). Phosphorylated aromatics were most likely formed during pottery firing and were preserved due to their high resistance to temperature and oxidation. Meanwhile, albite and K-feldspar are among the P-bearing minerals with higher P concentrations. Our results suggest that P content is related to intentional and non-intentional actions taken in the pottery production process. Full article
(This article belongs to the Special Issue The Significance of Applied Mineralogy in Archaeometry)
Show Figures

Figure 1

29 pages, 5830 KiB  
Article
Exploring Colour Palette in Pottery from Western Anatolia and East Asia—Colour Schemes to Inspire
by Adamantia P. Panagopoulou, Joanita Vroom, Anno Hein and Vassilis Kilikoglou
Heritage 2024, 7(8), 4374-4402; https://doi.org/10.3390/heritage7080206 - 14 Aug 2024
Cited by 1 | Viewed by 1367
Abstract
In the present case study, the manufacturing technology for glazed pottery was investigated, with particular focus on the great variety of colours and glaze recipes used in Western Anatolia and East Asia and observed in finds from rescue excavation sites in Greece. An [...] Read more.
In the present case study, the manufacturing technology for glazed pottery was investigated, with particular focus on the great variety of colours and glaze recipes used in Western Anatolia and East Asia and observed in finds from rescue excavation sites in Greece. An assemblage of 40 ceramic fragments dating from the Late Byzantine and Islamic to the Ottoman/Venetian periods was examined for their decoration, surface treatment, and production technology. The peculiarities of the colour recipes applied on the glazed pottery of different assumed origins of production were investigated, focusing on glaze technology and employing colourants. This was achieved by the use of an analytical workflow that considered the compositional details of pigments, slip coatings, and glazes. The chemical evaluation was carried out utilising X-Ray Fluorescence Spectroscopy (pXRF) and Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDS). Raman Spectroscopy provided information about the compositional variation, and the microscopic examination via Optical Microscopy (OM) and Scanning Electron Microscopy (SEM-EDS) yielded information about the sample stratigraphy of the examined ceramic sections. Through a wide range of colour and glaze recipes, this study of glazed ceramics was able to define and express the essential elements of each pottery workshop’s perception of colour. Full article
Show Figures

Figure 1

26 pages, 3377 KiB  
Article
Investigating the Influence of Vessel Shape on Spontaneous Fermentation in Winemaking
by Manuel Malfeito-Ferreira, Joana Granja-Soares, Mahesh Chandra, Arman Asryan, Joana Oliveira, Victor Freitas, Iris Loira, Antonio Morata, Jorge Cunha and Mkrtich Harutyunyan
Fermentation 2024, 10(8), 401; https://doi.org/10.3390/fermentation10080401 - 2 Aug 2024
Cited by 2 | Viewed by 2938
Abstract
The earliest archaeological evidence of wine came from ceramic vessels of the Transcaucasian ‘Shulaveri-Shomutepe’ or ‘Aratashen-Shulaveri-Shomutepe culture’ (SSC/AShSh: c. 6000–5200 BC). Western European ‘Bell Beaker culture’ (BB: c. 2500–2000 BC) is characterized by bell-shaped pottery vessels but has so far not been found [...] Read more.
The earliest archaeological evidence of wine came from ceramic vessels of the Transcaucasian ‘Shulaveri-Shomutepe’ or ‘Aratashen-Shulaveri-Shomutepe culture’ (SSC/AShSh: c. 6000–5200 BC). Western European ‘Bell Beaker culture’ (BB: c. 2500–2000 BC) is characterized by bell-shaped pottery vessels but has so far not been found with residues consistent with wine. Knowing that wild grapes populated both habitats, the absence of wine during the Bell Beaker period remains to be explained. The main goal of this work was to investigate whether the shape of the vessels could influence the performance of spontaneous fermentation, specifically regarding the production of volatile acidity. Crushed grapes or juices from various grape cultivars were fermented in two types of vessels: (i) borosilicate glass beakers (4–5 L) to imitate bell beakers and (ii) Erlenmeyer flasks (5 L) to imitate SSC/AShSh vessels. Fermentations occurred spontaneously, and the wines were analyzed for their conventional physical–chemical parameters (e.g., ethanol content, total acidity, volatile acidity, pH), chromatic characteristics (e.g., wine color intensity, wine hue), and volatile composition by gas-chromatography-flame ionization detection (GC-FID). At the end of fermentation, the yeast species were identified by molecular methods. In addition, wine yields and phenolic composition (e.g., total phenols, anthocyanins, total pigments) were determined for wild grapes in comparison with six red varieties Vitis vinifera L. subsp. sativa (Vinhão, Marufo, Branjo, Melhorio, Castelão and Tempranillo Tinto), chosen as a function of their genetic relatedness with the wild counterpart. Wines produced from V. sylvestris grapes showed higher total acidity and color intensity when compared to the cultivated varieties. Saccharomyces cerevisiae dominated at the end of all spontaneous fermentations in all types of vessels and conditions. Wines fermented in Erlenmeyers showed ethanol concentrations as high as 14.30% (v/v), while the highest ethanol level was 12.30% (v/v) in beakers. Volatile acidity increased to a maximum of 4.33 g/L (acetic acid) in Erlenmeyers and 8.89 g/L in beakers. Therefore, the shape of the vessels influenced the performance of fermentation, probably due to the different exposures to air, leading to vinegary ferments more frequently in open mouths than in conical-shaped flasks. These results provide a hypothesis based on fermentation performance for the absence of wine produced in the Iberian Peninsula until the arrival of Phoenician settlers. Full article
(This article belongs to the Special Issue Fermentation and Biotechnology in Wine Making)
Show Figures

Figure 1

Back to TopTop