Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (204)

Search Parameters:
Keywords = potence ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2393 KiB  
Article
Structural and Biological Properties of Rhamnogalacturonan-I-Enriched Pectin Isolated from Cardamine tangutorum and Cardamine macrophylla
by Mei-Mei Qu Mo, Bo Li, Ding-Tao Wu, Jing Feng, Jing Wei, Yan Wan, Juan Li, Yuan Liu and Wen-Bing Li
Foods 2025, 14(13), 2340; https://doi.org/10.3390/foods14132340 - 1 Jul 2025
Viewed by 550
Abstract
C. macrophylla and C. tangutorum, collectively known as Shigecai in Chinese, are consumed as special and nutritious vegetables by the Tibetan, Qiang, and Yi communities in China. However, due to the insufficient knowledge of their phytochemical compositions and health benefits, the industrial [...] Read more.
C. macrophylla and C. tangutorum, collectively known as Shigecai in Chinese, are consumed as special and nutritious vegetables by the Tibetan, Qiang, and Yi communities in China. However, due to the insufficient knowledge of their phytochemical compositions and health benefits, the industrial utilization of these species in the food sector remains limited. Although Shigecai leaves contain substantial pectic polysaccharides, their chemical structures and biological activities remain unknown, which ultimately restricts their industrial utilization. Thus, to address this gap, this study systematically analyzed the chemical characteristics and biological functions of rhamnogalacturonan-I (RG-I)- enriched pectin from C. tangutorum (CTHDP) and C. macrophylla (CMHDP) leaves. The results demonstrate that Shigecai leaves are promising sources of RG-I-enriched pectin, with yields of 57.63–65.21 mg/g dry weight. In addition, both CTHDP and CMHDP exhibited highly similar chemical and structural properties, dominated by RG-I and homogalacturonan (HG) pectin regions, with RG-I ratios of 60.14–63.33 mol%. Furthermore, both samples demonstrated notable antioxidant ability, antiglycation activity, prebiotic potency, and immunoregulatory effects, which were strongly linked to their bound polyphenol content, uronic acid content, and molecular weight. These findings support the industrial utilization of Shigecai and establish Shigecai-derived RG-I-enriched pectin as a promising functional food ingredient. Full article
Show Figures

Figure 1

15 pages, 919 KiB  
Article
An Isobolographic Analysis of the Antinociceptive Effect of Salvia hispanica L. in Combination with Citrus × latifolia in Rats
by Lilian Dolores Chel-Guerrero, Rolffy Ortiz-Andrade, Enrique Sauri-Duch, Emilio Piña-Betancourt, Luis Hebert-Doctor and Myrna Déciga-Campos
Nutrients 2025, 17(11), 1884; https://doi.org/10.3390/nu17111884 - 30 May 2025
Viewed by 435
Abstract
This study aimed to evaluate the antinociceptive effect of Salvia hispanica L. seeds, Citrus × latifolia (Lime) juice, and the interaction of their combination in rats using the writhing test. Dose–response curves were constructed for an n-hexane extract of S. hispanica seeds [...] Read more.
This study aimed to evaluate the antinociceptive effect of Salvia hispanica L. seeds, Citrus × latifolia (Lime) juice, and the interaction of their combination in rats using the writhing test. Dose–response curves were constructed for an n-hexane extract of S. hispanica seeds (100–300 mg/kg; p.o.) and C. × latifolia juice (10–300 mg/kg; p.o.) administered individually or in combination to rats subjected to 1% acetic acid-induced writhing. Isobolographic analysis was used to assess the interaction between the combinations. Results showed that both medicinal plants exhibited dose-dependent antinociceptive effects. The antinociceptive effect of C. × latifolia (ED50 = 43.95 ± 1.9 mg/kg) exhibited greater potency than S. hispanica (ED50 = 112.9 ± 2.0 mg/kg). Their combination (1:1 ratio) showed a synergistic antinociceptive effect (Zexp = 4.9 ± 0.6 mg/kg vs. Zadd = 83.5 ± 1.7 mg/kg). Both extracts were non-toxic, according to the OECD-423 test. Antioxidant activity may have contributed to the observed antinociceptive synergy. This study demonstrates that the synergistic antinociceptive effects suggest that combining S. hispanica and C. × latifolia may be a promising therapeutic approach for managing inflammatory and visceral pain with potential clinical utility. Full article
Show Figures

Graphical abstract

21 pages, 9022 KiB  
Article
Activation of Persulfates Using Alkali-Modified Activated Coke to Promote Phenol Removal
by Yan Zhang, Shuang Shi, Jianxiong Wei, Qiang Ma, Xiaoxue Wang, Xingyu Zhang, Huarui Hao and Chen Yang
Nanomaterials 2025, 15(10), 744; https://doi.org/10.3390/nano15100744 - 15 May 2025
Cited by 1 | Viewed by 306
Abstract
Coke (AC) was modified and activated with sodium hydroxide (NaOH) and potassium hydroxide (KOH) to produce AC-Na and AC-K, respectively, and applied as a persulfate (PS) activator to promote phenol (Ph) removal in water. Under the given experimental conditions, compared to AC/PS (Ph [...] Read more.
Coke (AC) was modified and activated with sodium hydroxide (NaOH) and potassium hydroxide (KOH) to produce AC-Na and AC-K, respectively, and applied as a persulfate (PS) activator to promote phenol (Ph) removal in water. Under the given experimental conditions, compared to AC/PS (Ph removal effect was 77.09%), the Ph removal effects were 94.46% and 88.73% for AC-K/PS and AC-Na/PS, respectively. AC-K proved to be a more effective activator than AC-Na and was used for all the subsequent experiments. When PS/phenol molar ratio was 6.26:1:00, the initial system pH was 7 and the system temperature was 25 °C; the AC-K/PS system could effectively remove Ph (98.75%) from the simulated wastewater. After that, the stability of AC-K was verified. Electron paramagnetic resonance (EPR) and quenching analysis confirmed the hydroxyl free radical (•OH) to be predominant within this system. EPR combined with X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared (FTIR) spectroscopy, and Raman spectroscopy indicated that the sulfate radical (SO4•−) and •OH were generated due to the defects in AC-K, thereby enhancing the PS activation potency of AC-K. Additionally, the radical quenching experiments showed that the superoxide (O2) radical is a key intermediate product promoting SO4•− and •OH, which aided Ph removal. Both radical (SO4•− and •OH) and non-radical (1O2) pathways were found to co-exist during the removal process. The Ph removal rate of the AC-K/PS system could still reach 29.50%, even after four repeated cycles. These results demonstrate that the unique AC-K/PS system has a potential removal effect on organic pollutants in water. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

18 pages, 1959 KiB  
Article
Design, Synthesis, and Biological Evaluation of Naphthoquinone Salts as Anticancer Agents
by Yao Cheng, Tsz Tin Yu, Ellen M. Olzomer, Kyle L. Hoehn, Frances L. Byrne, Naresh Kumar and David StC Black
Molecules 2025, 30(9), 1938; https://doi.org/10.3390/molecules30091938 - 27 Apr 2025
Cited by 1 | Viewed by 789
Abstract
The Warburg effect, a unique glycolytic phenomenon in cancer cells, presents a promising target for developing selective anticancer agents. Previously, BH10, a hit compound disrupting glycolytic metabolism, was identified via phenotypic screening, with Kelch-like ECH-associated protein 1 (Keap1) proposed as a potential [...] Read more.
The Warburg effect, a unique glycolytic phenomenon in cancer cells, presents a promising target for developing selective anticancer agents. Previously, BH10, a hit compound disrupting glycolytic metabolism, was identified via phenotypic screening, with Kelch-like ECH-associated protein 1 (Keap1) proposed as a potential target. To enhance its potency and selectivity, a library of BH10-derived salt compounds was synthesized. Among these, 7b exhibited nanomolar anticancer activity (IC50 = 22.97 nM) and a high selectivity ratio (IC50 of non-cancerous cells/IC50 of cancer cells = 41.43). Molecular docking revealed that all naphthoimidazole salt analogues (7af) bind to Keap1 via carbonyl-mediated interactions, with variations in hydrogen-bonding residues (e.g., VAL606, ILE559). Full article
Show Figures

Figure 1

20 pages, 22821 KiB  
Article
O-Desmethyltramadol Enhanced Anti-Cancer Efficacy over Tramadol Through Non-μ-Opioid Receptor and Differential Cellular Contexts of Human Breast Cancer Cells
by Zih-Syuan Wu, Yi-Hsuan Huang and Shih-Ming Huang
Int. J. Mol. Sci. 2025, 26(9), 4139; https://doi.org/10.3390/ijms26094139 - 27 Apr 2025
Cited by 2 | Viewed by 1234
Abstract
Tramadol, a widely used analgesic, has recently been explored for its potential anti-cancer effects. However, the antitumor dosage of tramadol is over its current clinical application. Its primary metabolite, O-desmethyltramadol, has greater μ-opioid receptor affinity and stronger pharmacological activity. Hence, we sought [...] Read more.
Tramadol, a widely used analgesic, has recently been explored for its potential anti-cancer effects. However, the antitumor dosage of tramadol is over its current clinical application. Its primary metabolite, O-desmethyltramadol, has greater μ-opioid receptor affinity and stronger pharmacological activity. Hence, we sought to examine whether the cytotoxic effect of O-desmethyltramadol was better than tramadol on breast cancer cells. Our results showed that O-desmethyltramadol significantly reduced cell viability in breast cancer cells, with IC50 values of 64.2 μg/mL (MDA-MB-231) and 96.7 μg/mL (MCF-7), demonstrating over ten-fold greater potency than tramadol. The presence of a μ-opioid receptor antagonist Alvimopan did not alter the cytotoxic effects of tramadol and O-desmethyltramadol, indicating a non-opioid receptor-mediated mechanism. Compared with antitumor activity of tramadol mediated through ER stress, we confirmed that O-desmethyltramadol induced ER stress proteins, including the p-eIF2α/eIF2α ratio, ATF4, and CHOP. In MDA-MB-231 cells, O-desmethyltramadol treatment elevated mRNA expression levels of ATF4, CHAC1, and DDIT3 by approximately 2-fold. In MCF-7 cells, the induction was even more pronounced, with ATF4 increased 1.7-fold, CHAC1 12-fold, and DDIT3 9-fold. Beyond the opioid receptor-mediated pathway, we further analyzed the differential functions of O-desmethyltramadol than tramadol using the RNA-seq analysis. The pathway enrichment analyses revealed that O-desmethyltramadol influenced immune and inflammatory pathways, such as TNF and IL-6/JAK/STAT3 signaling in MDA-MB-231 cells, while in MCF-7 cells, it affected metabolic and transcriptional pathways, including mTOR and MAPK signaling. Gene Set Enrichment Analysis further highlighted O-desmethyltramadol’s role in interferon response and tumor microenvironment modulation. Four upregulated genes and five downregulated genes were modulated by O-desmethyltramadol in MDA-MB-231 and MCF-7 cells. Overall, our findings indicated that O-desmethyltramadol exerted potent anti-cancer effects through multiple non-opioid mechanisms, with distinct response from tramadol depending on breast cancer subtype. These findings not only highlight the therapeutic potential of O-desmethyltramadol as a novel adjunct in breast cancer treatment, but also emphasize the need for further investigation into its safety and clinical applicability in oncology. Full article
(This article belongs to the Special Issue Recent Progress of Opioid Research, 2nd Edition)
Show Figures

Figure 1

21 pages, 4145 KiB  
Article
A Polysorbate-Based Lipid Nanoparticle Vaccine Formulation Induces In Vivo Immune Response Against SARS-CoV-2
by Aishwarya Saraswat, Alireza Nomani, Lin-Kin Yong, Jimmy Chun-Tien Kuo, Heather Brown, Muralikrishna Narayanareddygari, Avery Peace, Rizan Fazily, Timothy Blake, Christopher D. Petro, Bindhu Rayaprolu, Johanna Hansen, Amardeep Singh Bhalla and Mohammed Shameem
Pharmaceutics 2025, 17(4), 441; https://doi.org/10.3390/pharmaceutics17040441 - 29 Mar 2025
Viewed by 2224
Abstract
Background: Lipid nanoparticles (LNPs) have proven effective in delivering RNA-based modalities. Rapid approval of the COVID-19 vaccines highlights the promise of LNPs as a delivery platform for nucleic acid-based therapies and vaccines. Nevertheless, improved LNP designs are needed to advance next-generation vaccines and [...] Read more.
Background: Lipid nanoparticles (LNPs) have proven effective in delivering RNA-based modalities. Rapid approval of the COVID-19 vaccines highlights the promise of LNPs as a delivery platform for nucleic acid-based therapies and vaccines. Nevertheless, improved LNP designs are needed to advance next-generation vaccines and other gene therapies toward greater clinical success. Lipid components and LNP formulation excipients play a central role in biodistribution, immunogenicity, and stability. Therefore, it is important to understand, identify, and assess the appropriate lipid components for developing a safe and effective formulation. Herein, this study focused on developing a novel Polysorbate-80 (PS-80)-based LNP. We hypothesized that substituting conventional linear PEG-lipids with PS-80, a widely used, biocompatible injectable surfactant featuring a branched PEG-like structure, may change the LNPs biodistribution pattern and enhance long-term stability. By leveraging PS-80’s unique structural properties, this study aimed to develop an mRNA-LNP platform with improved extrahepatic delivery and robust freeze/thaw tolerance. Methods: We employed a stepwise optimization to establish both the lipid composition and formulation buffer to yield a stable, high-performing PS-80-based SARS-CoV-2 mRNA-LNP (SC2-PS80 LNP). We compared phosphate- versus tris-based buffers for long-term stability, examined multiple lipid ratios, and evaluated the impact of incorporating PS-80 (a branched PEG-lipid) on in vivo biodistribution. Various analytical assays were performed to assess particle size, encapsulation efficiency, mRNA purity, and in vitro potency of the developed formulation and a humanized mouse model was used to measure its immunogenicity over six months of storage at −80 °C. Results: Replacing the standard 1,2-dimyristoyl-rac-glycero-3-methoxy polyethylene glycol-2000 (PEG-DMG) lipid with PS-80 increased spleen-specific expression of the mRNA-LNPs after intramuscular injection. Formulating in a tris-sucrose-salt (TSS) buffer preserved the LNP’s physicochemical properties and in vitro potency over six months at −80 °C, whereas a conventional PBS-sucrose (PSS) buffer was less protective under frozen conditions. Notably, TSS-based SC2-PS80 LNPs elicited potent humoral immunity in mice, including high anti-spike IgG titers and robust pseudovirus neutralization, comparable to freshly prepared formulations. Conclusions: A PS-80-based mRNA-LNP platform formulated in TSS buffer confers improved extrahepatic delivery, long-term frozen stability, and strong immunogenicity against SARS-CoV-2 following six months. These findings offer a promising pathway for the design of next-generation mRNA vaccines and therapeutics with enhanced stability and clinical potential. Full article
Show Figures

Figure 1

19 pages, 5818 KiB  
Article
PK/PD of Positively Charged ADC in Mice
by Hsuan-Ping Chang, Huyen Khanh Le, Shufang Liu and Dhaval K. Shah
Pharmaceutics 2025, 17(3), 377; https://doi.org/10.3390/pharmaceutics17030377 - 17 Mar 2025
Viewed by 3283
Abstract
Background/Objectives: Antibody–drug conjugates (ADCs) show significant promise in oncology but often suffer from a narrow therapeutic window. Introducing a positive charge on the antibody is one proposed strategy to enhance tumor distribution and efficacy of ADC. Accordingly, this study evaluates the pharmacokinetics [...] Read more.
Background/Objectives: Antibody–drug conjugates (ADCs) show significant promise in oncology but often suffer from a narrow therapeutic window. Introducing a positive charge on the antibody is one proposed strategy to enhance tumor distribution and efficacy of ADC. Accordingly, this study evaluates the pharmacokinetics (PK) and pharmacology of an ADC developed using a positively charged (+5) version of anti-HER2 antibody trastuzumab conjugated with vc-MMAE linker-payload. Methods: A positively charged variant of trastuzumab was generated and conjugated to vc-MMAE. In vitro cytotoxicity assays were performed in cell lines with varying HER2 expression levels: N87 (high), MCF-7 (low), and MDA-MB-468 (non-expressing). In vivo biodistribution of wild-type (WT) and positively charged (+5) ADC was investigated in plasma, tumors, liver, and spleen. A pilot efficacy and toxicity study was also conducted in N87 tumor-bearing mice. Results: The charged ADC showed differential potency and PK behavior compared to the WT ADC. The charged ADC had similar potency in N87 cells but demonstrated ~20-fold and ~60-fold higher potency in MCF-7 and MDA-MB-468 cells. Plasma exposures of all the analytes were found to be reduced following the administration of charged ADC. However, total antibody exposure was found to increase in liver, spleen, and low antigen-expressing MCF-7 tumors. Tumor payload exposures were found to be significantly reduced for the charged ADCs, but liver and spleen displayed higher peak concentrations and increased tissue-to-plasma exposure ratios for the payload, suggesting preferential distribution of ADC with high drug–antibody ratio (DAR) to liver and spleen. Consistent with reduced tumor exposures, charged ADC showed lower efficacy in N87 tumor-bearing mice. No overt toxicity was observed for the charged ADC. Conclusions: Our findings suggest that while positively charged ADCs may be more potent in vitro, their efficacy in vivo may be compromised due to altered PK behavior. Thus, introducing a positive charge into the antibody framework may not be a viable strategy for improving the therapeutic potential of ADCs. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

20 pages, 1909 KiB  
Article
The Role of Purinergic Mechanisms in the Excitability of Trigeminal Afferents of Rats with Prenatal Hyperhomocysteinemia
by Elizaveta Ermakova, Svetlana Svitko, Alsu Kabirova, Egor Nevsky, Olga Yakovleva, Karina Gilizhdinova, Kseniia Shaidullova, Anton Hermann and Guzel Sitdikova
Biomolecules 2025, 15(3), 419; https://doi.org/10.3390/biom15030419 - 15 Mar 2025
Viewed by 902
Abstract
Elevated levels of homocysteine in the blood plasma (hyperhomocysteinemia, HHCY) positively correlate with migraine symptoms in patients. Experimental studies show a higher sensitivity of rats with prenatal HHCY (pHHCY) to migraine symptoms like allodynia, photophobia, anxiety, and a higher excitability of meningeal trigeminal [...] Read more.
Elevated levels of homocysteine in the blood plasma (hyperhomocysteinemia, HHCY) positively correlate with migraine symptoms in patients. Experimental studies show a higher sensitivity of rats with prenatal HHCY (pHHCY) to migraine symptoms like allodynia, photophobia, anxiety, and a higher excitability of meningeal trigeminal afferents. In the present study, the roles of purinergic mechanisms in the homocysteine-induced hyperexcitability of the trigeminal ganglion (TG) system using electrophysiological recordings from the trigeminal nerve, Ca2+ imaging of cells isolated from TG, and mast cell staining in meninges were investigated. Experiments were performed using rats with pHHCY born from females fed with a high-methionine-containing diet before and during pregnancy. Firstly, we found that lower concentrations of 4-aminopyridine, a K+-channel blocker, were able to induce an increase in the nociceptive activity of trigeminal afferents, supporting the hypothesis of the higher excitability of the trigeminal nerve of rats with pHHCY. Trigeminal afferents of rats with pHHCY were more sensitive to the exogenous application of the nonspecific agonist of purinergic ATP receptors. In neurons and satellite glial cells of TG of rats with pHHCY ATP, ADP (an agonist of metabotropic P2Y receptors) and BzATP (an agonist of ionotropic P2X with especially high potency for the P2X7 receptor) induced larger Ca2+ transients. The incubation of TG neurons in homocysteine for 24 h increased the ratio of neurons responding simultaneously to ATP and capsaicin. Moreover, rats with pHHCY exhibit a higher rate of degranulation of mast cells and increased response to the agonist of the P2X7 receptor BzATP application. In addition, higher levels of calcitonin gene-related peptide (CGRP) were found in rats with pHHCY. Our results suggest that chronic elevated levels of homocysteine induce the upregulation of ionotropic or metabotropic ATP receptors in neurons, satellite glial cells, and mast cells, which further provide inflammatory conditions and the sensitization of peripheral afferents underlying pain. Full article
(This article belongs to the Special Issue Homocysteine and H2S in Health and Disease, 2nd Edition)
Show Figures

Figure 1

13 pages, 1832 KiB  
Article
Evaluation of Complex Drug Interactions Between Elexacaftor-Tezacaftor-Ivacaftor and Statins Using Physiologically Based Pharmacokinetic Modeling
by Eunjin Hong, Peter S. Chung, Adupa P. Rao and Paul M. Beringer
Pharmaceutics 2025, 17(3), 318; https://doi.org/10.3390/pharmaceutics17030318 - 1 Mar 2025
Viewed by 1114
Abstract
Background/Objectives: The increasing use of statins in people with cystic fibrosis (CF) necessitates the investigation of potential drug–drug interactions (DDI) of statins with cystic fibrosis transmembrane conductance regulator (CFTR) modulators, including elexacaftor, tezacaftor, and ivacaftor (ETI). The interactions may involve the potential inhibition [...] Read more.
Background/Objectives: The increasing use of statins in people with cystic fibrosis (CF) necessitates the investigation of potential drug–drug interactions (DDI) of statins with cystic fibrosis transmembrane conductance regulator (CFTR) modulators, including elexacaftor, tezacaftor, and ivacaftor (ETI). The interactions may involve the potential inhibition of cytochrome P450 isoenzymes (CYPs), organic anion-transporting polypeptides (OATPs), and Breast Cancer Resistance Protein (BCRP) by ETI. This presents a therapeutic challenge in CF due to the potential for elevated statin levels, consequently heightening the risk of myopathy. This study aimed to predict potential DDIs between statins and ETI using a physiologically based pharmacokinetic (PBPK) modeling approach. Methods: We performed in vitro assays to measure the inhibitory potency of ETI against OATPs and CYP2C9 and incorporated these data into our PBPK models alongside published inhibitory parameters for BCRP and CYP3A4. Results: The PBPK simulation showed that atorvastatin had the highest predicted AUC ratio (3.27), followed by pravastatin (2.27), pitavastatin (2.24), and rosuvastatin (1.83). Conclusions: Based on these findings, rosuvastatin appears to exhibit a weak interaction with ETI, whereas other statins exhibited a moderate interaction, potentially requiring appropriate dose reductions. These data indicate potential clinically significant DDIs between ETI and certain statins, which warrants a clinical study to validate these findings. Full article
Show Figures

Figure 1

24 pages, 21741 KiB  
Article
Synergistic Interactions Among Iron and Cobalt Atoms Within Bimetallic Molybdate@Carbon Paper Composite Create Bifunctional Nanoflower Electrocatalyst, Enhancing Efficiency for Overall Water Splitting in Alkaline Environment
by Ting Cheng, Fei Wu, Chen Chen, Xiao Zhang, Mengyi Zhang, Liwei Cui, Youzhi Dai, Baoxuan Hou, Yuan Tian and Jiarui Zhu
Molecules 2025, 30(4), 844; https://doi.org/10.3390/molecules30040844 - 12 Feb 2025
Viewed by 903
Abstract
Electrocatalytic water splitting is a promising approach for obtaining clean hydrogen energy. In this work, novel molybdate@carbon paper composite electrocatalysts (CoxFe10-xMoO@CP), displaying outstanding electrocatalytic capabilities, were deriving from anchoring cobalt/iron molybdate materials onto the surface of carbon paper fibers. By adjusting the cobalt-to-iron [...] Read more.
Electrocatalytic water splitting is a promising approach for obtaining clean hydrogen energy. In this work, novel molybdate@carbon paper composite electrocatalysts (CoxFe10-xMoO@CP), displaying outstanding electrocatalytic capabilities, were deriving from anchoring cobalt/iron molybdate materials onto the surface of carbon paper fibers. By adjusting the cobalt-to-iron ratio, the composite (Co5Fe5MoO@CP), with the optimal molar proportion (Co/Fe = 5/5), exhibited a distinctive nanoflower morphology (50–100 nm), which provided a significant number of active sites for electrocatalytic reactions, and showed the strongest electrocatalytic potency for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Specifically, the overpotentials for HER and OER were 123.6 and 245 mV at 10 mA·cm−2, with a Tafel slope of 78.3 and 92.2 mV·dec−1, respectively. The hydrogen and oxygen evolution reactions remained favorable and stable over 35 days and 2 weeks of cyclic voltammetry cycles. In a two-electrode system, efficient overall water splitting was achieved at a cell voltage of 1.60 V. Under high alkaline concentration and temperature conditions, the Co5Fe5MoO@CP composite still maintained excellent HER and OER catalytic activity and stability, indicating its satisfactory potential for industrial applications. Density functional theory (DFT) analysis revealed that the promoted hydrogen evolution capability derived from the synergistic catalytic effect of iron and cobalt atoms within the molecule, while cobalt atoms functioned as the catalytic core for the oxygen evolution process. This work provides a novel strategy towards high-efficiency electrocatalysts to significantly accelerate the overall water splitting. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

10 pages, 249 KiB  
Article
The Relationship Between Methadone and Buprenorphine Enrollment and Overdose Prevention and Treatment Behaviors Among a Community Sample of People Who Use Opioids in Baltimore, Maryland
by Carl A. Latkin, Lauren Dayton, Melissa Davey-Rothwell and Abenaa Jones
Int. J. Environ. Res. Public Health 2025, 22(2), 213; https://doi.org/10.3390/ijerph22020213 - 3 Feb 2025
Cited by 2 | Viewed by 1361
Abstract
Background: Methadone and buprenorphine can reduce overdose-related mortality. Behavioral approaches can also reduce fatal overdoses. The current study examined the relationship between methadone and buprenorphine and overdose history and overdose prevention and treatment behaviors. Methods: Between December 2022 and August 2024, 647 individuals [...] Read more.
Background: Methadone and buprenorphine can reduce overdose-related mortality. Behavioral approaches can also reduce fatal overdoses. The current study examined the relationship between methadone and buprenorphine and overdose history and overdose prevention and treatment behaviors. Methods: Between December 2022 and August 2024, 647 individuals who used opioids in the prior month enrolled in a community recruited study on overdose. Participants were administered a face-to-face survey. Key behaviors assessed included overdose recency, testing drugs for potency, ingesting drugs slowly, using fentanyl test strips, using drugs alone, and carrying naloxone. Chi-square and logistic regression models examined the relationships between methadone and buprenorphine and overdose-related outcomes. Results: In total, 32.9% of participants were currently taking methadone and 15.5% buprenorphine. Most (69.2%) reported ever overdosing, and among those, 33.7% had overdosed within the prior 6 months. There were no significant associations between methadone or buprenorphine status and overdose prevention and care behaviors. In the multivariable logistic regression model, methadone use was associated with a lower odds ratio (aOR = 0.49, 95% CI = 0.30–0.79of a recent overdose compared to buprenorphine. Daily or almost daily crack use was associated with greater odds of a recent overdose (aOR = 2.21, 95% CI = 1.44–3.39. Discussion: Findings suggest the importance of promoting overdose prevention and care behaviors to people in drug treatment and training them to promote overdose prevention and care behaviors among their drug-using network members and other community members. Full article
25 pages, 1709 KiB  
Article
Optimized Extraction Protocols for Bioactive Antioxidants from Commercial Seaweeds in Portugal: A Comparative Study of Techniques
by Francisca Santos, Cristina Soares, Stephanie L. Morais, Cátia Neves, Clara Grosso, Maria João Ramalhosa, Mónica Vieira, Cristina Delerue-Matos and Valentina F. Domingues
Foods 2025, 14(3), 453; https://doi.org/10.3390/foods14030453 - 30 Jan 2025
Cited by 2 | Viewed by 1898
Abstract
This study aimed to optimize the extraction conditions for a valuable source of antioxidants: seaweed. Therefore, ten seaweed samples were subjected to a solid–liquid extraction (SLE), where the extraction conditions (biomass (g): solvent (mL) ratio, temperature, and time) were optimized using response surface [...] Read more.
This study aimed to optimize the extraction conditions for a valuable source of antioxidants: seaweed. Therefore, ten seaweed samples were subjected to a solid–liquid extraction (SLE), where the extraction conditions (biomass (g): solvent (mL) ratio, temperature, and time) were optimized using response surface methodology (RSM). The seaweeds were also subjected to subcritical water extraction (SWE) (140 and 190 °C) and ultrasound-assisted extraction (UAE) (10 and 20 min). The antioxidant capacity of the extracts was determined through the ferric-reducing antioxidant power and the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). The total phenolic content revealed the significance of temperature and biomass; solvent ratio parameters in the extraction process with higher conditions generally promoting the release of phenolic compounds. Furthermore, applying RSM allowed for the identification of optimal conditions and the establishment of predictive models that can be valuable in industrial-scale extraction processes. The antioxidant potency composite index (APCI) shows that SWE at 190 °C stands out, with E. bicyclis reaching an APCI score of 46.27%. The AGREEprep evaluation showed that UAE is the most sustainable method, achieving the highest score (0.69). The results of this study contribute to the development of efficient and standardized extraction protocols for each seaweed species, allowing for the maximum yield of antioxidants. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

24 pages, 720 KiB  
Article
In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Activities of the Amphiphilic Bioactives Extracted from Avocado and Its By-Products
by Anita Marra, Vasileios Manousakis, Nikolaos Koutis, Georgios Panagiotis Zervas, Anna Ofrydopoulou, Katie Shiels, Sushanta Kumar Saha and Alexandros Tsoupras
Antioxidants 2025, 14(2), 146; https://doi.org/10.3390/antiox14020146 - 26 Jan 2025
Cited by 2 | Viewed by 1926
Abstract
The antioxidant, antithrombotic and anti-inflammatory effects of the amphiphilic compounds extracted from both avocado juice and by-products, were evaluated. All extracts were assessed for their total phenolic content (TPC) and total carotenoid content (TCC), and for their antioxidant activities by DPPH, ABTS and [...] Read more.
The antioxidant, antithrombotic and anti-inflammatory effects of the amphiphilic compounds extracted from both avocado juice and by-products, were evaluated. All extracts were assessed for their total phenolic content (TPC) and total carotenoid content (TCC), and for their antioxidant activities by DPPH, ABTS and FRAP assays as well as for their anti-inflammatory and antithrombotic potency in human platelets. The extracts rich in TAC (Total Amphiphilic Content) showed much higher content in phenolics and carotenoids from the extracts of total lipophilic content (TLC), which was reflected by the much stronger antioxidant capacities of TAC extracts. ATR-FTIR spectroscopy revealed the presence of not only phenolics and carotenoids, but also of bioactive polar lipids (PLs) in avocado TAC extracts, the LC-MS based structural analysis of which further revealed a fatty acid composition favourable for unsaturated fatty acids (UFAs) versus saturated ones (SFAs), including monounsaturated fatty acids (MUFAs) like the oleic acid (C18:1n9) and omega-3 (n3) polyunsaturated fatty acids (PUFAs) like the alpha linolenic acid (C18:3n3), with the subsequent anti-inflammatory low values of the n6/n3 PUFA ratio. The presence of such bioactive PLs that are rich in UFA within the TAC extracts of avocado juice and its by-products provide an explanation for the observed potent anti-inflammatory and antithrombotic activities of avocado TAC against thrombo-inflammatory mediators like platelet activating factor (PAF) and against standard platelet agonists like ADP, offering promise for such avocado TAC extracts, as ingredients in functional products for health/promoting applications either in cosmetics or in functional foods and nutraceuticals, or even drugs. Full article
(This article belongs to the Special Issue Bioactive Antioxidants from Agri-Food Wastes)
Show Figures

Graphical abstract

24 pages, 19108 KiB  
Article
Construction of Advanced S-Scheme Heterojunction Interface Composites of Bimetallic Phosphate MnMgPO4 with C3N4 Surface with Remarkable Performance in Photocatalytic Hydrogen Production and Pollutant Degradation
by Ting Cheng, Jiarui Zhu, Chen Chen, Yulin Hu, Liangliang Wu, Mengyi Zhang, Liwei Cui, Youzhi Dai, Xiao Zhang, Yuan Tian and Fei Wu
Coatings 2025, 15(1), 103; https://doi.org/10.3390/coatings15010103 - 18 Jan 2025
Cited by 2 | Viewed by 1036
Abstract
Novel S-scheme heterojunction interface composite (MnMgPO4@C3N4) of bimetallic phosphate MnMgPO4 and C3N4 with different proportions was successfully constructed in this work. The nanosheet surface structure and the integration interface of two materials endowed [...] Read more.
Novel S-scheme heterojunction interface composite (MnMgPO4@C3N4) of bimetallic phosphate MnMgPO4 and C3N4 with different proportions was successfully constructed in this work. The nanosheet surface structure and the integration interface of two materials endowed the composite heterojunctions with superior visible light absorption and improved photogenerated carrier transfer, boosting the photocatalytic hydrogen production and degradation performance. The interface composite (5C5MMP) with the optimal mass ratio (MnMgPO4/C3N4 = 5/5) achieved the strongest photocatalytic potency. The hydrogen evolution rate was about 3.595 mmol·g−1·h−1, and the pollutants of methylene blue (MB), oxytetracycline (OTC), and tetracycline (TE) were almost entirely degraded within 40 min. The degradation rates were approximately 97.1% (MB), 95.4% (OTC), and 99.7% (TE). Notably, the heterojunction interface composite displayed exceptional photocatalytic stability and structural durability. The photocatalytic mechanism revealed that the 5C5MMP heterojunction interface exhibited the strongest photocurrent response, the least electron transfer resistance, and the lowest carrier recombination rate, resulting in exceptional photocatalytic performance. Furthermore, both C3N4 and MgMnPO4 were identified as n-type semiconductors. The optimized band structure of the composite photocatalyst interface and the enhanced charge carrier separation enabled the 5C5MMP photocatalytic system to generate more reactive photogenerated electrons for reduction and holes for oxidation, significantly accelerating the photocatalytic hydrogen production and pollutant degradation. By proposing an S-scheme heterojunction interface composite, this research offers an innovative strategy for designing efficient composite photocatalysts and underscores the feasibility of using bimetallic phosphate composites to enhance hydrogen production and pollutant removal. Full article
Show Figures

Figure 1

15 pages, 3889 KiB  
Article
Nanoparticles for Biomedical Use Derived from Natural Biomolecules: Tannic Acid and Arginine
by Mehtap Sahiner, Selin S. Suner and Nurettin Sahiner
Biomedicines 2025, 13(1), 209; https://doi.org/10.3390/biomedicines13010209 - 16 Jan 2025
Cited by 1 | Viewed by 1213
Abstract
Background/Objectives: Tannic acid (TA) is a well-known natural phenolic acid composed of ten gallic acids linked to each other with ester bonding possessing excellent antioxidant properties in addition to antimicrobial and anticancer characteristics. Arginine (ARG) is a positively charged amino acid at [...] Read more.
Background/Objectives: Tannic acid (TA) is a well-known natural phenolic acid composed of ten gallic acids linked to each other with ester bonding possessing excellent antioxidant properties in addition to antimicrobial and anticancer characteristics. Arginine (ARG) is a positively charged amino acid at physiological pH because of nitrogen-rich side chain. Method: Here, poly(tannic acid-co-arginine) (p(TA-co-ARG)) particles at three mole ratios, TA:ARG = 1:1, 1:2, and 1:3, were prepared via a Mannich condensation reaction between TA and ARG by utilizing formaldehyde as a linking agent. Results: The p(TA-co-ARG) particles in 300–1000 nm size range with smooth surfaces visualized via SEM analysis were attained. Abundant numbers of functional groups, -OH, -NH2, and -COOH stemming from TA and ARG constituent confirmed by FT-IR analysis. The isoelectric point (IEP) of the particles increased from pH 4.98 to pH 7.30 by increasing the ARG ratios in p(TA-co-ARG) particles. The antioxidant capacity of p(TA-co-ARG) particles via gallic acid (GA) and rosmarinic acid (RA) equivalents tests revealed that particles possess concentration-dependent antioxidant potency and increased by TA content. The α-glucosidase inhibition of p(TA-co-ARG) particles (2 mg/mL) 1:1 and 1:2 mole ratios revealed significant enzyme inhibition ability, e.g., 91.3 ± 3.1% and 77.6 ± 12.0%. Interestingly, p(TA-co-ARG) (1:3 ratio) possessed significant antibacterial effectiveness against Escherichia coli (ATCC 8739) and Staphylococcus aureus (ATCC 6538) bacteria. Furthermore, all p(TA-co-ARG) particles at 1000 mg/mL concentration showed >80% toxicity on L929 fibroblast cells and increased as ARG content of p(TA-co-ARG) particles is increased. Conclusions: p(TA-co-ARG) showed significant potential as natural biomaterials for biomedical use. Full article
(This article belongs to the Special Issue Antioxidant Materials with Additional Biological Properties)
Show Figures

Figure 1

Back to TopTop