Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = post-fracture production prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7086 KiB  
Article
Study on Evolution of Stress Field and Fracture Propagation Laws for Re-Fracturing of Volcanic Rock
by Honglei Liu, Jiangling Hong, Wei Shu, Xiaolei Wang, Xinfang Ma, Haoqi Li and Yipeng Wang
Processes 2025, 13(8), 2346; https://doi.org/10.3390/pr13082346 - 23 Jul 2025
Abstract
In the Kelameili volcanic gas reservoir, primary hydraulic fracturing treatments in some wells take place on a limited scale, resulting in a rapid decline in production post stimulation and necessitating re-fracturing operations. However, prolonged production has led to a significant evolution in the [...] Read more.
In the Kelameili volcanic gas reservoir, primary hydraulic fracturing treatments in some wells take place on a limited scale, resulting in a rapid decline in production post stimulation and necessitating re-fracturing operations. However, prolonged production has led to a significant evolution in the in situ stress field, which complicates the design of re-fracturing parameters. To address this, this study adopts an integrated geology–engineering approach to develop a formation-specific geomechanical model, using rock mechanical test results and well-log inversion to reconstruct the reservoir’s initial stress field. The dynamic stress field simulations and re-fracturing parameter optimization were performed for Block Dixi-14. The results show that stress superposition effects induced by multiple fracturing stages and injection–production cycles have significantly altered the current in situ stress distribution. For Well K6, the optimized re-fracturing parameters comprised a pump rate of 12 m3/min, total fluid volume of 1200 m3, prepad fluid ratio of 50–60%, and proppant volume of 75 m3, and the daily gas production increased by 56% correspondingly, demonstrating the effectiveness of the optimized re-fracturing design. This study not only provides a more realistic simulation framework for fracturing volcanic rock gas reservoirs but also offers a scientific basis for fracture design optimization and enhanced gas recovery. The geology–engineering integrated methodology enables the accurate prediction and assessment of dynamic stress field evolution during fracturing, thereby guiding field operations. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

37 pages, 9217 KiB  
Article
Permeability Jailbreak: A Deep Simulation Study of Hydraulic Fracture Cleanup in Heterogeneous Tight Gas Reservoirs
by Hamid Reza Nasriani and Mahmoud Jamiolahmady
Energies 2025, 18(14), 3618; https://doi.org/10.3390/en18143618 - 9 Jul 2025
Viewed by 220
Abstract
Ultra-tight gas reservoirs present severe flow constraints due to complex interactions between rock–fluid properties and hydraulic fracturing. This study investigates the impact of unconventional capillary pressure correlations and permeability jail effects on post-fracture cleanup in multiple-fractured horizontal wells (MFHWs) using high-resolution numerical simulations. [...] Read more.
Ultra-tight gas reservoirs present severe flow constraints due to complex interactions between rock–fluid properties and hydraulic fracturing. This study investigates the impact of unconventional capillary pressure correlations and permeability jail effects on post-fracture cleanup in multiple-fractured horizontal wells (MFHWs) using high-resolution numerical simulations. A novel modelling approach is applied to represent both weak and strong permeability jail phenomena in heterogeneous rock systems. A comprehensive suite of parametric simulations evaluates gas production loss (GPL) and produced fracture fluid (PFF) across varying fracture fluid volumes, shut-in times, drawdown pressures, and matrix permeabilities. The analysis leverages statistically designed experiments and response surface models to isolate the influence of rock heterogeneity and saturation-dependent flow restrictions on cleanup efficiency. The results reveal that strong jail zones drastically hinder fracture fluid recovery, while weak jail configurations interact with heterogeneity to produce non-linear cleanup trends. Notably, reducing the pore size distribution index in Pc models improves predictive accuracy for ultra-tight conditions. These findings underscore the need to integrate unconventional Kr and Pc behaviour in hydraulic fracturing design to optimise flowback and long-term gas recovery. This work provides critical insights for improving reservoir performance and supports ambitions in energy resilience and net-zero transition strategies. Full article
Show Figures

Figure 1

19 pages, 3956 KiB  
Article
Production Prediction Method for Deep Coalbed Fractured Wells Based on Multi-Task Machine Learning Model with Attention Mechanism
by Heng Wen, Jianshu Wu, Ying Zhu, Xuesong Xing, Guangai Wu, Shicheng Zhang, Chengang Xian, Na Li, Cong Xiao, Ying Zhou and Lei Zou
Processes 2025, 13(6), 1787; https://doi.org/10.3390/pr13061787 - 5 Jun 2025
Viewed by 433
Abstract
Deep coalbed methane (CBM) is rich in resources and is an important replacement resource for tight gas in China. Accurate prediction of post-fracture production and dynamic change characteristics of fractured wells of partial CBM is of great significance in predicting the final recovery [...] Read more.
Deep coalbed methane (CBM) is rich in resources and is an important replacement resource for tight gas in China. Accurate prediction of post-fracture production and dynamic change characteristics of fractured wells of partial CBM is of great significance in predicting the final recovery rate. In terms of predicting time-series production, the problem one encounters is low prediction accuracy and poor generalisation ability under limited sample conditions. In this paper, we propose a hybrid deep neural network (AT-GRU-MTL) production prediction model based on the combination of an attention mechanism gated recurrent neural network (GRU) and multi-task learning (MTL), where the AT-GRU is responsible for capturing the nonlinear pattern of the production change, while introducing an MTL method that includes a cross-stitch network (CSN) and a weighted loss using homoskedasticity uncertainty to automatically determine the degree of sharing between multiple tasks and the weighting ratio of the total loss function. The model is applied to several typical deep CBM fracturing wells in China, and the accuracy of gas production prediction reaches 90%, while the accuracy of water production prediction is 68%. The experimental results show that, for the blocks with a very large difference in the order of magnitude of the gas and water production, it is very easy for a certain small order of magnitude to be suppressed from learning during the two-way multi-task learning process, which leads to deterioration of its prediction effect; at the same time, the adaptability of the model is evaluated, and it is found that the model is more advantageous for the wells that have been produced for approximately one year. Meanwhile, the evaluation of the model adaptability shows that the model is more dominant in the prediction of wells with production of about one and a half years. Based on the two test wells with shorter (380 days) and longer (709 days) spans, the results indicate that the model may have insufficient sensitivity to the sudden change of the ratio of gas to water and the failure of the dynamic generalisation of the matrix shrinkage–desorption coupling, and the introduction of physical constraints (such as bottomhole flow pressure, etc.) or the division of the data into the production stages may be attempted to deal with the case subsequently. The research results in this paper provide a theoretical basis for dynamic production prediction and analysis in oil and gas field sites. Full article
Show Figures

Figure 1

16 pages, 2500 KiB  
Article
Quantitative Prediction Method for Post-Fracturing Productivity of Oil–Water Two-Phase Flow in Low-Saturation Reservoirs
by Huijian Wen, Xueying Li, Xuchao He, Qiang Sui, Bo Xing and Chao Wang
Processes 2025, 13(4), 1091; https://doi.org/10.3390/pr13041091 - 5 Apr 2025
Cited by 1 | Viewed by 309
Abstract
The fluid properties of low-saturation reservoirs (LSRs) produced after fracturing are complex and diverse, which makes it difficult to predict the post-fracturing productivity of oil–water two-phase flow and results in a low prediction accuracy. Therefore, based on elliptical seepage theory and nonlinear steady-state [...] Read more.
The fluid properties of low-saturation reservoirs (LSRs) produced after fracturing are complex and diverse, which makes it difficult to predict the post-fracturing productivity of oil–water two-phase flow and results in a low prediction accuracy. Therefore, based on elliptical seepage theory and nonlinear steady-state seepage formula, a new method for predicting the post-fracturing productivity (PFP) of oil–water two-phase flow in vertical wells in LSRs after fracturing is proposed in this paper. The Li Kewen model is preferred for accurately calculating oil–water relative permeability. Based on the elliptical fracture morphology, a quantitative prediction model for the PFP of oil–water two-phase flow is established. This model incorporates a starting pressure gradient (SPG) to depict the non-Darcy flow seepage law in low-permeability reservoirs. Hydraulic fracturing fracture length, width and permeability are obtained using logging curves and fracturing data, and this model can be applied to the quantitative prediction of PFP of oil–water two-phase flow in LSRs. The research results show that the conformity rate of oil production is 77.5%, and that of water production is 73.2%, with an improvement of over 15% in the interpretation conformity rate. Compared with actual well test productivity, the mean absolute error of the oil productivity prediction is 3.51 t/d, and the mean absolute error of the water productivity prediction is 12.37 t/d, which meet the requirements of field productivity quantitative evaluation, indicating the effectiveness of this quantitative prediction method for predicting the PFP of oil–water two-phase flow. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 3934 KiB  
Article
A New Approach to a Fracturing Sweet Spot Evaluation Method Based on Combined Weight Coefficient Method—A Case Study in the BZ Oilfield, China
by Mao Jiang, Chengyong Peng, Jianshu Wu, Zongyong Wang, Yi Liu, Bingjin Zhao and Yan Zhang
Processes 2024, 12(9), 1830; https://doi.org/10.3390/pr12091830 - 28 Aug 2024
Viewed by 1068
Abstract
The Sha3 member of the BZ Oilfield in Bohai Sea represents a typical ultra-low permeability thin interbedding reservoir. Hydraulic fracturing is an effective method for increasing oil and gas production. However, the complex geological conditions make it difficult to screen out the optimal [...] Read more.
The Sha3 member of the BZ Oilfield in Bohai Sea represents a typical ultra-low permeability thin interbedding reservoir. Hydraulic fracturing is an effective method for increasing oil and gas production. However, the complex geological conditions make it difficult to screen out the optimal frac spot. Consequently, the design of hydraulic fracturing exhibits certain limitations. A novel method for evaluating sweet spots is proposed, based on a refined geological reservoir model that considers the varying degrees of influence that geological and engineering factors have on fracturing effectiveness. This method utilizes grey correlation and hierarchical analysis to quantify and characterize the weight coefficients of each factor, ultimately leading to a combined weight coefficient approach. The results indicate that permeability and fracturing scale are the primary factors that impact the post-frac production of the BZ oilfield, with their respective combined weights being 0.33 and 0.25. The average weight for geological factors is 0.18, while for engineering factors it is 0.15. This suggests that geological factors have a greater influence on production than engineering factors. Furthermore, the correlation coefficient between the dual sweet spot index and the production is 0.96, indicating a strong positive correlation between the two variables. After comparing the predicted and actual production of each well, it was determined that the anastomosis rate is 80%. This finding holds significant guiding significance for selecting the optimal fracturing spot. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 3rd Edition)
Show Figures

Figure 1

19 pages, 11215 KiB  
Article
Study on Fracture Evolution and Water-Conducting Fracture Zone Height beneath the Sandstone Fissure Confined Aquifer
by Jiabo Xu, Daming Yang, Zhenquan Zhang, Yun Sun and Linshuang Zhao
Sustainability 2024, 16(14), 6006; https://doi.org/10.3390/su16146006 - 14 Jul 2024
Cited by 3 | Viewed by 1338
Abstract
Studying the evolution law of overlying rock fissures and predicting the development height of water-conducting fissure zones is the key to preventing roof water damage, protecting mine water resources, and realizing the safe and sustainable development of the mine. To study the overburden [...] Read more.
Studying the evolution law of overlying rock fissures and predicting the development height of water-conducting fissure zones is the key to preventing roof water damage, protecting mine water resources, and realizing the safe and sustainable development of the mine. To study the overburden fracture evolution law of coal mining under aquifer conditions, the 1402 working face of Longwangzhuang Mine in Shaanmian Coalfield serves as the engineering background based on the Fractal Theory and similar simulation technology; this paper analyzes the fracture evolution of overburden rock and the development law of Water-Conducting Fracture Zone (WCFZ) during the advancing of working face, and further puts forward a model for the location discrimination of overburden fracture based on plate theory. The results indicate that post-mining, overburden rock failure assumes a trapezoidal shape, and fractures around the cutting hole and the side of the working face fully develop, while those in the middle of the goaf tend to compact. The distribution of the fracture network of mining strata at different advancing distances has good self-similarity, and the fractal dimension of the fracture network of overlying rock can be divided into three stages: ascending dimension, decreasing dimension, and stable phase. The II 1 coal seam fracture does not spread to the Sandstone Fissure Confined Aquifer. These findings provide strategic guidance for protecting mine aquifer water resources, preventing and controlling roof water inrush, and ensuring safe and sustainable production within the study area. Full article
(This article belongs to the Special Issue Scientific Disposal and Utilization of Coal-Based Solid Waste)
Show Figures

Figure 1

40 pages, 15541 KiB  
Article
Post-Fracture Production Prediction with Production Segmentation and Well Logging: Harnessing Pipelines and Hyperparameter Tuning with GridSearchCV
by Yongtao Sun, Jinwei Wang, Tao Wang, Jingsong Li, Zhipeng Wei, Aibin Fan, Huisheng Liu, Shoucun Chen, Zhuo Zhang, Yuanyuan Chen and Lei Huang
Appl. Sci. 2024, 14(10), 3954; https://doi.org/10.3390/app14103954 - 7 May 2024
Cited by 4 | Viewed by 1451
Abstract
As the petroleum industry increasingly exploits unconventional reservoirs with low permeability and porosity, accurate predictions of post-fracture production are becoming critical for investment decisions, energy policy development, and environmental impact assessments. However, despite extensive research, accurately forecasting post-fracture production using well-log data continues [...] Read more.
As the petroleum industry increasingly exploits unconventional reservoirs with low permeability and porosity, accurate predictions of post-fracture production are becoming critical for investment decisions, energy policy development, and environmental impact assessments. However, despite extensive research, accurately forecasting post-fracture production using well-log data continues to be a complex challenge. This study introduces a new method of data volume expansion, which is to subdivide the gas production of each well on the first day according to the depth of logging data, and to rely on the correlation model between petrophysical parameters and gas production to accurately combine the gas production data while matching the accuracy of the well-log data. Twelve pipelines were constructed utilizing a range of techniques to fit the regression relationship between logging parameters and post-fracture gas production These included data preprocessing methods (StandardScaler and RobustScaler), feature extraction approaches (PCA and PolynomialFeatures), and advanced machine learning models (XGBoost, Random Forest, and neural networks). Hyperparameter optimization was executed via GridSearchCV. To assess the efficacy of diverse models, metrics including the coefficient of determination (R2), standard deviation (SD), Pearson correlation coefficient (PCC), mean absolute error (MAE), mean squared error (MSE), and root-mean-square error (RMSE) were invoked. Among the several pipelines explored, the PFS-NN exhibited excellent predictive capability in specific reservoir contexts. In essence, integrating machine learning with logging parameters can be used to effectively assess reservoir productivity at multi-meter formation scales. This strategy not only mitigates uncertainties endemic to reservoir exploration but also equips petroleum engineers with the ability to monitor reservoir dynamics, thereby facilitating reservoir development. Additionally, this approach provides reservoir engineers with an efficient means of reservoir performance oversight. Full article
(This article belongs to the Special Issue Advances in Geo-Energy Development and Enhanced Oil/Gas Recovery)
Show Figures

Figure 1

20 pages, 17296 KiB  
Article
Pre-Stack Fracture Prediction in an Unconventional Carbonate Reservoir: A Case Study of the M Oilfield in Tarim Basin, NW China
by Bo Liu, Fengying Yang, Guangzhi Zhang and Longfei Zhao
Energies 2024, 17(9), 2061; https://doi.org/10.3390/en17092061 - 26 Apr 2024
Cited by 1 | Viewed by 1265
Abstract
The reservoir of the M oilfield in Tarim Basin is an unconventional fracture-cave carbonate rock, encompassing various reservoir types like fractured, fracture-cave, and cave, exhibiting significant spatial heterogeneity. Despite the limited pore space in fractures, they can serve as seepage pathways, complicating the [...] Read more.
The reservoir of the M oilfield in Tarim Basin is an unconventional fracture-cave carbonate rock, encompassing various reservoir types like fractured, fracture-cave, and cave, exhibiting significant spatial heterogeneity. Despite the limited pore space in fractures, they can serve as seepage pathways, complicating the connectivity between reservoirs. High-precision fracture prediction is critical for the effective development of these reservoirs. The conventional post-stack seismic attribute-based approach, however, is limited in its ability to detect small-scale fractures. To address this limitation, a novel pre-stack fracture prediction method based on azimuthal Young’s modulus ellipse fitting is introduced. Offset Vector Tile (OVT) gather is utilized, providing comprehensive information on azimuth and offset. Through analyzing azimuthal anisotropies, such as travel time, amplitude, and elastic parameters, smaller-scale fractures can be detected. First, the original OVT gather data are preprocessed to enhance the signal-to-noise ratio. Subsequently, these data are partially stacked based on different azimuths and offsets. On this basis, pre-stack inversion is carried out for each azimuth to obtain the Young’s modulus in each direction, and, finally, the ellipse fitting algorithm is used to obtain the orientation of the long axis of the ellipse and the ellipticity, indicating the fracture orientation and density, respectively. The fracture prediction results are consistent with the geological structural features and fault development patterns of the block, demonstrating good agreement with the imaging logging interpretations. Furthermore, the results align with the production dynamics observed in the production wells within the block. This alignment confirms the high accuracy of the method and underscores its significance in providing a robust foundation for reservoir connectivity studies and well deployment decisions in this region. Full article
Show Figures

Figure 1

17 pages, 5820 KiB  
Article
A Semi-Analytical Model for Studying the Transient Flow Behavior of Nonuniform-Width Fractures in a Three-Dimensional Domain
by Yanzhong Liang, Xuanming Zhang, Wenzhuo Zhou, Qingquan Li, Jia Li, Yawen Du, Hanxin Cai and Bailu Teng
Energies 2023, 16(24), 7920; https://doi.org/10.3390/en16247920 - 5 Dec 2023
Viewed by 1157
Abstract
In the fracture propagation model, the assumption that hydraulic fractures with non-uniform widths have been successfully utilized to predict fracture propagation for decades. However, when one conducts post-fracture analysis, the hydraulic fracture is commonly simplified with a uniform width, which is contradictory to [...] Read more.
In the fracture propagation model, the assumption that hydraulic fractures with non-uniform widths have been successfully utilized to predict fracture propagation for decades. However, when one conducts post-fracture analysis, the hydraulic fracture is commonly simplified with a uniform width, which is contradictory to the real fracture models. One of the reasons for over-simplifying the fracture geometry in the post-fracture analysis can be ascribed to the fact that we are still lacking a model to characterize the pressure transient behavior of the nonuniform-width fractures which can induce three-dimensional flow around the fractures. In this work, on the basis of the Green function and Newman product method, the authors derived a semi-analytical model to account for the effect of non-uniform width distribution of the hydraulic fractures in a three-dimensional domain. In addition, the effect of the fracturing strategies on the well performance is investigated based on the developed semi-analytical model. The calculated results from the developed model show that the vertical flow in the vicinity of the fracture cannot be neglected if the fracture height is sufficiently small (e.g., hf = 10 m), and one can observe vertical elliptical flow and vertical pseudo-radial flow during the production. A nonuniform-width fracture can penetrate further into the reservoir with a lower injection rate (e.g., qi = 1.44 × 103 md). For the scenarios of high fracture permeability (i.e., kf = 1 × 105 md), a smaller fracture height, lower injection rate, and larger Young’s modulus can be more favorable for enhancing the well productivity. Compared to the influence of fracture height, the influences of injection rate and Young’s modulus on the well performance are less pronounced. Full article
(This article belongs to the Topic Petroleum and Gas Engineering)
Show Figures

Figure 1

21 pages, 11686 KiB  
Article
Productivity Analysis and Evaluation of Fault-Fracture Zones Controlled by Complex Fracture Networks in Tight Reservoirs: A Case Study of Xujiahe Formation
by Jiujie Cai, Haibo Wang and Fengxia Li
Sustainability 2023, 15(12), 9736; https://doi.org/10.3390/su15129736 - 18 Jun 2023
Cited by 1 | Viewed by 1874
Abstract
The development of tight gas reservoirs presents a significant challenge for sustainable development, as it requires specialized techniques that can have adverse environmental and social impacts. To address these challenges, efficient development technologies, such as multistage hydraulic fracturing, have been adopted to enable [...] Read more.
The development of tight gas reservoirs presents a significant challenge for sustainable development, as it requires specialized techniques that can have adverse environmental and social impacts. To address these challenges, efficient development technologies, such as multistage hydraulic fracturing, have been adopted to enable access to previously inaccessible natural gas resources, increase energy efficiency and security, and minimizing environmental impacts. This paper proposes a novel evaluation method to analyze the post fracturing productivity controlled by complex fault fracture zones in tight reservoirs. In this article, a systematic method to evaluate stimulated reservoir volume (SRV) and fault-fracture zone complexity after stimulation was established, along with the analysis and prediction of productivity through coupled fall-off and well-test analyses. Focusing on the Xujiahe formation in the Tongnanba anticline of northeastern Sichuan Basin, a 3D geological model was developed to analyze planar heterogeneity. The fall-off analytical model, coupled with rock mechanical parameters and fracturing parameters such as injection rates, fracturing fluid viscosity, and the number of clusters within a single stage, was established to investigate the fracture geometric parameters and complexities of each stage. The trilinear flow model was used to solve the well-test analysis model of multi-stage fractured horizontal wells in tight sandstone gas reservoirs, and well-test curves of the heterogeneous tight sandstone gas fracture network model were obtained. The results show that hydraulic fractures connect the natural fractures in fault-fracture zones. An analysis of the relationship between the fracture geometric outcomes of each segment and the net pressure reveals that as the net pressure in the fracture increases, the area ratio of natural fractures to main fractures increases notably, whereas the half length of the main fracture exhibits a decreasing trend. The overall area of natural fractures following stimulation is 7.64 times greater than that of the main fractures and is mainly a result of the extensive development of natural fractures in the target interval. As the opening ratio of natural fractures increases, the length of the main fractures decreases accordingly. Therefore, increasing net pressure within fractures will significantly enhance the complexity of fracturing fractures in shale gas reservoirs. Furthermore, the initial production of Well X1–10, which is largely controlled by fault-fracture zones, and the cumulative gas production after one year, are estimated. The systematic evaluation method in this study proposed a new way to accurately measure fracturing in tight reservoirs, which is a critical and helpful component of sustainable development in the natural gas industry. Full article
Show Figures

Figure 1

13 pages, 803 KiB  
Article
Obesity and Bone Loss at Menopause: The Role of Sclerostin
by Paolo Marzullo, Chiara Mele, Stefania Mai, Antonio Nardone, Massimo Scacchi and Gianluca Aimaretti
Diagnostics 2021, 11(10), 1914; https://doi.org/10.3390/diagnostics11101914 - 16 Oct 2021
Cited by 6 | Viewed by 3163
Abstract
Background. Peripheral fat tissue is known to positively influence bone health. However, evidence exists that the risk of non-vertebral fractures can be increased in postmenopausal women with obesity as compared to healthy controls. The role of sclerostin, the SOST gene protein product, [...] Read more.
Background. Peripheral fat tissue is known to positively influence bone health. However, evidence exists that the risk of non-vertebral fractures can be increased in postmenopausal women with obesity as compared to healthy controls. The role of sclerostin, the SOST gene protein product, and body composition in this condition is unknown. Methods. We studied 28 severely obese premenopausal (age, 44.7 ± 3.9 years; BMI, 46.0 ± 4.2 kg/m2) and 28 BMI-matched post-menopausal women (age, 55.5 ± 3.8 years; BMI, 46.1 ± 4.8 kg/m2) thorough analysis of bone density (BMD) and body composition by dual X-ray absorptiometry (DXA), bone turnover markers, sclerostin serum concentration, glucose metabolism, and a panel of hormones relating to bone health. Results. Postmenopausal women harbored increased levels of the bone turnover markers CTX and NTX, while sclerostin levels were non-significantly higher as compared to premenopausal women. There were no differences in somatotroph, thyroid and adrenal hormone across menopause. Values of lumbar spine BMD were comparable between groups. By contrast, menopause was associated with lower BMD values at the hip (p < 0.001), femoral neck (p < 0.0001), and total skeleton (p < 0.005). In multivariate regression analysis, sclerostin was the strongest predictor of lumbar spine BMD (p < 0.01), while menopausal status significantly predicted BMD at total hip (p < 0.01), femoral neck (p < 0.001) and total body (p < 0.05). Finally, lean body mass emerged as the strongest predictor of total body BMD (p < 0.01). Conclusions. Our findings suggest a protective effect of obesity on lumbar spine and total body BMD at menopause possibly through mechanisms relating to lean body mass. Given the mild difference in sclerostin levels between pre- and postmenopausal women, its potential actions in obesity require further investigation. Full article
(This article belongs to the Special Issue Advance in the Diagnostics and Management of Musculoskeletal Diseases)
Show Figures

Figure 1

12 pages, 4923 KiB  
Article
Integration of the Production Logging Tool and Production Data for Post-Fracturing Evaluation by the Ensemble Smoother
by Seungpil Jung
Energies 2017, 10(7), 859; https://doi.org/10.3390/en10070859 - 27 Jun 2017
Cited by 4 | Viewed by 4464
Abstract
A post-fracturing evaluation is essential to optimize a fracturing design for a multi-stage fractured well located in unconventional reservoirs. To accomplish this task, a production logging tool (PLT) can be utilized to provide the oil production rate of each fracturing stage. In this [...] Read more.
A post-fracturing evaluation is essential to optimize a fracturing design for a multi-stage fractured well located in unconventional reservoirs. To accomplish this task, a production logging tool (PLT) can be utilized to provide the oil production rate of each fracturing stage. In this research, a practical method is proposed to integrate PLT and surface production data into a reservoir model. It applies the ensemble smoother for history-matching to integrate various kinds of dynamic data. To investigate the validity of the proposed method, three cases are designed according to the frequency of PLT surveys. Each fracture half-length calibrated by PLT data is similar to the true value, and the dynamic behavior also has the same trend as true production behavior. Integration with PLT data can reduce error ratios for fracture half-length down to 48%. In addition, it presents the applicability of reserve prediction and uncertainty assessment. It has been proven that the more frequently PLTs are surveyed, the more accurate the results. By sensitivity analysis of PLT frequency—a cost-effective strategy—a combination of only one PLT survey and continuous surface production data is employed to demonstrate this proposed concept. Full article
(This article belongs to the Special Issue Oil and Gas Engineering)
Show Figures

Figure 1

16 pages, 3553 KiB  
Article
Multi-Objective History Matching with a Proxy Model for the Characterization of Production Performances at the Shale Gas Reservoir
by Jaejun Kim, Joe M. Kang, Changhyup Park, Yongjun Park, Jihye Park and Seojin Lim
Energies 2017, 10(4), 579; https://doi.org/10.3390/en10040579 - 23 Apr 2017
Cited by 13 | Viewed by 8767
Abstract
This paper presents a fast, reliable multi-objective history-matching method based on proxy modeling to forecast the production performances of shale gas reservoirs for which all available post-hydraulic-fracturing production data, i.e., the daily gas rate and cumulative-production volume until the given date, are honored. [...] Read more.
This paper presents a fast, reliable multi-objective history-matching method based on proxy modeling to forecast the production performances of shale gas reservoirs for which all available post-hydraulic-fracturing production data, i.e., the daily gas rate and cumulative-production volume until the given date, are honored. The developed workflow consists of distance-based generalized sensitivity analysis (DGSA) to determine the spatiotemporal-parameter significance, fast marching method (FMM) as a proxy model, and a multi-objective evolutionary algorithm to integrate the dynamic data. The model validation confirms that the FMM is a sound surrogate model working within an error of approximately 2% for the estimated ultimate recovery (EUR), and it is 11 times faster than a full-reservoir simulation. The predictive accuracy on future production after matching 1.5-year production histories is assessed to examine the applicability of the proposed method. The DGSA determines the effective parameters with respect to the gas rate and the cumulative volume, including fracture permeability, fracture half-length, enhanced permeability in the stimulated reservoir volume, and average post-fracturing porosity. A comparison of the prediction accuracy for single-objective optimization shows that the proposed method accurately estimates the recoverable volume as well as the production profiles to within an error of 0.5%, while the single-objective consideration reveals the scale-dependency problem with lesser accuracy. The results of this study are useful to overcome the time-consuming effort of using a multi-objective evolutionary algorithm and full-scale reservoir simulation as well as to conduct a more-realistic prediction of the shale gas reserves and the corresponding production performances. Full article
Show Figures

Figure 1

Back to TopTop