Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = polyvinylidene difluoride (PVDF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 337
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 359
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

12 pages, 23410 KiB  
Article
Recycling and Separation of Valuable Metals from Spent Cathode Sheets by Single-Step Electrochemical Strategy
by Neng Wei, Yaqun He, Guangwen Zhang, Jiahao Li and Fengbin Zhang
Separations 2025, 12(7), 178; https://doi.org/10.3390/separations12070178 - 5 Jul 2025
Viewed by 284
Abstract
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An [...] Read more.
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An innovatively designed sandwich-structured electrochemical reactor achieved efficient reductive dissolution of cathode materials (CMs) while maintaining the structural integrity of aluminum (Al) foils in a dilute sulfuric acid system. Optimized current enabled leaching efficiencies exceeding 93% for lithium (Li), cobalt (Co), manganese (Mn), and nickel (Ni), with 88% metallic Al foil recovery via cathodic protection. Multi-scale characterization systematically elucidated metal valence evolution and interfacial reaction mechanisms, validating the technology’s tripartite innovation: simultaneous high metal extraction efficiency, high value-added Al foil recovery, and organic removal through single-step electrochemical treatment. The process synergized the dissolution of CM particles and hydrogen bubble-induced physical liberation to achieve clean separation of polyvinylidene difluoride (PVDF) and carbon black (CB) layers from Al foil substrates. This method eliminates crushing pretreatment, high-temperature reduction, and any other reductant consumption, establishing an environmentally friendly and efficient method of comprehensive recycling of battery materials. Full article
Show Figures

Figure 1

17 pages, 7524 KiB  
Article
Bicomponent Electrospinning of PVDF-Based Nanofiber Membranes for Air Filtration and Oil–Water Separation
by Tianxue Feng, Lin Fu, Zhimei Mu, Wenhui Wei, Wenwen Li, Xiu Liang, Liang Ma, Yitian Wu, Xiaoyu Wang, Tao Wu, Meng Gao, Guanchen Xu and Xingshuang Zhang
Polymers 2025, 17(5), 703; https://doi.org/10.3390/polym17050703 - 6 Mar 2025
Cited by 2 | Viewed by 1489
Abstract
Particulate matter (PM) and water pollution have posed serious hazards to human health. Nanofiber membranes (NFMs) have emerged as promising candidates for the elimination of PMs and the separation of oil–water mixtures. In this study, a polyvinylidene difluoride (PVDF)-based nanofiber membrane with an [...] Read more.
Particulate matter (PM) and water pollution have posed serious hazards to human health. Nanofiber membranes (NFMs) have emerged as promising candidates for the elimination of PMs and the separation of oil–water mixtures. In this study, a polyvinylidene difluoride (PVDF)-based nanofiber membrane with an average diameter of approximately 150 nm was prepared via a double-nozzle electrospinning technology, demonstrating high-efficiency PM filtration and oil–water separation. The finer fiber diameter not only enhances PM filtration efficiency but also reduces air resistance. The high-voltage electric field and mechanical stretching during electrospinning promote high crystallization of β-phase PVDF. Additionally, the electrostatic charges generated on the surface of β-phase PVDF facilitate the adsorption of PM from the atmosphere. The introduction of polydopamine (PDA) in PVDF produces abundant adsorption sites, enabling outstanding filtration performance. PVDF-PVDF/PDA NFMs can achieve remarkable PM0.3 filtration efficiency (99.967%) while maintaining a low pressure drop (144 Pa). PVDF-PVDF/PDA NFMs are hydrophobic, and its water contact angle (WCA) is 125.9°. It also shows excellent resistance to both acidic and alkaline environments, along with notable flame retardancy, as it can self-extinguish within 3 s. This nanofiber membrane holds significant promise for applications in personal protection, indoor air filtration, oily wastewater treatment, and environmental protection. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Graphical abstract

19 pages, 5898 KiB  
Article
Preparation of Am-MSN/PVDF Mixed Matrix Membranes for Enhanced Removal of Reactive Black 5
by Jihao Zuo, Mengkang Lu, Jinting Cai, Ruopeng Lan, Xinjuan Zeng and Cailong Zhou
Membranes 2025, 15(2), 42; https://doi.org/10.3390/membranes15020042 - 1 Feb 2025
Cited by 1 | Viewed by 950
Abstract
The discharge of large volumes of textile dyeing wastewater, characterized by poor biodegradability and high toxicity, poses severe threats to the environment. In this study, polyvinylidene difluoride (PVDF) membranes were prepared using the nonsolvent-induced phase separation (NIPS) method, with porous amino-functionalized mesoporous silica [...] Read more.
The discharge of large volumes of textile dyeing wastewater, characterized by poor biodegradability and high toxicity, poses severe threats to the environment. In this study, polyvinylidene difluoride (PVDF) membranes were prepared using the nonsolvent-induced phase separation (NIPS) method, with porous amino-functionalized mesoporous silica nanoparticles (Am-MSNs) mixed into the casting solution to fabricate the Am-MSN/PVDF mixed matrix membranes. By varying the amount of Am-MSNs added, the microstructure and overall performance of the membranes were comprehensively analyzed. The results demonstrated that the addition of Am-MSNs significantly enhanced the hydrophilicity of the membranes. The high specific surface area and amino groups of Am-MSNs facilitated interactions with dye molecules, such as Reactive Black 5 (RB5), through hydrogen bonding, electrostatic attraction, and physical adsorption, resulting in a marked improvement in RB5 rejection rates. Static adsorption tests further validated the superior adsorption capacity of the Am-MSN/PVDF mixed matrix membranes for RB5. Additionally, the nanoscale mesoporous structure of Am-MSNs enhanced the mechanical strength of the membranes. The synergistic effects of the mesoporous structure and amino groups significantly increased the efficiency and stability of the Am-MSN/PVDF mixed matrix membranes in dye removal applications, providing an effective and sustainable solution for the treatment of dye-contaminated wastewater. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

12 pages, 2932 KiB  
Article
Temperature Dependence of the Sensitivity of PVDF Pyroelectric Sensors to THz Radiation: Towards Cryogenic Applications
by Artem N. Sinelnikov, Anatoly R. Melnikov, Yaroslav V. Getmanov, Darya A. Kolomeec, Evgeny V. Kalneus, Matvey V. Fedin and Sergey L. Veber
Sensors 2024, 24(17), 5808; https://doi.org/10.3390/s24175808 - 6 Sep 2024
Cited by 2 | Viewed by 1744
Abstract
The application of terahertz (THz) science in industrial technology and scientific research requires efficient THz detectors. Such detectors should be able to operate under various external conditions and conform to existing geometric constraints in the required application. Pyroelectric THz detectors are among the [...] Read more.
The application of terahertz (THz) science in industrial technology and scientific research requires efficient THz detectors. Such detectors should be able to operate under various external conditions and conform to existing geometric constraints in the required application. Pyroelectric THz detectors are among the best candidates. This is due to their versatility, outstanding performance, ease of fabrication, and robustness. In this paper, we propose a compact pyroelectric detector based on a bioriented poled polyvinylidene difluoride film coated with sputtered metal electrodes for in situ absorption measurement at cryogenic temperature. The detector design was optimized for the registration system of the electron paramagnetic resonance (EPR) endstation of the Novosibirsk Free Electron Laser facility. Measurements of the detector response to pulsed THz radiation at different temperatures and electrode materials showed that the response varies with both the temperature and the type of electrode material used. The maximum signal level corresponds to the temperature range of 10–40 K, in which the pyroelectric coefficient of the PVDF film also has a maximum value. Among the three coatings studied, namely indium tin oxide (ITO), Au, and Cu/Ni, the latter has the highest increase in sensitivity at low temperature. The possibility of using the detectors for in situ absorption measurement was exemplified using two typical molecular spin systems, which exhibited a transparency of 20–30% at 76.9 cm−1 and 5 K. Such measurements, carried out directly in the cryostat with the main recording system and sample fully configured, allow precise control of the THz radiation parameters at the EPR endstation. Full article
(This article belongs to the Special Issue Research Development in Terahertz and Infrared Sensing Technology)
Show Figures

Figure 1

29 pages, 7908 KiB  
Review
PVDF-Based Piezo-Catalytic Membranes—A Net-Zero Emission Approach towards Textile Wastewater Purification
by Amna Siddique, Hifza Nawaz, Shumaila Razzaque, Anila Tabasum, Hugh Gong, Humaira Razzaq and Muhammad Umar
Polymers 2024, 16(5), 699; https://doi.org/10.3390/polym16050699 - 4 Mar 2024
Cited by 8 | Viewed by 3684
Abstract
Among the various water purification techniques, advancements in membrane technology, with better fabrication and analysis, are receiving the most research attention. The piezo-catalytic degradation of water pollutants is an emerging area of research in water purification technology. This review article focuses on piezoelectric [...] Read more.
Among the various water purification techniques, advancements in membrane technology, with better fabrication and analysis, are receiving the most research attention. The piezo-catalytic degradation of water pollutants is an emerging area of research in water purification technology. This review article focuses on piezoelectric polyvinylidene difluoride (PVDF) polymer-based membranes and their nanocomposites for textile wastewater remediation. At the beginning of this article, the classification of piezoelectric materials is discussed. Among the various membrane-forming polymers, PVDF is a piezoelectric polymer discussed in detail due to its exceptional piezoelectric properties. Polyvinylidene difluoride can show excellent piezoelectric properties in the beta phase. Therefore, various methods of β-phase enhancement within the PVDF polymer and various factors that have a critical impact on its piezo-catalytic activity are briefly explained. This review article also highlights the major aspects of piezoelectric membranes in the context of dye degradation and a net-zero approach. The β-phase of the PVDF piezoelectric material generates an electron–hole pair through external vibrations. The possibility of piezo-catalytic dye degradation via mechanical vibrations and the subsequent capture of the resulting CO2 and H2 gases open up the possibility of achieving the net-zero goal. Full article
(This article belongs to the Special Issue Advanced Polymer for Membrane Applications)
Show Figures

Figure 1

15 pages, 5619 KiB  
Article
Molecular Effects of Li+-Coordinating Binders and Negatively Charged Binders on the Li+ Local Mobility near the Electrolyte/LiFePO4 Cathode Interface within Lithium-Ion Batteries
by Po-Yuan Wang, Tzu-Heng Chiu and Chi-cheng Chiu
Polymers 2024, 16(3), 319; https://doi.org/10.3390/polym16030319 - 24 Jan 2024
Cited by 1 | Viewed by 2241
Abstract
The development of lithium-ion batteries (LIBs) is important in the realm of energy storage. Understanding the intricate effects of binders on the Li+ transport at the cathode/electrolyte interface in LIBs remains a challenge. This study utilized molecular dynamics simulations to compare the [...] Read more.
The development of lithium-ion batteries (LIBs) is important in the realm of energy storage. Understanding the intricate effects of binders on the Li+ transport at the cathode/electrolyte interface in LIBs remains a challenge. This study utilized molecular dynamics simulations to compare the molecular effects of conventional polyvinylidene difluoride (PVDF), Li+-coordinating polyethylene oxide (PEO), and negatively charged polystyrene sulfonate (PSS) binders on local Li+ mobility at the electrolyte/LiFePO4 (LFP) cathode interface. By examining concentration profiles of Li+, three different polymer binders, and anions near Li+-rich LFP and Li+-depleted FePO4 (FP) surfaces, we found a superior performance of the negatively charged PSS on enhancing Li+ distribution near the Li+-depleted FP surface. The radial distribution function and coordination number analyses revealed the potent interactions of PEO and PSS with Li+ disrupting Li+ coordination with electrolyte solvents. Our simulations also revealed the effects of non-uniform binder dispersions on the Li+ local mobility near the cathode surface. The combined results provide a comparative insight into Li+ transport at the electrolyte/cathode interface influenced by distinct binder chemistries, offering a profound understanding of the binder designs for high-performance LIBs. Full article
(This article belongs to the Collection Electrochemical-Storage Technology with Polymer Science)
Show Figures

Figure 1

16 pages, 6065 KiB  
Article
Significantly Enhanced Balance of Dielectric Properties of Polyvinylidene Difluoride Three-Phase Composites by Silver Deposited on K2Ni0.93Ti7.07O16 Hollandite Nanoparticles
by Alexey Tsyganov, Maria Vikulova, Ilya Zotov, Denis Artyukhov, Igor Burmistrov, Alexander Gorokhovsky and Nikolay Gorshkov
Polymers 2024, 16(2), 223; https://doi.org/10.3390/polym16020223 - 12 Jan 2024
Cited by 6 | Viewed by 1698
Abstract
Three-phase polymer composites are promising materials for creating electronic device components. The qualitative and quantitative composition of such composites has a significant effect on their functional, in particular dielectric properties. In this study, ceramic filler K2Ni0.93Ti7.07O16 [...] Read more.
Three-phase polymer composites are promising materials for creating electronic device components. The qualitative and quantitative composition of such composites has a significant effect on their functional, in particular dielectric properties. In this study, ceramic filler K2Ni0.93Ti7.07O16 (KNTO) with Ag coating as conductive additive (0.5, 1.0, 2.5 wt.%) was introduced into the polyvinylidene difluoride (PVDF) polymer matrix in amounts of 7.5, 15, 22.5, and 30 vol.%. to optimize the dielectric constant and dielectric loss tangent. The filler was characterized by X-ray phase analysis, Fourier-transform infrared spectroscopy and Scanning electron microscopy methods. The dielectric constant, dielectric loss tangent, and conductivity of three-phase composites KNTO@Ag-PVDF were studied in comparison with two-phase composites KNTO-PVDF in the frequency range from 102 Hz to 106 Hz. The dielectric constant values of composites containing 7.5, 15, 22.5, and 30 vol.% filler were 12, 13, 17.4, 19.2 for pure KNTO and 13, 19, 25, 31 for KNTO@Ag filler (2.5 wt.%) at frequency 10 kHz. The dielectric loss tangent ranged from 0.111 to 0.340 at a filler content of 7.5 to 30 vol.%. A significantly enhanced balance of dielectric properties of PVDF-based composites was found with K2Ni0.93Ti7.07O16 as ceramic filler for 1 wt.% of silver. Composites KNTO@Ag(1 wt.%)-PVDF can be applied as dielectrics for passive elements of flexible electronics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 6289 KiB  
Article
Wind Energy Harvesting with Vertically Aligned Piezoelectric Inverted Flags
by Kaidong Yang, Andrea Cioncolini, Alistair Revell and Mostafa R. A. Nabawy
Sensors 2023, 23(24), 9673; https://doi.org/10.3390/s23249673 - 7 Dec 2023
Cited by 6 | Viewed by 1845
Abstract
Wind-energy-harvesting generators based on inverted flag architecture are an attractive option to replace batteries in low-power wireless electronic devices and deploy-and-forget distributed sensors. This study examines two important aspects that have been overlooked in previous research: the interaction between an inverted flag and [...] Read more.
Wind-energy-harvesting generators based on inverted flag architecture are an attractive option to replace batteries in low-power wireless electronic devices and deploy-and-forget distributed sensors. This study examines two important aspects that have been overlooked in previous research: the interaction between an inverted flag and a neighboring solid boundary and the interaction among multiple contiguous inverted flags arranged in a vertical row. Systematic tests have been carried out with metal-only ‘baseline’ flags as well as a ‘harvester’ variant, i.e., the baseline metal flag covered with PVDF (polyvinylidene difluoride) piezoelectric polymer elements. In each case, dynamic response and power generation were measured and assessed. For baseline metal flags, the same qualitative trend is observed when the flag approaches an obstacle, whether this is a wall or another flag. As the gap distance reduces, the wind speed range at which flapping occurs gradually shrinks and shifts towards lower velocities. The increased damping introduced by attaching PVDF elements to the baseline metal flags led to a considerable narrowing of the flapping wind speed range, and the wall-to-flag or flag-to-flag interaction led to a power reduction of up to one order of magnitude compared to single flags. The present findings highlight the strong dependence of the power output on the flapping frequency, which decreases when the flag approaches a wall or other flags mounted onto the same pole. Minimum flag-to-flag and flag-to-wall spacing values are suggested for practical applications to avoid power reduction in multi-flag arrangements (2-3H and 1-2H respectively, where H is flag height). Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

16 pages, 3601 KiB  
Opinion
Potential of the Novel Slot Blot Method with a PVDF Membrane for Protein Identification and Quantification in Kampo Medicines
by Takanobu Takata, Togen Masauji and Yoshiharu Motoo
Membranes 2023, 13(12), 896; https://doi.org/10.3390/membranes13120896 - 1 Dec 2023
Cited by 6 | Viewed by 3286
Abstract
Kampo is a Japanese traditional medicine modified from traditional Chinese medicine. Kampo medicines contain various traditional crude drugs with unknown compositions due to the presence of low-molecular-weight compounds and proteins. However, the proteins are generally rare and extracted with high-polarity solvents such as [...] Read more.
Kampo is a Japanese traditional medicine modified from traditional Chinese medicine. Kampo medicines contain various traditional crude drugs with unknown compositions due to the presence of low-molecular-weight compounds and proteins. However, the proteins are generally rare and extracted with high-polarity solvents such as water, making their identification and quantification difficult. To develop methods for identifying and quantifying the proteins in Kampo medicines, in the current study we employ previous technology (e.g., column chromatography, electrophoresis, and membrane chromatography), focusing on membrane chromatography with a polyvinylidene difluoride (PVDF) membrane. Moreover, we consider slot blot analysis based on the principle of membrane chromatography, which is beneficial for analyzing the proteins in Kampo medicines as the volume of the samples is not limited. In this article, we assess a novel slot blot method developed in 2017 and using a PVDF membrane and special lysis buffer to quantify advanced glycation end products-modified proteins against other slot blots. We consider our slot blot analysis superior for identifying and quantifying proteins in Kampo medicines compared with other methods as the data obtained with our novel slot blot can be shown with both error bars and the statistically significant difference, and our operation step is simpler than those of other methods. Full article
(This article belongs to the Collection Feature Papers in Membrane Engineering and Applications)
Show Figures

Figure 1

7 pages, 1534 KiB  
Communication
Enhancing the Piezoelectric Properties of 3D Printed PVDF Using Concurrent Torsional Shear Strain
by Pu Han, Alireza Tofangchi, Derek Carr, Sihan Zhang and Keng Hsu
Polymers 2023, 15(21), 4204; https://doi.org/10.3390/polym15214204 - 24 Oct 2023
Cited by 7 | Viewed by 2460
Abstract
Extrusion-based polymer 3D printing induces shear strains within the material, influencing its rheological and mechanical properties. In materials like polyvinylidene difluoride (PVDF), these strains stretch polymer chains, leading to increased crystallinity and improved piezoelectric properties. This study demonstrates a 400% enhancement in the [...] Read more.
Extrusion-based polymer 3D printing induces shear strains within the material, influencing its rheological and mechanical properties. In materials like polyvinylidene difluoride (PVDF), these strains stretch polymer chains, leading to increased crystallinity and improved piezoelectric properties. This study demonstrates a 400% enhancement in the piezoelectric property of extrusion-printed PVDF by introducing additional shear strains during the printing process. The continuous torsional shear strains, imposed via a rotating extrusion nozzle, results in additional crystalline β-phases, directly impacting the piezoelectric behavior of the printed parts. The effect of the nozzle’s rotational speed on the amount of β-phase formation is characterized using FTIR. This research introduces a new direction in the development of polymer and composite 3D printing, where in-process shear strains are used to control the alignment of polymer chains and/or in-fill phases and the overall properties of printed parts. Full article
(This article belongs to the Special Issue 3D Printing of Polymer-Based Composite Materials)
Show Figures

Figure 1

12 pages, 2810 KiB  
Article
A Nanofiber-Based Gas Diffusion Layer for Improved Performance in Air Cathode Microbial Fuel Cells
by Giulia Massaglia, Tommaso Serra, Fabrizio Candido Pirri and Marzia Quaglio
Nanomaterials 2023, 13(20), 2801; https://doi.org/10.3390/nano13202801 - 21 Oct 2023
Cited by 2 | Viewed by 2119
Abstract
This work investigates a new nanostructured gas diffusion layer (nano-GDL) to improve the performance of air cathode single-chamber microbial fuel cells (a-SCMFCs). The new nano-GDLs improve the direct oxygen reduction reaction by exploiting the best qualities of nanofibers from electrospinning in terms of [...] Read more.
This work investigates a new nanostructured gas diffusion layer (nano-GDL) to improve the performance of air cathode single-chamber microbial fuel cells (a-SCMFCs). The new nano-GDLs improve the direct oxygen reduction reaction by exploiting the best qualities of nanofibers from electrospinning in terms of high surface-area-to-volume ratio, high porosity, and laser-based processing to promote adhesion. By electrospinning, nano-GDLs were fabricated directly by collecting two nanofiber mats on the same carbon-based electrode, acting as the substrate. Each layer was designed with a specific function: water-resistant, oxygen-permeable polyvinylidene-difluoride (PVDF) nanofibers served as a barrier to prevent water-based electrolyte leakage, while an inner layer of cellulose nanofibers was added to promote oxygen diffusion towards the catalytic sites. The maximum current density obtained for a-SCMFCs with the new nano-GDLs is 132.2 ± 10.8 mA m−2, and it doubles the current density obtained with standard PTFE-based GDL (58.5 ± 2.4 mA m−2) used as reference material. The energy recovery (EF) factor, i.e., the ratio of the power output to the inner volume of the device, was then used to evaluate the overall performance of a-SCMFCs. a-SCMFCs with nano-GDL provided an EF value of 60.83 mJ m−3, one order of magnitude higher than the value of 3.92 mJ m−3 obtained with standard GDL. Full article
(This article belongs to the Special Issue Nanomaterials Applied to Fuel Cells and Catalysts)
Show Figures

Figure 1

16 pages, 8368 KiB  
Article
Preparation and Characterization of Fluorine-Containing Polyimide Films with Enhanced Output Performance for Potential Applications as Negative Friction Layers for Triboelectric Nanogenerators
by Zhen Pan, Shunqi Yuan, Xi Ren, Zhibin He, Zhenzhong Wang, Shujun Han, Yuexin Qi, Haifeng Yu and Jingang Liu
Technologies 2023, 11(5), 136; https://doi.org/10.3390/technologies11050136 - 3 Oct 2023
Cited by 3 | Viewed by 2794
Abstract
Nanotechnologies are being increasingly widely used in advanced energy fields. Triboelectric nanogenerators (TENGs) represent a class of new-type flexible energy-harvesting devices with promising application prospects in future human societies. As one of the most important parts of TENG devices, triboelectric materials play key [...] Read more.
Nanotechnologies are being increasingly widely used in advanced energy fields. Triboelectric nanogenerators (TENGs) represent a class of new-type flexible energy-harvesting devices with promising application prospects in future human societies. As one of the most important parts of TENG devices, triboelectric materials play key roles in the achievement of high-efficiency power generation. Conventional polymer tribo-negative materials, such as polytetrafluoroethylene (PTFE), polyvinylidene difluoride (PVDF), and the standard polyimide (PI) film with the Kapton® trademark based on pyromellitic anhydride (PMDA) and 4,4′-oxydianiline (ODA), usually suffer from low output performance. In addition, the relationship between molecular structure and triboelectric properties remains a challenge in the search for novel triboelectric materials. In the current work, by incorporating functional groups of trifluoromethyl (–CF3) with strong electron withdrawal into the backbone, a series of fluorine-containing polyimide (FPI) negative friction layers have been designed and prepared. The derived FPI-1 (6FDA-6FODA), FPI-2 (6FDA-TFMB), and FPI-3 (6FDA-TFMDA) resins possessed good solubility in polar aprotic solvents, such as the N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP). The PI films obtained via the solution-casting procedure showed glass transition temperatures (Tg) higher than 280 °C with differential scanning calorimetry (DSC) analyses. The TENG prototypes were successfully fabricated using the developed PI films as the tribo-negative layers. The electron-withdrawing trifluoromethyl (–CF3) units in the molecular backbones of the PI layers provided the devices with an apparently enhanced output performance. The FPI-3 (6FDA-TFMDA) layer-based TENG devices showcased an especially impressive open-circuit voltage and short-circuit current, measuring 277.8 V and 9.54 μA, respectively. These values were 4~5 times greater when compared to the TENGs manufactured using the readily accessible Kapton® film. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

15 pages, 5101 KiB  
Article
Wetting-Based Comparison of Ag, Carbon Black, and MoS2 Composite Membranes for Photothermal Membrane Distillation
by Tarik Eljaddi and Corinne Cabassud
Membranes 2023, 13(9), 780; https://doi.org/10.3390/membranes13090780 - 4 Sep 2023
Cited by 4 | Viewed by 2054
Abstract
Photothermal membrane distillation is a new-generation desalination process that can take advantage of the ability of specific materials to convert solar energy to heat at the membrane surface and thus to overcome temperature polarization. The development of appropriate photothermal membranes is challenging because [...] Read more.
Photothermal membrane distillation is a new-generation desalination process that can take advantage of the ability of specific materials to convert solar energy to heat at the membrane surface and thus to overcome temperature polarization. The development of appropriate photothermal membranes is challenging because many criteria need to be considered, including light to heat conversion, permeability and low wetting, and fouling, as well as cost. Based on our experience with wetting characterization, this study compares photothermal membranes prepared using different well-known or promising materials, i.e., silver nanoparticles (Ag NPs), carbon black, and molybdenum disulfide (MoS2), in terms of their structural properties, permeability, wettability, and wetting. Accordingly, membranes with different proportions of photothermal NPs are prepared and fully characterized in this study. Wetting is investigated using the detection of dissolved tracer intrusion (DDTI) method following membrane distillation operations with saline solutions. The advantages of MoS2 and carbon black-based photothermal membranes in comparison with polyvinylidene difluoride (PVDF) membranes include both a permeability increase and a less severe wetting mechanism, with lower wetting indicators in the short term. These materials are also much cheaper than Ag NPs, having higher permeabilities and presenting less severe wetting mechanisms. Full article
(This article belongs to the Special Issue 2D Materials for Membrane Distillation)
Show Figures

Figure 1

Back to TopTop