Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = polytetrafluoroethylene thin film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2196 KiB  
Article
Solar Fabric Based on Amorphous Silicon Thin Film Solar Cells on Flexible Textiles
by Jonathan Plentz, Uwe Brückner, Gabriele Schmidl, Annett Gawlik, Klaus Richter and Gudrun Andrä
Energies 2025, 18(6), 1448; https://doi.org/10.3390/en18061448 - 15 Mar 2025
Viewed by 924
Abstract
Three-dimensional flexible solar fabrics based on hydrogenated amorphous silicon (a-Si:H) thin film solar cells were prepared and characterized. A glass fiber fabric with a polytetrafluoroethylene (PTFE) coating proved to be a suitable textile substrate. Interwoven metal wires enable an integrated electrical interconnection. An [...] Read more.
Three-dimensional flexible solar fabrics based on hydrogenated amorphous silicon (a-Si:H) thin film solar cells were prepared and characterized. A glass fiber fabric with a polytetrafluoroethylene (PTFE) coating proved to be a suitable textile substrate. Interwoven metal wires enable an integrated electrical interconnection. An array of solar cells consisting of an a-Si:H layer stack with a highly p-type/intrinsic/highly n-type doping profile was deposited onto it. Silver was used as the back contact with indium tin oxide (ITO) as the front contact. The best solar cells show an efficiency of 3.9% with an open-circuit voltage of 876 mV and a short-circuit current density of 11.4 mA/cm2. The high series resistance limits the fill factor to 39%. The potential of the textile solar cells is shown by the achieved pseudo fill factor of 79% when neglecting the series resistance, resulting in a pseudo efficiency of 7.6%. With four textile solar cells connected in a series, an open-circuit voltage of about 3 V is achieved. Full article
(This article belongs to the Special Issue Recent Advances in Solar Cells and Photovoltaics)
Show Figures

Figure 1

19 pages, 4454 KiB  
Article
Robust CA-GO-TiO2/PTFE Photocatalytic Membranes for the Degradation of the Azithromycin Formulation from Wastewaters
by Veronica Satulu, Andreea Madalina Pandele, Giovanina-Iuliana Ionica, Liliana Bobirică, Anca Florina Bonciu, Alexandra Scarlatescu, Constantin Bobirică, Cristina Orbeci, Stefan Ioan Voicu, Bogdana Mitu and Gheorghe Dinescu
Polymers 2024, 16(10), 1368; https://doi.org/10.3390/polym16101368 - 10 May 2024
Cited by 8 | Viewed by 2028
Abstract
We have developed an innovative thin-film nanocomposite membrane that contains cellulose acetate (CA) with small amounts of TiO2-decorated graphene oxide (GO) (ranging from 0.5 wt.% to 2 wt.%) sandwiched between two polytetrafluoroethylene (PTFE)-like thin films. The PTFE-like films succeeded in maintaining [...] Read more.
We have developed an innovative thin-film nanocomposite membrane that contains cellulose acetate (CA) with small amounts of TiO2-decorated graphene oxide (GO) (ranging from 0.5 wt.% to 2 wt.%) sandwiched between two polytetrafluoroethylene (PTFE)-like thin films. The PTFE-like films succeeded in maintaining the bulk porosity of the support while increasing the thermal and chemical robustness of the membrane and boosting the catalytic activity of TiO2 nanoparticles. The membranes exhibited a specific chemical composition and bonding, with predominant carbon–oxygen bonds from CA and GO in the bulk, and carbon–fluorine bonds on their PTFE-like coated sides. We have also tested the membranes’ photocatalytic activities on azithromycin-containing wastewaters, demonstrating excellent efficiency with more than 80% degradation for 2 wt.% TiO2-decorated GO in the CA-GO-TiO2/PTFE-like membranes. The degradation of the azithromycin formulation occurs in two steps, with reaction rates being correlated to the amount of GO-TiO2 in the membranes. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites)
Show Figures

Graphical abstract

12 pages, 3443 KiB  
Article
Light Weight, Flexible and Ultrathin PTFE@Ag and Ni@PVDF Composite Film for High-Efficient Electromagnetic Interference Shielding
by Hongbo Liu, Jiajie Huang and Bingzhi Guo
Materials 2023, 16(13), 4831; https://doi.org/10.3390/ma16134831 - 5 Jul 2023
Cited by 8 | Viewed by 1656
Abstract
Dopamine was used to modify polytetrafluoroethylene (PTFE) in order to obtain functional polydopamine (PDA) surface-modified PTFE microporous film (PTFE@PDA). Ag was deposited on the surface of PTFE@PDA using electroless plating in order to obtain Ag-wrapped PTFE@PDA film (PTFE@Ag). A liquid-phase chemical reduction method [...] Read more.
Dopamine was used to modify polytetrafluoroethylene (PTFE) in order to obtain functional polydopamine (PDA) surface-modified PTFE microporous film (PTFE@PDA). Ag was deposited on the surface of PTFE@PDA using electroless plating in order to obtain Ag-wrapped PTFE@PDA film (PTFE@Ag). A liquid-phase chemical reduction method was employed to prepare nickel nanochains. A Ni@PVDF cast film was obtained by mechanically blended nickel nanochains and polyimide (PVDF). The above two films were hot pressed to give a flexible, ultra-thin, and highly effective electromagnetic shielding composite film with a “3+2” layered structure. IR, XRD, and TEM results showed the PTFE@PDA film surface was coated by a tight plating layer of Ag particles with a particle size of 100~200 nm. PTFE@Ag+Ni@PVDF composite film exhibited excellent electromagnetic shielding effectiveness, with the conductivity of 7507.5 S/cm and the shielding effectiveness of 69.03 dB in the X-band range. After a 2000-cycle bending, this value still remained at 51.90 dB. Furthermore, the composite film presented excellent tensile strength of 62.1 MPa. It has great potential for applications in flexible and wearable intelligent devices. Full article
Show Figures

Figure 1

22 pages, 2010 KiB  
Review
Review on Hydrophobic Thin Films Prepared Using Magnetron Sputtering Deposition
by Yuxin Ju, Ling Ai, Xiaopeng Qi, Jia Li and Weijie Song
Materials 2023, 16(10), 3764; https://doi.org/10.3390/ma16103764 - 16 May 2023
Cited by 23 | Viewed by 4735
Abstract
Hydrophobic thin films have gained significant attention due to their broad applications in self-cleaning, anti-corrosion, anti-icing, medicine, oil–water separation, and other fields. The target hydrophobic materials can be deposited onto various surfaces thanks to the scalable and highly reproducible nature of magnetron sputtering, [...] Read more.
Hydrophobic thin films have gained significant attention due to their broad applications in self-cleaning, anti-corrosion, anti-icing, medicine, oil–water separation, and other fields. The target hydrophobic materials can be deposited onto various surfaces thanks to the scalable and highly reproducible nature of magnetron sputtering, which is comprehensively overviewed in this review. While alternative preparation methods have been extensively analyzed, a systematic understanding of hydrophobic thin films fabricated using magnetron sputtering deposition is still absent. After outlining the fundamental mechanism of hydrophobicity, this review briefly summarizes three types of sputtering-deposited thin films that originate from oxides, polytetrafluoroethylene (PTFE), and diamond-like carbon (DLC), respectively, primarily focusing on the recent advances in their preparation, characteristics, and applications. Finally, the future applications, current challenges, and development of hydrophobic thin films are discussed, and a brief perspective on future research directions is provided. Full article
Show Figures

Figure 1

20 pages, 5408 KiB  
Article
Characterization and Growth of TiO2/ZnO on PTFE Substrates at Different Volumetric Ratios Using Chemical Bath Deposition
by Youssif S M Elzawiei, Md Roslan Hashim, Mohd Mahadi Halim and Abdullah Abdulhameed
Coatings 2023, 13(2), 379; https://doi.org/10.3390/coatings13020379 - 7 Feb 2023
Cited by 6 | Viewed by 2556
Abstract
Developing non-toxic, semiconductor-doped heterojunction materials for optoelectronic applications on the surface of a flexible substrate is a viable strategy for meeting the world’s energy needs without introducing any environmental issues. In this paper, Ti:TiO2/ZnO nanocomposites were prepared by heat treatment and [...] Read more.
Developing non-toxic, semiconductor-doped heterojunction materials for optoelectronic applications on the surface of a flexible substrate is a viable strategy for meeting the world’s energy needs without introducing any environmental issues. In this paper, Ti:TiO2/ZnO nanocomposites were prepared by heat treatment and utilized as an active layer in UV photodetectors. First, a ZnO seed layer was deposited by radio frequency (RF) sputtering on polytetrafluoroethylene (PTFE) substrates. Then, TiO2/ZnO thin films (TFs) were successfully grown by combining volumetric mixtures of TiO2 and ZnO at the ratios of 1:7, 1:3, 3:5, and 1:1 via the chemical bath deposition (CBD) method. The morphological, elemental, and topographical analyses of the grown TFs were investigated through SESEM, EDX, and AFM spectroscopy, respectively. XRD patterns illustrated the presence of the unified (002) peak of the Ti/ZnO hexagonal wurtzite structure in all prepared samples, with intensities indicating a very strong preferential crystallinity with increasing TiO2 ratios. Enhanced diffuse reflectance curves were obtained by UV–Vis spectroscopy, with allowed indirect energy bandgaps ranging from 3.17 eV to 3.23 eV. FTIR characterization revealed wider phonon vibration ranges indicating the presence of Ti–O and Zn–O bonds. Metal–semiconductor–metal (MSM) UV photodetectors were fabricated by thermally evaporating Ag electrodes on the grown nanocomposites. The volumetric ratio of TiO2/ZnO impacted the photodetector performance, where the responsivity, photosensitivity, gain, detectivity, rise time, and decay time of 0.495 AW−1, 247.14%, 3.47, 3.68 × 108 jones, 0.63 s, and 0.99 s, respectively, were recorded at a ratio of 1:1 (TiO2:ZnO). Based on the results, the heterostructure nanocomposites grown on PTFE substrates are believed to be highly promising TF for flexible electronics. Full article
Show Figures

Figure 1

11 pages, 2200 KiB  
Article
Thermal Effect on Thin-Film Formation of the Polymer Sheets by the CO2 Laser with the Copper Base
by Nobukazu Kameyama and Hiroki Yoshida
Polymers 2022, 14(17), 3508; https://doi.org/10.3390/polym14173508 - 26 Aug 2022
Viewed by 2276
Abstract
A method that makes polymer sheets partially thinner with continuous-wave carbon dioxide (CO2) lasers has been developed. This method can create thin polymer films by attaching the polymer sheets to the copper base by vacuum suction through the holes in the [...] Read more.
A method that makes polymer sheets partially thinner with continuous-wave carbon dioxide (CO2) lasers has been developed. This method can create thin polymer films by attaching the polymer sheets to the copper base by vacuum suction through the holes in the base. Applying the method to polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), and polytetrafluoroethylene (PTFE), the thin-film formation is confirmed in PP, PET, and PS but not PTFE. These polymers have the similar thermal properties. PP, PET, and PS show fluidity with increased temperature, but PTFE does not have fluidity. These characteristics of the polymers indicate that the fluidity of polymer is the important characteristic for film formation. The experiments with PP and PET sheets of different thickness show that thicker sheets make thicker films. The fluid flow of the molten polymer is considered to form the thin film at the bottom of the groove made by laser scribing. The numerical simulation of the 2D thermal model also indicates the week cooling effects of the base on the film formation and importance of polymer fluidity. The results of Fourier transform infrared spectrometer (FT-IR) show thermal degradation of the films. To decrease the heat’s effect on the films, the polymer sheets should be processed at the highest laser-beam scanning speed that can make thin films. Full article
(This article belongs to the Special Issue Advanced Polymeric Films)
Show Figures

Figure 1

12 pages, 3735 KiB  
Article
Thin-Film Composite Membranes with a Carbon Nanotube Interlayer for Organic Solvent Nanofiltration
by Mingjia Liao, Yun Zhu, Genghao Gong and Lei Qiao
Membranes 2022, 12(8), 817; https://doi.org/10.3390/membranes12080817 - 22 Aug 2022
Cited by 12 | Viewed by 3018
Abstract
Compared to the traditional chemical-crosslinking-based polymer, the porous polytetrafluoroethylene (PTFE) substrate is considered to be an excellent support for the fabrication of thin-film composite (TFC) organic solvent nanofiltration (OSN) membranes. However, the low surface energy and chemical inertness of PTFE membranes presented major [...] Read more.
Compared to the traditional chemical-crosslinking-based polymer, the porous polytetrafluoroethylene (PTFE) substrate is considered to be an excellent support for the fabrication of thin-film composite (TFC) organic solvent nanofiltration (OSN) membranes. However, the low surface energy and chemical inertness of PTFE membranes presented major challenges for fabricating a polyamide active layer on its surface via interfacial polymerization (IP). In this study, a triple-layered TFC OSN membrane was fabricated via IP, which consisted of a PA top layer on a carbon nanotube (CNT) interlayer covering the macroporous PTFE substrate. The defect-free formation and cross-linking degree of the PA layer can be improved by controlling the CNT deposition amount to achieve a good OSN performance. This new TFC OSN membrane exhibited a high dye rejection (the rejection of Bright blue B > 97%) and a moderate and stable methanol permeated flux of approximately 8.0 L m−2 h−1 bar−1. Moreover, this TFC OSN membrane also exhibited an excellent solvent resistance to various organic solvents and long-term stability during a continuous OSN process. Full article
Show Figures

Figure 1

20 pages, 7420 KiB  
Article
Rheological, Aging, and Microstructural Properties of Polycarbonate and Polytetrafluoroethylene Modified Bitumen
by Muhammad Ansar, Muhammad Ali Sikandar, Fadi Althoey, Muhammad Atiq Ur Rehman Tariq, Saleh H. Alyami and Samah Elsayed Elkhatib
Polymers 2022, 14(16), 3283; https://doi.org/10.3390/polym14163283 - 12 Aug 2022
Cited by 14 | Viewed by 3063
Abstract
Deterioration of asphalt pavements due to massive load of vehicles and climatic variation has demanded the use of pavements construction material with an excellent resilience characteristic, resistance to permanent deformation, and most importantly, a much longer service lifespan. The main structural distresses in [...] Read more.
Deterioration of asphalt pavements due to massive load of vehicles and climatic variation has demanded the use of pavements construction material with an excellent resilience characteristic, resistance to permanent deformation, and most importantly, a much longer service lifespan. The main structural distresses in pavement construction are permanent deformation at high temperatures and fatigue cracking under repetitive traffic loadings. To comprehensively investigate the performance of bitumen penetration grade (PG) 70 against rutting, fatigue, and high temperature cracking in hot mix asphalt (HMA) pavements, polycarbonate (PC) and polytetrafluoroethylene (PTFE) were used. The investigation of the internal structure, rheological, and physical properties of base and modified bitumen (MB) mixes with different percentages of modifiers (0%, 2.5%, and 5%) by weight were performed via scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) analysis, X-ray diffraction (XRD) pattern analysis, rolling thin-film oven test (RTFOT), pressurized aging vessel (PAV), dynamic shear rheometer (DSR), rotational viscosity (RV), and bending beam rheometer (BBR). The results of the RV test indicate that modification of neat bitumen with polycarbonate and polytetrafluoroethylene increased the viscosity for polycarbonate-modified bitumen (PCMB), polytetrafluoroethylene-modified bitumen (PTFEMB), and for a blend of PCMB-PTFEMB by 44%, 50%, and 55.75% at 135 °C and 111.10%, 127.80%, and 138.88% at 165 °C, accordingly. BBR test results revealed that modifiers increased the rigidity of neat bitumen by 74.8%, 75.8%, and 74.5% at −16 °C, −22 °C, and −28 °C, respectively. Full article
(This article belongs to the Special Issue Advanced Polymers for Pavement Application)
Show Figures

Figure 1

13 pages, 4014 KiB  
Article
Pore-Filled Proton-Exchange Membranes with Fluorinated Moiety for Fuel Cell Application
by Hyeon-Bee Song, Jong-Hyeok Park, Jin-Soo Park and Moon-Sung Kang
Energies 2021, 14(15), 4433; https://doi.org/10.3390/en14154433 - 22 Jul 2021
Cited by 14 | Viewed by 3347
Abstract
Proton-exchange membrane fuel cells (PEMFCs) are the heart of promising hydrogen-fueled electric vehicles, and should lower their price and further improve durability. Therefore, it is necessary to enhance the performances of the proton-exchange membrane (PEM), which is a key component of a PEMFC. [...] Read more.
Proton-exchange membrane fuel cells (PEMFCs) are the heart of promising hydrogen-fueled electric vehicles, and should lower their price and further improve durability. Therefore, it is necessary to enhance the performances of the proton-exchange membrane (PEM), which is a key component of a PEMFC. In this study, novel pore-filled proton-exchange membranes (PFPEMs) were developed, in which a partially fluorinated ionomer with high cross-linking density is combined with a porous polytetrafluoroethylene (PTFE) substrate. By using a thin and tough porous PTFE substrate film, it was possible to easily fabricate a composite membrane possessing sufficient physical strength and low mass transfer resistance. Therefore, it was expected that the manufacturing method would be simple and suitable for a continuous process, thereby significantly reducing the membrane price. In addition, by using a tri-functional cross-linker, the cross-linking density was increased. The oxidation stability was greatly enhanced by introducing a fluorine moiety into the polymer backbone, and the compatibility with the perfluorinated ionomer binder was also improved. The prepared PFPEMs showed stable PEMFC performance (as maximum power density) equivalent to 72% of Nafion 212. It is noted that the conductivity of the PFPEMs corresponds to 58–63% of that of Nafion 212. Thus, it is expected that a higher fuel cell performance could be achieved when the membrane resistance is further lowered. Full article
(This article belongs to the Special Issue Advanced Studies for PEM Fuel Cells in Hydrogen-Fueled Vehicles)
Show Figures

Figure 1

20 pages, 6011 KiB  
Article
Antibacterial Properties of Plasma-Activated Perfluorinated Substrates with Silver Nanoclusters Deposition
by Petr Slepička, Silvie Rimpelová, Nikola Slepičková Kasálková, Dominik Fajstavr, Petr Sajdl, Zdeňka Kolská and Václav Švorčík
Nanomaterials 2021, 11(1), 182; https://doi.org/10.3390/nano11010182 - 13 Jan 2021
Cited by 12 | Viewed by 3018
Abstract
This article is focused on the evaluation of surface properties of polytetrafluoroethylene (PTFE) nanotextile and a tetrafluoroethylene-perfluoro(alkoxy vinyl ether) (PFA) film and their surface activation with argon plasma treatment followed with silver nanoclusters deposition. Samples were subjected to plasma modification for a different [...] Read more.
This article is focused on the evaluation of surface properties of polytetrafluoroethylene (PTFE) nanotextile and a tetrafluoroethylene-perfluoro(alkoxy vinyl ether) (PFA) film and their surface activation with argon plasma treatment followed with silver nanoclusters deposition. Samples were subjected to plasma modification for a different time exposure, silver deposition for different time periods, or their combination. As an alternative approach, the foils were coated with poly-L-lactic acid (PLLA) and silver. The following methods were used to study the surface properties of the polymers: goniometry, atomic force microscopy, and X-ray photoelectron microscopy. By combining the aforementioned methods for material surface modification, substrates with antibacterial properties eliminating the growth of Gram-positive and Gram-negative bacteria were prepared. Studies of antimicrobial activity showed that PTFE plasma-modified samples coated with PLLA and deposited with a thin layer of Ag had a strong antimicrobial effect, which was also observed for the PFA material against the bacterial strain of S. aureus. Significant antibacterial effect against S. aureus, Proteus sp. and E. coli has been demonstrated on PTFE nanotextile plasma-treated for 240 s, coated with PLLA, and subsequently sputtered with thin Ag layer. Full article
(This article belongs to the Special Issue Nanomaterials for Biomedical Applications)
Show Figures

Figure 1

12 pages, 7866 KiB  
Article
Surface Plasmon Resonance Sensor Based on Polymer Liquid-Core Fiber for Refractive Index Detection
by Xuqing Shui, Qiongchan Gu, Xiaoxiao Jiang and Guangyuan Si
Photonics 2020, 7(4), 123; https://doi.org/10.3390/photonics7040123 - 3 Dec 2020
Cited by 7 | Viewed by 3305
Abstract
In this work, a surface plasmon resonance (SPR) sensor based on a novel liquid-core polymer optical fiber (POF) is proposed and numerically analyzed for refractive index (RI) detection. The polytetrafluoroethylene (PTFE) fiber is selected as the platform for SPR sensing. We combine the [...] Read more.
In this work, a surface plasmon resonance (SPR) sensor based on a novel liquid-core polymer optical fiber (POF) is proposed and numerically analyzed for refractive index (RI) detection. The polytetrafluoroethylene (PTFE) fiber is selected as the platform for SPR sensing. We combine the PTFE-based POF with the liquid-core structure by introducing a hole filled with analyte into the fiber center. The hole also acts as the fiber core to guide the incident light. This design helps to realize the detection of solutions with low RI values (around 1.33), while keeping the distinguished sensing characteristics of the liquid-core structure. Two side air holes are introduced into the cladding and a thin silver film protected by a titanium dioxide layer is plated on the wall of one air hole, which helps to control the mode coupling. In order to optimize the design of this sensor, the impacts of parameters such as metal layer thicknesses and the central hole radius are investigated using the full-vector finite element method (FEM). After optimization, our design shows a wavelength interrogation sensitivity reaching up to 16,750 nm/RIU and an average full-width at half-maximum (FWHM) of 42.86 nm in the RI range of 1.325–1.35. Full article
(This article belongs to the Special Issue Optical Fiber Grating Sensing Technology and Application)
Show Figures

Graphical abstract

12 pages, 3612 KiB  
Article
Electromagnetic Shielding Effectiveness and Conductivity of PTFE/Ag/MWCNT Conductive Fabrics Using the Screen Printing Method
by Hung-Chuan Cheng, Chong-Rong Chen, Shan-hui Hsu and Kuo-Bing Cheng
Sustainability 2020, 12(15), 5899; https://doi.org/10.3390/su12155899 - 22 Jul 2020
Cited by 21 | Viewed by 3962
Abstract
The management of the electromagnetic interference (EMI) of thin, light, and inexpensive materials is important for consumer electronics and human health. This paper describes the development of conductive films that contain a silver (Ag) flake powder and multiwall carbon nanotube (MWCNT) hybrid grid [...] Read more.
The management of the electromagnetic interference (EMI) of thin, light, and inexpensive materials is important for consumer electronics and human health. This paper describes the development of conductive films that contain a silver (Ag) flake powder and multiwall carbon nanotube (MWCNT) hybrid grid on a polytetrafluoroethylene (PTFE) film for applications that require electromagnetic shielding (EMS) and a conductive film. The Ag and MWCNT hybrid grid was constructed with a wire diameter and spacing of 0.5 mm. The results indicated that the proposed conductive films with 0.4 wt% MWCNTs had higher electromagnetic shielding effectiveness (EMSE) and electrical conductivity than those with other MWCNT loading amounts. The results also showed that the film with 0.4 wt% MWCNT loading had a high 62.4 dB EMSE in the 1800 MHz frequency and 1.81 × 104 S/cm electrical conductivity. This combination improved stretchability, with 10% elongation at a 29% resistivity change rate. Conductive films with Ag/MWCNT electronic printing or lamination technologies could be used for EMI shielding and electrically conductive applications. Full article
Show Figures

Figure 1

19 pages, 9543 KiB  
Article
Study the Influence of Surface Morphology and Lubrication Pressure on Tribological Behavior of 316L–PTFE Friction Interface in High-Water-Based Fluid
by Jiaxiang Man, Jiyun Zhao, Liangchen Song and Haifeng Yang
Coatings 2020, 10(4), 405; https://doi.org/10.3390/coatings10040405 - 19 Apr 2020
Cited by 8 | Viewed by 3066
Abstract
Because of the low viscosity of high-water-based fluids, the intense wear and leakage of key friction pairs represent a bottleneck to the wide application of the high-water-based hydraulic motor in engineering machinery. In this work, based on the common characteristics of plane friction [...] Read more.
Because of the low viscosity of high-water-based fluids, the intense wear and leakage of key friction pairs represent a bottleneck to the wide application of the high-water-based hydraulic motor in engineering machinery. In this work, based on the common characteristics of plane friction pairs, the friction experiments of a 316L stainless steel (316L)–polytetrafluoroethylene (PTFE) friction pair under various working condition were carried out by a self-designed friction experimental system with fluid lubrication. The influence of lubrication pressure and surface morphology on the 316L–PTFE friction pair was investigated both experimentally and theoretically. The experimental and numerical results indicated that increasing lubrication pressure reduced the surface wear of PTFE sample, but the leakage of 316L–PTFE friction pair also increased. It could not form an effective fluid lubrication film in the 316L–PTFE friction pair under low lubrication pressure, which caused the severe wear in friction pair interface. The smooth 316L surface could be conducive to the formation of high-water-based fluid lubrication film in 316L–PTFE friction interface. The pressure distribution of high-water-based fluid lubrication film in 316L–PTFE friction pair was also obtained in fluent. The PTFE surface was easily worn when the lubrication film in the friction pair was too thin or uneven. The friction and wear were obviously improved when the normal load was balanced by the bearing capacity of the high-water-based fluid lubrication film. Full article
Show Figures

Figure 1

14 pages, 3448 KiB  
Article
A Green Triboelectric Nano-Generator Composite of Degradable Cellulose, Piezoelectric Polymers of PVDF/PA6, and Nanoparticles of BaTiO3
by Zhuangzhi Sun, Lu Yang, Sicheng Liu, Jintao Zhao, Zhiwei Hu and Wenlong Song
Sensors 2020, 20(2), 506; https://doi.org/10.3390/s20020506 - 16 Jan 2020
Cited by 41 | Viewed by 6651
Abstract
In this paper, a kind of green triboelectric nano-generator based on natural degradable cellulose is proposed. Different kinds of regenerated cellulose composite layers are prepared by a blending doping method, and then assembled with poly(tetrafluoroethylene) (PTFE) thin films to form tribioelectric nanogenerator (TENG). [...] Read more.
In this paper, a kind of green triboelectric nano-generator based on natural degradable cellulose is proposed. Different kinds of regenerated cellulose composite layers are prepared by a blending doping method, and then assembled with poly(tetrafluoroethylene) (PTFE) thin films to form tribioelectric nanogenerator (TENG). The results show that the open circuit output voltage and the short circuit output current using a pure cellulose membrane is 7.925 V and 1.095 μA. After adding a certain amount of polyamide (PA6)/polyvinylidene fluoride (PVDF)/barium titanate (BaTiO3), the open circuit output voltage peak and the peak short circuit output current increases by 254.43% (to 20.155 V) and 548.04% (to 6.001 μA). The surface morphology, elemental composition and functional group of different cellulose layers are characterized by Scanning Electronic Microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and tested by the electrochemical analyze. Moreover, after multiple assembly and rectification processing, the electrical output performance shows that the peak value of open-circuit output voltage and the peak value of short circuit output current increases by 132.06% and 116.13%. Within 500 s of the charge-discharge test, the single peak charge reached 3.114 V, and the two peak charges reached 3.840 V. The results demonstrate that the nano-generator based on cellulose showed good stability and reliability, and the application and development of natural biomaterials represented by cellulose are greatly promoted in miniature electronic sensing area. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

13 pages, 3285 KiB  
Article
XPS and FTIR Studies of Polytetrafluoroethylene Thin Films Obtained by Physical Methods
by Joanna Piwowarczyk, Roman Jędrzejewski, Dariusz Moszyński, Konrad Kwiatkowski, Agata Niemczyk and Jolanta Baranowska
Polymers 2019, 11(10), 1629; https://doi.org/10.3390/polym11101629 - 9 Oct 2019
Cited by 127 | Viewed by 10709
Abstract
Two methods—attenuated total reflection Fourier infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS)—have been used to analyze the chemical structure of polytetrafluorethylene (PTFE) thin coatings deposited by pulsed laser (PLD) and pulsed electron beam (PED) ablations. The volume of the analyzed materials is [...] Read more.
Two methods—attenuated total reflection Fourier infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS)—have been used to analyze the chemical structure of polytetrafluorethylene (PTFE) thin coatings deposited by pulsed laser (PLD) and pulsed electron beam (PED) ablations. The volume of the analyzed materials is significantly different in these techniques which can be of great importance in the characterization of highly heterogeneous thin films. Optical microscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been additionally used to examine the coating surface morphology. The studies have shown that in the case of thin polymer coatings deposited by physical methods, the application for chemical structure evaluation of complementary techniques, with different surface sensitivity, together with the use of surface topography imaging, provide unique insight into the film morphology. The results can provide information contributing to an in-depth understanding of the deposition mechanism of polymer coatings. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Polymers and Polymer Composites)
Show Figures

Graphical abstract

Back to TopTop