Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = porcine blastocysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5549 KiB  
Article
The Effects of Limonin, Myo-Inositol, and L-Proline on the Cryopreservation of Debao Boar Semen
by Qianhui Feng, Yanyan Yang, Bing Zhang, Wen Shi, Yizhen Fang, Chunrong Xu, Zhuxin Deng, Wanyou Feng and Deshun Shi
Animals 2025, 15(15), 2204; https://doi.org/10.3390/ani15152204 - 27 Jul 2025
Viewed by 339
Abstract
Semen cryopreservation is associated with sperm vulnerability to oxidative stress and ice crystal-induced damage, adversely affecting in vitro fertilization (IVF) success. This study aimed to investigate the effects of freezing diluent supplemented with antioxidant limonin (Lim), myo-inositol (MYO), and the ice crystal formation [...] Read more.
Semen cryopreservation is associated with sperm vulnerability to oxidative stress and ice crystal-induced damage, adversely affecting in vitro fertilization (IVF) success. This study aimed to investigate the effects of freezing diluent supplemented with antioxidant limonin (Lim), myo-inositol (MYO), and the ice crystal formation inhibitor L-proline (LP) through sperm motility, morphological integrity, and antioxidant capacity. The Lim (150 mM), MYO (90 mM), and LP (100 mM) significantly ameliorated the quality of post-thaw sperm in Debao boar, and combined treatment of these agents significantly enhanced sperm motility, structural integrity, and antioxidant capacity compared with individual agents (p < 0.05). Notably, the combined use of these agents reduced glycerol concentration in the freezing diluent from 3% to 2%. Meanwhile, the integrity of the sperm plasma membrane, acrosome membrane, and mitochondrial membrane potential was significantly improved (p < 0.05), and the result of IVF revealed the total cell count of the blastocysts was also greater in the 2% glycerol group (p < 0.05). In conclusion, the newly developed freezing diluent for semen, by adding Lim (150 mM), MYO (90 mM), and LP (100 mM), can enhance the quality of frozen–thawed Debao boar sperm and reduce the concentration of glycerol from 3% to 2% as high concentrations of glycerol can impair the quality of thawed sperm and affect in vitro fertilization outcomes. In conclusion, the improved dilution solution formulated demonstrated efficacy in enhancing the quality of porcine spermatozoa following cryopreservation and subsequent thawing. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

22 pages, 3568 KiB  
Article
Galangin Regulates Oxidative Stress Levels in Porcine Embryos Through Interaction with the Neh1 Domain of Nrf2
by Zhi-Chao Chi, Shu-Ming Shi, Li-Ying Liu, Lin-Yi Qu, Jing-Hang Li, Guan-Lin Jia, Yu-Yan He, Lin-Xuan Li, Yong-Xun Jin, Ming-Jun Zhang and Xian-Feng Yu
Antioxidants 2025, 14(7), 822; https://doi.org/10.3390/antiox14070822 - 4 Jul 2025
Viewed by 561
Abstract
Oxidative stress poses a challenge to in vitro embryo culture. As a flavonoid, galangin (GAL) has been shown to have antioxidant effects, but the effect and antioxidant capacity of GAL in the in vitro development of porcine parthenogenetic embryos are still unknown. In [...] Read more.
Oxidative stress poses a challenge to in vitro embryo culture. As a flavonoid, galangin (GAL) has been shown to have antioxidant effects, but the effect and antioxidant capacity of GAL in the in vitro development of porcine parthenogenetic embryos are still unknown. In this study, we demonstrated that 1 µM GAL significantly increased the blastocyst rate, decreased the accumulation of intracellular reactive oxygen species (ROS), increased the glutathione (GSH) level, and enhanced mitochondrial function in early porcine embryos. Nuclear factor erythroid-2-related factor 2 (Nrf2) was identified as the target gene of GAL via network pharmacology, and the transcript levels of related antioxidant enzymes (HO-1, NQO1, SOD2, and CAT) were found to be increased. Since Nrf2 has seven domains, we constructed Nrf2 mutants lacking different domains in vitro. We found that GAL specifically binds to the Neh1 domain of Nrf2. Subsequent embryonic experiments demonstrated that the antioxidant effect of GAL was abolished after Nrf2 deletion. These results suggest that GAL can directly bind to Nrf2 to regulate the level of oxidative stress and improve mitochondrial function in embryos. Full article
(This article belongs to the Special Issue Redox Regulation in Animal Reproduction)
Show Figures

Graphical abstract

17 pages, 10504 KiB  
Article
Construction and Influence of Induced Pluripotent Stem Cells on Early Embryo Development in Black Bone Sheep
by Daqing Wang, Yiyi Liu, Lu Li, Xin Li, Xin Cheng, Zhihui Guo, Guifang Cao and Yong Zhang
Biology 2025, 14(5), 484; https://doi.org/10.3390/biology14050484 - 28 Apr 2025
Viewed by 655
Abstract
The piggyBac+TET-on transposon induction system has a high efficiency in integrating exogenous genes in multiple cell types, can precisely integrate to reduce genomic damage, has a flexible gene expression regulation, and a strong genetic stability. When used in conjunction with somatic cell nuclear [...] Read more.
The piggyBac+TET-on transposon induction system has a high efficiency in integrating exogenous genes in multiple cell types, can precisely integrate to reduce genomic damage, has a flexible gene expression regulation, and a strong genetic stability. When used in conjunction with somatic cell nuclear transfer experiments, it can precisely and effectively reveal the intrinsic mechanisms of early biological development. This study successfully reprogrammed black-boned sheep fibroblasts (SFs) into induced pluripotent stem cells (iPSCs) using the piggyBac+TET-on transposon system and investigated their impact on early embryonic development. Seven exogenous reprogramming factors (bovine OCT4, SOX2, KLF4, cMyc, porcine NANOG, Lin-28, and SV40 Large T) were delivered into SFs, successfully inducing iPSCs. A growth performance analysis revealed that iPSC clones exhibited a raised or flat morphology with clear edges, positive alkaline phosphatase staining, and normal karyotypes. The transcriptome analysis indicated a significant enrichment of iPSCs in oxidative phosphorylation and cell proliferation pathways, with an up-regulated expression of the ATP5B, SDHB, Bcl-2, CDK1, and Cyclin D1 genes and a down-regulated expression of BAX (p < 0.05). Somatic cell nuclear transfer experiments demonstrated that the cleavage rate (85% ± 2.12) and blastocyst rate (52% ± 2.11) of the iPSCs were significantly higher than those of the SFs (p < 0.05). The detection of trilineage marker genes confirmed that the expression levels of endoderm (DCN, NANOS3, FOXA2, FOXD3, SOX17), mesoderm (KDR, CD34, NFH), and ectoderm (NEUROD) markers in iPSCs were significantly higher than in SFs (p < 0.01). The findings demonstrate that black-boned sheep iPSCs possess pluripotency and the potential to differentiate into all three germ layers, revealing the mechanisms by which reprogrammed iPSCs influence early embryonic development and providing a critical foundation for research on sheep pluripotent stem cells. Full article
Show Figures

Figure 1

14 pages, 3597 KiB  
Article
Tauroursodeoxycholic Acid Enhances the Quality of Postovulatory Aged Oocytes by Alleviating Oxidative Stress, Apoptosis, and Endoplasmic Reticulum Stress in Pigs
by Yan Wang, Jiayu Yuan, Chenran Sun, Ling Sun and Tao Lin
Vet. Sci. 2025, 12(3), 265; https://doi.org/10.3390/vetsci12030265 - 12 Mar 2025
Viewed by 968
Abstract
One of the major factors causing reduced developmental capacity of aged porcine oocytes is the induction of oxidative stress during oocyte aging. Tauroursodeoxycholic acid (TUDCA) supports cellular function by acting as an antioxidant and free radical scavenger. The aim of this study is [...] Read more.
One of the major factors causing reduced developmental capacity of aged porcine oocytes is the induction of oxidative stress during oocyte aging. Tauroursodeoxycholic acid (TUDCA) supports cellular function by acting as an antioxidant and free radical scavenger. The aim of this study is to evaluate whether exogenous supplementation of TUDCA to the porcine in vitro maturation system can ameliorate the compromised quality of aged oocytes by mitigating free radical production. We found that TUDCA was able to effectively maintain normal oocyte morphology, cortical granule distribution, and spindle structure during postovulatory aging. Additionally, the blastocyst rate and total cell number in blastocysts were significantly increased in aged porcine oocytes treated with TUDCA. Importantly, aged porcine oocytes treated with TUDCA reduced ROS levels, increased the expression levels of GSH and SOD1 genes, and improved the mitochondrial membrane potential ratio. Further study demonstrated that TUDCA significantly alleviated apoptosis in aged porcine oocytes, confirmed by the decreased Caspase 3 levels and ratio of BAX to BCL2. Interestingly, TUDCA could effectively alleviate the phenomenon of endoplasmic reticulum stress triggered during the oocyte aging process. Taking these findings together, our study demonstrates that TUDCA supplementation beneficially affects the quality of aged porcine oocytes by suppressing oxidative stress, apoptosis, and endoplasmic reticulum stress. Full article
(This article belongs to the Section Veterinary Reproduction and Obstetrics)
Show Figures

Figure 1

17 pages, 7296 KiB  
Article
Trichostatin A-Induced Epigenetic Modifications and Their Influence on the Development of Porcine Cloned Embryos Derived from Bone Marrow–Mesenchymal Stem Cells
by Seung-Chan Lee, Won-Jae Lee, Young-Bum Son, Yeung Bae Jin, Hyeon-Jeong Lee, Eunyeong Bok, Sangyeob Lee, Sang-Yun Lee, Chan-Hee Jo, Tae-Seok Kim, Chae-Yeon Hong, Seo-Yoon Kang, Gyu-Jin Rho, Yong-Ho Choe and Sung-Lim Lee
Int. J. Mol. Sci. 2025, 26(5), 2359; https://doi.org/10.3390/ijms26052359 - 6 Mar 2025
Viewed by 1234
Abstract
Abnormal epigenetic reprogramming of nuclear-transferred (NT) embryos leads to the limited efficiency of producing cloned animals. Trichostatin A (TSA), a histone deacetylase inhibitor, improves NT embryo development, but its role in histone acetylation in porcine embryos cloned with mesenchymal stem cells (MSCs) is [...] Read more.
Abnormal epigenetic reprogramming of nuclear-transferred (NT) embryos leads to the limited efficiency of producing cloned animals. Trichostatin A (TSA), a histone deacetylase inhibitor, improves NT embryo development, but its role in histone acetylation in porcine embryos cloned with mesenchymal stem cells (MSCs) is not fully understood. This study aimed to compare the effects of TSA on embryo development, histone acetylation patterns, and key epigenetic-related genes between in vitro fertilization (IVF), NT-MSC, and 40 nM TSA-treated NT-MSC (T-NT-MSC). The results demonstrated an increase in the blastocyst rate from 13.7% to 32.5% in the T-NT-MSC, and the transcription levels of CDX2, NANOG, and IGF2R were significantly elevated in T-NT-MSC compared to NT-MSC. TSA treatment also led to increased fluorescence intensity of acH3K9 and acH3K18 during early embryo development but did not differ in acH4K12 levels. The expression of epigenetic-related genes (HDAC1, HDAC2, CBP, p300, DNMT3a, and DNMT1) in early pre-implantation embryos followed a pattern similar to IVF embryos. In conclusion, TSA treatment improves the in vitro development of porcine embryos cloned with MSCs by increasing histone acetylation, modifying chromatin structure, and enhancing the expression of key genes, resulting in profiles similar to those of IVF embryos. Full article
Show Figures

Figure 1

31 pages, 1209 KiB  
Review
Interspecies Blastocyst Complementation and the Genesis of Chimeric Solid Human Organs
by Elena Bigliardi, Anala V. Shetty, Walter C. Low and Clifford J. Steer
Genes 2025, 16(2), 215; https://doi.org/10.3390/genes16020215 - 12 Feb 2025
Viewed by 2569
Abstract
Solid organ transplantation remains a life-saving treatment for patients worldwide. Unfortunately, the supply of donor organs cannot meet the current need, making the search for alternative sources even more essential. Xenotransplantation using sophisticated genetic engineering techniques to delete and overexpress specific genes in [...] Read more.
Solid organ transplantation remains a life-saving treatment for patients worldwide. Unfortunately, the supply of donor organs cannot meet the current need, making the search for alternative sources even more essential. Xenotransplantation using sophisticated genetic engineering techniques to delete and overexpress specific genes in the donor animal has been investigated as a possible option. However, the use of exogenous tissue presents another host of obstacles, particularly regarding organ rejection. Given these limitations, interspecies blastocyst complementation in combination with precise gene knockouts presents a unique, promising pathway for the transplant organ shortage. In recent years, great advancements have been made in the field, with encouraging results in producing a donor-derived organ in a chimeric host. That said, one of the major barriers to successful interspecies chimerism is the mismatch in the developmental stages of the donor and the host cells in the chimeric embryo. Another major barrier to successful chimerism is the mismatch in the developmental speeds between the donor and host cells in the chimeric embryos. This review outlines 19 studies in which blastocyst complementation was used to generate solid organs. In particular, the genesis of the liver, lung, kidney, pancreas, heart, thyroid, thymus and parathyroids was investigated. Of the 19 studies, 7 included an interspecies model. Of the 7, one was completed using human donor cells in a pig host, and all others were rat–mouse chimeras. While very promising results have been demonstrated, with great advancements in the field, several challenges continue to persist. In particular, successful chimerism, organ generation and donor contribution, synchronized donor–host development, as well as ethical concerns regarding human–animal chimeras remain important aspects that will need to be addressed in future research. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 6465 KiB  
Article
Diosmetin Delays In Vitro Aging of Porcine Oocytes by Improving Mitochondrial Function and Reducing Oxidative Stress
by Jia-Jun Ren, Xiu-Wen Yuan, Yu-Hao Zhang, Zi-Long Meng, Xing-Wei Liang, Nam-Hyung Kim, Yong-Nan Xu and Ying-Hua Li
Animals 2025, 15(3), 291; https://doi.org/10.3390/ani15030291 - 21 Jan 2025
Cited by 1 | Viewed by 1223
Abstract
Oocyte quality is crucial for successful fertilization and subsequent embryonic development. Post-ovulatory aging leads to reduced oocyte quality and impaired embryogenesis, representing an unavoidable challenge in terms of certain assisted reproductive techniques. Diosmetin (DIOS), a natural flavonoid found in lemons, spearmint, and spider [...] Read more.
Oocyte quality is crucial for successful fertilization and subsequent embryonic development. Post-ovulatory aging leads to reduced oocyte quality and impaired embryogenesis, representing an unavoidable challenge in terms of certain assisted reproductive techniques. Diosmetin (DIOS), a natural flavonoid found in lemons, spearmint, and spider moss, exhibits antioxidant, anti-inflammatory, and anti-apoptotic properties. However, its effects on the aging of mature porcine oocytes in vitro remain unexplored. This study investigated the impact of DIOS on porcine oocyte aging. In the IVM medium, fresh oocytes were cultured for 44 h, while aging oocytes were cultured for 68 h. Following the addition of varying DIOS concentrations (0.01, 0.1, and 1 μM) to the IVM medium, the DIOS-treated aging oocyte group was cultured for 68 h. The results demonstrated that 0.1 μM DIOS significantly improved the blastocyst rates and cell counts, reduced the reactive oxygen species (ROS), elevated the glutathione (GSH) levels, enhanced the mitochondrial function, and decreased the markers of autophagy (LC3B), apoptosis (annexin V), endoplasmic reticulum stress (CHOP), and senescence (SA-β-Gal). Furthermore, DIOS treatment upregulated the expression of relevant genes compared to the aged group. These findings suggest that DIOS effectively delays porcine oocyte aging. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

17 pages, 3136 KiB  
Article
Effects of Caffeic Acid Phenethyl Ester on Embryonic Development Through Regulation of Mitochondria and Endoplasmic Reticulum
by Chu-Man Huang, Hui-Mei Huang, Ying-Hua Li, Xing-Wei Liang, Nam-Hyung Kim and Yong-Nan Xu
Vet. Sci. 2024, 11(12), 625; https://doi.org/10.3390/vetsci11120625 - 6 Dec 2024
Cited by 1 | Viewed by 1325
Abstract
Caffeic acid phenethyl ester (CAPE) is one of the main active components of the natural medicine propolis, which has antioxidant, anti-tumor, and immunomodulatory activities. This study aimed to analyze the effects and underlying mechanisms of CAPE added to the medium of in vitro [...] Read more.
Caffeic acid phenethyl ester (CAPE) is one of the main active components of the natural medicine propolis, which has antioxidant, anti-tumor, and immunomodulatory activities. This study aimed to analyze the effects and underlying mechanisms of CAPE added to the medium of in vitro cultures on the developmental competence, mitochondria, and endoplasmic reticulum of porcine embryos. The results demonstrated that 1 nM of CAPE significantly improved the quality of porcine embryos, increased the rate of blastocyst formation, and enhanced the proliferation ability. It also enhanced mitochondrial function by increasing the level of mitochondrial membrane potential and expression of the mitochondrial biogenesis-related protein PPARgamma coactivator 1 alpha and beta (PGC1 alpha and beta), regulating mitochondrial biogenesis, and increasing adenosine triphosphate (ATP) content. In addition, CAPE alleviated oxidative and endoplasmic reticulum (ER) stress in embryos by decreasing ROS accumulation and increasing glutathione content, as well as elevating Nrf2 and reducing GRP78 (ER stress marker) expression levels. Moreover, CAPE reduced the levels of apoptosis and autophagy in the cultivated embryos. These results indicate that CAPE improves the quality and enhances the mitochondrial function of in vitro-produced porcine embryos by alleviating oxidative and ER stress. Full article
(This article belongs to the Section Veterinary Reproduction and Obstetrics)
Show Figures

Figure 1

16 pages, 2299 KiB  
Article
Comparison Between Electroporation at Different Voltage Levels and Microinjection to Generate Porcine Embryos with Multiple Xenoantigen Knock-Outs
by Juan Pablo Fernández, Björn Petersen, Petra Hassel, Andrea Lucas Hahn, Paul Kielau, Johannes Geibel and Wilfried A. Kues
Int. J. Mol. Sci. 2024, 25(22), 11894; https://doi.org/10.3390/ijms252211894 - 5 Nov 2024
Cited by 3 | Viewed by 1620
Abstract
In the context of xenotransplantation, the production of genetically modified pigs is essential. For several years, knock-out pigs were generated through somatic cell nuclear transfer employing donor cells with the desired genetic modifications, which resulted in a lengthy and cumbersome procedure. The CRISPR/Cas9 [...] Read more.
In the context of xenotransplantation, the production of genetically modified pigs is essential. For several years, knock-out pigs were generated through somatic cell nuclear transfer employing donor cells with the desired genetic modifications, which resulted in a lengthy and cumbersome procedure. The CRISPR/Cas9 system enables direct targeting of specific genes in zygotes directly through microinjection or electroporation. However, these techniques require improvement to minimize mosaicism and low mutation rates without compromising embryo survival. This study aimed to determine the gene editing potential of these two techniques to deliver multiplexed ribonucleotide proteins (RNPs) to generate triple-knock-out porcine embryos with a multi-transgenic background. We designed RNP complexes targeting the major porcine xenoantigens GGTA1, CMAH, and B4GALNT2. We then compared the development of mosaicism and gene editing efficiencies between electroporation and microinjection. Our results indicated a significant effect of voltage increase on molecule intake in electroporated embryos, without it notably affecting the blastocyst formation rate. Our gene editing analysis revealed differences among delivery approaches and gene loci. Notably, employing electroporation at 35 V yielded the highest frequency of biallelic disruptions. However, mosaicism was the predominant genetic variant in all RNP delivery methods, underscoring the need for further research to optimize multiplex genome editing in porcine zygotes. Full article
(This article belongs to the Topic Genetic Engineering in Agriculture)
Show Figures

Figure 1

15 pages, 4628 KiB  
Article
Delayed Blastocyst Formation Reduces the Quality and Hatching Ability of Porcine Parthenogenetic Blastocysts by Increasing DNA Damage, Decreasing Cell Proliferation, and Altering Transcription Factor Expression Patterns
by Ling Sun, Yan Wang, Mo Yang, Zhuang-Ju Xu, Juan Miao, Ying Bai and Tao Lin
J. Dev. Biol. 2024, 12(4), 26; https://doi.org/10.3390/jdb12040026 - 1 Oct 2024
Cited by 2 | Viewed by 1755
Abstract
The purpose of this study was to investigate the influence of blastocyst formation timing on the quality of porcine embryos derived from parthenogenetic activation. Newly formed blastocysts at days 6, 7, and 8 of culture [termed formation 6, 7, and 8 blastocysts (F6, [...] Read more.
The purpose of this study was to investigate the influence of blastocyst formation timing on the quality of porcine embryos derived from parthenogenetic activation. Newly formed blastocysts at days 6, 7, and 8 of culture [termed formation 6, 7, and 8 blastocysts (F6, F7, and F8 blastocysts)] were obtained, and a series of parameters related to the quality of blastocysts, including apoptosis incidents, DNA replication, pluripotent factors, and blastocyst hatching capacity, were assessed. Delayed blastocyst formation (F7 and/or F8 blastocysts) led to increased levels of ROS, DNA damage, and apoptosis while decreasing the mitochondrial membrane potential, DNA replication, Oct4 levels, and numbers of Sox2-positive cells. F7 blastocysts showed a significantly reduced hatching rate compared to F6 blastocysts; however, F8 blastocysts were unable to develop to the hatching stage. Collectively, our findings suggest a negative correlation between delayed blastocyst formation and blastocyst quality. Full article
(This article belongs to the Special Issue Feature Papers from Journal of Developmental Biology Reviewers)
Show Figures

Figure 1

21 pages, 3665 KiB  
Article
Isoorientin Promotes Early Porcine Embryonic Development by Alleviating Oxidative Stress and Improving Lipid Metabolism
by Zilong Meng, Jiajun Ren, Chuman Huang, Huimei Huang, Xiuwen Yuan, Yinghua Li, Nam-Hyung Kim and Yongnan Xu
Animals 2024, 14(19), 2806; https://doi.org/10.3390/ani14192806 - 28 Sep 2024
Viewed by 1447
Abstract
Isoorientin (ISO) is a natural lignan glycoside flavonoid found in various plants, including Charcot and Stonecrop. ISO exhibits diverse physiological and pharmacological effects, such as antioxidative, anti-inflammatory, hepatoprotective, antiviral, antianxiety, and anti-myocardial ischaemic properties, as well as lipid metabolism regulation. This study investigated [...] Read more.
Isoorientin (ISO) is a natural lignan glycoside flavonoid found in various plants, including Charcot and Stonecrop. ISO exhibits diverse physiological and pharmacological effects, such as antioxidative, anti-inflammatory, hepatoprotective, antiviral, antianxiety, and anti-myocardial ischaemic properties, as well as lipid metabolism regulation. This study investigated the impact of ISO supplementation on oxidative stress and lipid accumulation in porcine early embryos, along with its underlying mechanisms. Porcine embryos were cultured in vitro under different concentrations of ISO (0, 1, 10, and 100 nM). The results revealed that 10 nM ISO significantly enhanced the blastocyst rate and total embryonic cell count in vitro. ISO-treated embryos exhibited reduced reactive oxygen species levels and elevated glutathione levels compared to the untreated group. In addition, ISO treatment significantly increased the expression of the key antioxidant regulator Nrf2, improved mitochondrial function, and reduced lipid droplet accumulation. Concurrently, early embryo autophagy and apoptosis levels decreased. Furthermore, ISO treatment upregulated antioxidant-related genes (SOD1, SOD2, and CAT) and mitochondrial biogenesis related genes (NRF1, NRF2, and SIRT1), while downregulating lipid synthesis-related genes (SREBP1 and FASN). Additionally, lipid hydrolysis-related genes (ACADS) were elevated. These findings collectively suggest that ISO may facilitate early embryonic development in pigs by ameliorating oxidative stress and lipid metabolism. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

15 pages, 1358 KiB  
Article
Effect of Two Different Sperm Selection Methods on Boar Sperm Parameters and In Vitro Fertilisation Outcomes
by Maria Serrano-Albal, Marie Claire Aquilina, Lucas G. Kiazim, Louisa J. Zak, Darren K. Griffin and Peter J. Ellis
Animals 2024, 14(17), 2544; https://doi.org/10.3390/ani14172544 - 1 Sep 2024
Cited by 1 | Viewed by 2196
Abstract
Porcine in vitro embryo production (IVP) protocols have conventionally used density gradient selection (DGS) by centrifugation to prepare sperm samples and achieve successful fertilisation. However, the possible toxicity of the solutions used and the potential damage caused by the centrifugation step may have [...] Read more.
Porcine in vitro embryo production (IVP) protocols have conventionally used density gradient selection (DGS) by centrifugation to prepare sperm samples and achieve successful fertilisation. However, the possible toxicity of the solutions used and the potential damage caused by the centrifugation step may have a negative effect on the quality of the sample. Microfluidic chip-based sperm (MCS) sorting has been proposed as an alternative technique for the selection of high-quality sperm with the purpose of improving reproductive outcomes in IVF. This device does not require centrifugation or any toxic solution to prepare the sample for fertilisation. The sample is not subjected to unnecessary stress, and the process is less operator-dependent. In this study, we compared the sperm parameters of unselected extender-diluted boar semen samples with selected samples using DGS and MCS methods. The results show an expected reduction in sperm concentration after both methods. All the groups were significantly different from one another, with MCS being the group with the lowest concentration. Though the three groups had a similar overall motility, significant differences were found in progressive motility when comparing the unselected group (control, 19.5 ± 1.4%) with DGS and MCS. Progressive motility in DGS was also significantly higher than in MCS (65.2 ± 4.9% and 45.7% ± 5.3, respectively). However, MCS selection resulted in enriched sperm samples with a significantly lower proportion of morphologically abnormal sperm compared to DGS. After fertilisation, no statistical differences were found between the two methods for embryological parameters such as cleavage rates, blastulation rates, and embryo quality. The number of cells in blastocysts derived from MCS was significantly greater than those derived from DGS sperm. Thus, we demonstrate that MCS is at least as good as the standard DGS for most measures. As a more gentle and reproducible approach for sperm selection, however, it could improve consistency and improve IVP outcomes as mediated by a greater proportion of morphologically normal sperm and manifested by a higher cell count in blastocysts. Full article
(This article belongs to the Special Issue Research Advances in Pig Reproduction)
Show Figures

Figure 1

18 pages, 4226 KiB  
Article
Effects of MnTBAP on Porcine Semen Cryopreservation and Capacitation
by Eunji Kim, Il-Jeoung Yu, Joohyeong Lee and Yubyeol Jeon
Antioxidants 2024, 13(6), 672; https://doi.org/10.3390/antiox13060672 - 30 May 2024
Cited by 1 | Viewed by 1616
Abstract
Antioxidants protect cellular function and structure by neutralizing the oxidative stress caused by increased reactive oxygen species (ROS) during sperm freezing. Studies on cryopreservation using various antioxidants have demonstrated encouraging results. Many studies have used antioxidants to increase the efficiency of sperm freezing [...] Read more.
Antioxidants protect cellular function and structure by neutralizing the oxidative stress caused by increased reactive oxygen species (ROS) during sperm freezing. Studies on cryopreservation using various antioxidants have demonstrated encouraging results. Many studies have used antioxidants to increase the efficiency of sperm freezing and to improve the success rate of artificial insemination and pregnancy. Manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) is a newly synthesized antioxidant with positive effects on sperm morphology and capacitation in humans, rams, and stallions. In this study, porcine semen was treated with 0, 50, 100, and 150 μM of MnTBAP based on a Tris–egg-yolk extender and frozen to determine whether MnTBAP can assist the status of sperm during cryopreservation. First, motility was assessed using the computer-assisted sperm analysis (CASA) system, with the 100 μM treatment group showing the highest motile rate (66.8%) compared with that of the other groups (control, 51.1%; 50 μM and 150 μM, 59.6%); therefore, the remaining analyses were conducted comparing the two groups (control vs. 100 μM group; p < 0.01). Second, fluorescence staining was applied to examine the control and 100 μM groups using fluorescence microscopy. The viability (41.7% vs. 62.4%) and the acrosome integrity (77.9% vs. 86.4%) differed significantly (p < 0.05). In addition, the mitochondrial membrane potential (MMP) was 46.5% vs. 51.9%; the fragmentation rate, estimated using the Sperm-sus-Halomax kit, was 63.4% vs. 57.4%; and the detected caspase activity was 30.1% vs. 22.9%. These tended to be higher in the treated group but did not differ significantly. Third, measurements using FACSLyric revealed that the 100 μM treatment group exhibited a state of elevated normal lipid arrangement within the plasma membrane and diminished levels of apoptosis and ROS (p < 0.01). We assessed the expression of genes relevant to antioxidant effectiveness using real-time RT-qPCR. Our findings indicated significant alterations in the expression levels of various mRNA species, with the exception of NOX5 (p < 0.05). Finally, the straws were dissolved and used to treat matured denuded oocytes to investigate the effect on fertilization and embryo development in vitro. The cleavage rate was (77.6% vs. 84.1%), and the blastocyst rate was 9.7% vs. 11.4% (p < 0.05). In conclusion, these results suggest that MnTBAP positively affected sperm freeze–thawing, improving the fertilization capacity, and leading to increased embryo development. Full article
Show Figures

Figure 1

14 pages, 3649 KiB  
Article
Supplementation with Eupatilin during In Vitro Maturation Improves Porcine Oocyte Developmental Competence by Regulating Oxidative Stress and Endoplasmic Reticulum Stress
by Jing Wang, Ying-Hua Li, Rong-Ping Liu, Xin-Qin Wang, Mao-Bi Zhu, Xiang-Shun Cui, Zhen Dai, Nam-Hyung Kim and Yong-Nan Xu
Animals 2024, 14(3), 449; https://doi.org/10.3390/ani14030449 - 30 Jan 2024
Cited by 1 | Viewed by 1970
Abstract
Eupatilin (5,7-dihydroxy-3′,4′,6-trimethoxyflavone) is a flavonoid derived from Artemisia plants that has beneficial biological activities, such as anti-apoptotic, anti-oxidant, and anti-inflammatory activities. However, the protective effects of eupatilin against oxidative stress and endoplasmic reticulum stress in porcine oocyte maturation are still unclear. To investigate [...] Read more.
Eupatilin (5,7-dihydroxy-3′,4′,6-trimethoxyflavone) is a flavonoid derived from Artemisia plants that has beneficial biological activities, such as anti-apoptotic, anti-oxidant, and anti-inflammatory activities. However, the protective effects of eupatilin against oxidative stress and endoplasmic reticulum stress in porcine oocyte maturation are still unclear. To investigate the effect of eupatilin on the development of porcine oocytes after in vitro maturation and parthenogenetic activation, we added different concentrations of eupatilin in the process of porcine oocyte maturation in vitro, and finally selected the optimal concentration following multiple comparisons and analysis of test results using SPSS (version 17.0; IBM, Chicago, IL, USA) software. The results showed that 0.1 μM eupatilin supplementation did not affect the expansion of porcine cumulus cells, but significantly increased the extrusion rate of porcine oocyte polar bodies, the subsequent blastocyst formation rate, and the quality of parthenogenetically activated porcine embryos. Additionally, it reduced the level of reactive oxygen species in cells and increased glutathione production. Further analysis revealed that eupatilin supplementation could reduce apoptosis, DNA double-strand breaks, and endoplasmic reticulum stress. In conclusion, supplementation with 0.1 μM eupatilin during in vitro maturation improved oocyte maturation and subsequent embryo development by reducing oxidative stress and endoplasmic reticulum stress. Full article
(This article belongs to the Special Issue Advances in In Vitro Oocyte Development in Domestic Animals)
Show Figures

Figure 1

13 pages, 3846 KiB  
Article
Chrysoeriol Improves the Early Development Potential of Porcine Oocytes by Maintaining Lipid Homeostasis and Improving Mitochondrial Function
by Chao-Rui Wang, Xiu-Wen Yuan, He-Wei Ji, Yong-Nan Xu, Ying-Hua Li and Nam-Hyung Kim
Antioxidants 2024, 13(1), 122; https://doi.org/10.3390/antiox13010122 - 19 Jan 2024
Cited by 6 | Viewed by 2268
Abstract
Our previous study established that chrysoeriol (CHE) can reduce reactive oxygen species (ROS) accumulation, apoptosis, and autophagy in vitro culture (IVC) of porcine embryos. However, the role of CHE in oocyte maturation and lipid homeostasis is unclear. Herein, we aimed to elucidate the [...] Read more.
Our previous study established that chrysoeriol (CHE) can reduce reactive oxygen species (ROS) accumulation, apoptosis, and autophagy in vitro culture (IVC) of porcine embryos. However, the role of CHE in oocyte maturation and lipid homeostasis is unclear. Herein, we aimed to elucidate the effect of CHE on porcine oocyte competence in vitro maturation (IVM) and subsequent embryo development. The study chooses parthenogenetic activated porcine oocytes as the research model. The study revealed that the cumulus expansion index and related gene expressions are significantly elevated after supplementing 1 μM CHE. Although there were no significant differences in nuclear maturation and cleavage rates, the blastocyst formation rate and total cell numbers were significantly increased in the 1 μM CHE group. In addition, CHE improved the expression of genes related to oocyte and embryo development. ROS was significantly downregulated in all CHE treatment groups, and intracellular GSH (glutathione) was significantly upregulated in 0.01, 0.1, and 1 μM CHE groups. The immunofluorescence results indicated that mitochondrial membrane potential (MMP) and lipid droplet (LD), fatty acid (FA), ATP, and functional mitochondria contents significantly increased with 1 μM CHE compared to the control. Furthermore, CHE increased the expression of genes related to lipid metabolism, mitochondrial biogenesis, and β-oxidation. Full article
(This article belongs to the Collection Advances in Antioxidant Ingredients from Natural Products)
Show Figures

Figure 1

Back to TopTop