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Abstract: Compared to the traditional chemical-crosslinking-based polymer, the porous polytetraflu-
oroethylene (PTFE) substrate is considered to be an excellent support for the fabrication of thin-film
composite (TFC) organic solvent nanofiltration (OSN) membranes. However, the low surface energy
and chemical inertness of PTFE membranes presented major challenges for fabricating a polyamide
active layer on its surface via interfacial polymerization (IP). In this study, a triple-layered TFC OSN
membrane was fabricated via IP, which consisted of a PA top layer on a carbon nanotube (CNT) inter-
layer covering the macroporous PTFE substrate. The defect-free formation and cross-linking degree of
the PA layer can be improved by controlling the CNT deposition amount to achieve a good OSN per-
formance. This new TFC OSN membrane exhibited a high dye rejection (the rejection of Bright blue
B > 97%) and a moderate and stable methanol permeated flux of approximately 8.0 L m−2 h−1 bar−1.
Moreover, this TFC OSN membrane also exhibited an excellent solvent resistance to various organic
solvents and long-term stability during a continuous OSN process.

Keywords: polytetrafluoroethylene; carbon nanotube interlayer; polyamide; thin-film composite
membrane; organic solvent nanofiltration

1. Introduction

With the development of the industrial technology, a variety of organic solvents such
as alkanes, lipids, ketones and alcohols are widely used in organic synthesis, separation
and catalyst recycling [1]. The pollution problem caused by the widespread use of organic
solvents has become increasingly prominent, which seriously threatens the environment
and health of the human body. Traditional techniques for separating, retrieving and puri-
fying organic solvents are mainly distillation and extraction. However, these traditional
separation technologies typically present disadvantages such as the large footprint and
high energy consumption. Organic solvent nanofiltration (OSN), as a new type of pressure-
driven membrane separation technology [2,3], has progressively attracted more attention
from researchers because of its environment-friendly characteristics, high separation ef-
ficiency and low energy consumption [4]. The OSN technique can efficiently separate
molecules of 200–1000Da from various organic solvents and has great potential for catalyst
and solvent recovery and purification of active pharmaceutical ingredients [5–8].

Currently, the integrally skinned asymmetric and thin-film composite (TFC) mem-
branes prepared via phase inversion and interfacial polymerization (IP), respectively, are
two typical OSN membrane types. Compared to the phase inversion method, TFC OSN
membranes prepared by IP can separately adjust the microstructure and thickness of the
skin layer and the porous substrate, thereby significantly improving their permselectivity.
The state-of-the-art TFC membrane consists of a polyamide (PA) separation layer and a
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porous support [9]. The former plays a key role in the separation performance of mem-
branes, whereas the latter generally acts as a mechanical support. Therefore, the separation
performance of TFC PA membranes can be adjusted by adjusting the microstructure and
surface property of the PA top layer. In recent decades, the vast majority of studies fo-
cused on regulating the structure of the PA layer to enhance the permselectivity of TFC
membranes by controlling the IP conditions, such as diffusion rates and concentrations
of monomers, time and temperature of the IP process and types and concentrations of
additives [10–12]. In addition to these, the post-treatment of PA networks and surface
modification of the substrate in the IP reaction also significantly influenced the formation
and performance of the PA layer for TFC membranes.

Recently, for example, Solomon and co-workers performed interfacial polymerization
on a cross-linked polyimide substrate to prepare a new TFC PA membrane that can be
applied to the separation of organic solvent systems, such as DMF, THF, methanol and
toluene [13]. After immersing the prepared TFC membrane in DMF, a small amount of PA
without crosslinking dissolved, thus enhancing the microporosity of the PA. Hence, the
permeation flux of the TFC membrane greatly improved without destroying the structure
of the PA layer. Livingston and co-workers deposited cadmium hydroxide nanostrands
onto a UF membrane support to prepare an ultrathin PA layer via IP. This TFC membrane
exhibited a high organic solvent permeation flux due to its ultrathin thickness of 10 nm [14].
Meanwhile, Gong and co-workers fabricated a PA active layer onto an intermediate layer
consisting of carbon nanotubes (CNT) that was covered on a polyethersulfone microfiltra-
tion membrane [15]. The presence of this CNT interlayer with a smooth surface facilitates
the construction of the dense and thin PA top layer. This TFC PA membrane exhibited a
high divalent salt rejection (>98.3%) and dye rejection (>99.5%) with a high pure water flux
of around 21 L m−2 h−1 bar−1. Moreover, CNT interlayers were prepared on various sub-
strates including PAN nanofiber and PES microfiltration membranes via spray coating [16]
and Inkjet printing [17] methods, respectively, and the as-prepared TFC membranes have
been applied to the FO [18] and NF, confirming an improved water permeance and an-
tifouling performance [19,20]. These results indicated that the presence of an intermediate
layer could effectively decrease the thickness of PA membranes via the avoidance of the
intrusion of PA into the porous substrate.

On the other hand, OSN membranes generally require insoluble in organic solvents or
only have a small degree of swelling because of their harsh application environments [21].
Compared with the commercialized porous polymeric substrates such as polysulfone and
polyethersulfone, polytetrafluoroethylene (PTFE) has many unique merits including excel-
lent thermal stability, acid and alkali tolerance and solvent resistance [22]. However, owing
to their insoluble characteristic in organic solvents, most of the porous PTFE membranes
were usually prepared via mechanical biaxial stretching, spinning or auxiliary-assistant
pore forming methods, resulting in a rough surface and large pore size (0.5~5 µm) of
these PTFE membranes [23], which was unfavorable for preparing the PA layer via the IP
method. Moreover, the low surface energy and chemical inertness of PTFE membranes
also presented major challenges while using the IP method to prepare the PA top layer
on the PTFE surface, besides a poor adhesion on the interface between the PA and PTFE
layer [24,25].

In this work, therefore, we constructed a polydopamine-modified carbon nanotube
(PDA-CNT) firstly, followed by depositing the PDA-CNT onto a porous PTFE substrate
as an interlayer. After that, an ultrathin PA active layer was fabricated on top of the
PDA-CNT interlayer via IP. PDA, as a modifier or coating material, has been widely
used in preparation and surface modification of various solvent-resistant membranes
due to its good solvent stability and high adhesion to most materials [26]. Therefore,
this thin PDA-CNT interlayer acts as a bridging layer linking the PA top layer with the
PTFE substrate, thereby improving the structural stability of this triple-layered TFC OSN
membrane. Meanwhile, we investigated the impact of the PDA-CNT interlayers on the
formation of the PA top layer by adjusting the structure and property of the PDA-CNT
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interlayer. Finally, a high-performance TFC OSN membrane was fabricated via IP, which
exhibited a great promise for applications in the organic solvent nanofiltration process.

2. Experimental Section
2.1. Materials

PTFE microfiltration membranes with a pore size about 0.25µm were obtained from
Hangzhou Yibo Separation Membrane Co., LTD. (Hangzhou, China). Single-walled carbon
nanotubes (CNTs, diameter < 2 nm, length: 5–30 µm, purity: >95%) were purchased from
XFNANO (Nanjing, China). Sodium dodecylbenzenesulfonate (SDS), methyl orange (99%),
methyl violet (99%), acid magenta (99%), congo red (99%) and bright blue B (99%) were
purchased from Sahn Chemical Technology Co., Ltd. (Shanghai, China). Benzoyl chloride
(TMC) was obtained from Beijing Bellingway Technology Co., Ltd. (Beijing, China). M-
phenylenediamine (MPD) was obtained from Sigma Aldrich (St. Louis, MA, USA). Tris-HCl
solution (0.1 mol/L, pH = 7.5) was obtained from Beijing Lambost Biotechnology Co., Ltd.
(Beijing, China). Dopamine hydrochloride (99%) was obtained from J&K Chemical Co., Ltd.
(Hangzhou, China). N-hexane, Methanol, Anhydrous ethanol and N, N-dimethyl were
purchased from Tianjin Kemiou Chemical Reagent Co., Ltd. (Tianjin, China).

2.2. Fabrication of the TFC OSN Membrane

Polydopamine-modified CNT (PDA-CNT) dispersion was prepared by following the
reported procedure [27]. Briefly, CNT (10 mg) and SDS (100 mg) were added to DI water
(100 mL) and then sonicated at 270 W for 10 h, followed by centrifuge at 10,000 rpm for
1 h to remove undispersed CNT. Subsequently, dopamine hydrochloride (10 mg) and
0.1 m HCl-Tris solution (10 mL, pH = 7.5) were added into the CNT dispersion, the mixed
solution was stirred for more than 12 h at 40 ◦C. Finally, the homogeneous PDA-CNT
dispersion was obtained after 30 min centrifugation at 10,000 rpm.

The CNT interlayer was fabricated by the vacuum filtration method. Briefly, the CNT
layer was made by filtering a certain amount of PDA-CNT dispersion onto the porous
PTFE substrate (deposition area: 0.0016 m2) under a constant pressure of 1 bar using a
vacuum pump on the permeate side, as shown in Figure 1. Hence, the deposition amount
of CNT layer can be controlled by the filtration volume of the CNT dispersion. After that,
the PTFE-CNT composite membrane was placed in the oven to dry at 40 ◦C. Subsequently,
the polyamide (PA) active layer was fabricated on the surface of PTFE-CNT membrane
at room temperature. First, the PTFE-CNT substrate was fixed on surface of a plate and
clamped with a PTFE frame, then dipped in 5.0 wt% MPD aqueous solution for 2 min.
Excess MPD solution on the substrate surface was removed with a rubber roller. Then,
0.2 wt% TMC/hexane solution was poured onto the whole top surface of the composite
membrane for 30 s at room temperature and an active PA layer was formed. After washing
the membrane with pure hexane, the resulting membranes were cured at 65 ◦C for 10 min.
Finally, the obtained PTFE-CNT-PA (named TFC) membrane was stored in DI water at 4 ◦C
for further use and characterization.
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Figure 1. Schematic illustration of the preparation process of PTFE-CNT-PA membrane.  Figure 1. Schematic illustration of the preparation process of PTFE-CNT-PA membrane.

2.3. Characterization

All samples were dried for 4 h in a vacuum chamber before characterization. The
structures and morphologies of the membrane were measured by field emission scanning
electron microscopy (SEM) (Hitachi, S-4800, Tokyo, Japan) with an acceleration voltage of
10 kV. The surface topography of the membrane was characterized using an atom force
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microscopy (AFM, Bruker, Dimension Icon, Karlsruhe, Germany) under a tapping mode
at atmospheric condition. The elemental composition of the PA layer was analyzed by an
X-ray photoelectron spectrometer (XPS, Thermofisher, ESCALAB 250Xi, Waltham, MA,
USA). Water contact angles of membrane surfaces were detected using a contact angle meter
(DSA20, Krüss, Hamburg, Germany) at room temperature. The pore size of membranes was
detected by bubble point method using a pore size analyzer (3H-2000 PB, Beijing, China).

2.4. OSN Performance Test

The solvent flux and dye rejection experiments of TFC OSN membranes were carried
out using a simple device with a dead-end permeation cell (effective membrane area
of 2.8 cm3), as shown in Figure 2. The TFC OSN membrane was precompacted with
corresponding pure solvent at 7 bar and 25 ◦C for 1 h to achieve a steady permeation flux
before the filtration experiments. Dye concentration of feed solution was 20 ppm and the
physicochemical properties of the dyes used are summarized in Table 1. The concentrations
of various dye solutions in the feed and permeated sides were measured using a UV-vis
spectrometer (UV2700, Shimadzu, Kyoto, Japan). All the OSN tests were performed at
25 ◦C with a pressure of 6 bar. The solvent flux (J) and permeance (P) of the OSN membrane
can be calculated by Formulas (1) and (2):

J =
m

ρ × S × t
(1)

P =
J

∆p
(2)

where: J is the permeation flux of the solution (L m−2 h−1), m is the mass of the permeate
solution (g), ρ is the density of the solvent (g/L), S is the effective membrane area (m2), ∆p
is the test pressure (bar) and t is the test time (h). The dye rejection (R) of membranes was
calculated by the following Equation (3):

R = (1 −
Cp

Cf
)×100% (3)

where CP and Cf are dye concentration of the permeated and feed side, respectively. In all
experiments, at least three specimens for each data point were tested and the results are
reported as the average of the measured values with standard deviation as error bars.
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Table 1. The information of dyes used in this work.

Dye Type Charge Molecular Weight
(Da)

Molecular Size
(nm × nm)

Methyl orange - 327 1.13 × 0.42
Methyl violet - 394 1.44 × 1.45
Acid magenta - 588 1.1 × 1.2

Congo red - 697 2.56 × 0.73
Bright blue B - 826 2.06 × 1.79

3. Results and Discussion
3.1. Structure and Properties of PDA-CNT Interlayer on the PTFE Substrate

The polydopamine (PDA)-modified carbon nanotube (CNT) interlayer was deposited
on a porous PTFE substrate using the vacuum filtration of PDA-CNT dispersion. The
effect of PDA-CNT deposition on the surface morphology and properties of the PTFE
substrate was studied, since it would directly influence the formation of the polyamide (PA)
active layer via interfacial polymerization (IP), and thus affect the separation performance
of the TFC OSN membrane. Figure 3 shows the SEM and AFM images of the structure
and morphology of the PDA-CNT interlayer prepared with different filtration volumes
of PDA-CNT dispersion on PTFE substrates. Meanwhile, the surface roughness (Ra) and
average pore size of PTFE-CNT gradually decreased from 70 to 27.3 nm and 261.5 to
47.7 nm, respectively, with an increase in the CNT deposition amount, as shown in Table 2.
These results indicated that a smoother and denser CNT interlayer could be formed on
the PTFE substrate with an increased CNT deposition amount. In addition, compared to
original PTFE substrate, the PTFE-CNT membrane decreased the water contact angles from
100.9 to 43.1◦ (Table 2), indicating a more hydrophilic surface due to the presence of the
hydrophilic PDA-coated CNT layer, which is beneficial to the subsequent IP process to
form the PA active layer. These results forcefully demonstrate that the PDA-CNT interlayer
obviously changed the surface property and morphology of the porous PTFE substrate,
including the reduction of pore size, roughness and water contact angle of the substrate.
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Table 2. Structure and properties of the Pristine PTFE and the PTFE-CNT Membrane.

Samples
CNT

Dispersion
Volume (mL)

Surface
Roughness

(nm)

Average Pore
Size (nm)

Water Contact
Angle (◦)

PTFE 0 148.2 ± 36.1 261.5 100.9 ± 3.7
PTFE-CNT-1 1 69.9 ± 7.6 146.4 81.3 ± 4.9
PTFE-CNT-2 2 54.3 ± 5.6 69.9 63.7 ± 3.1
PTFE-CNT-3 3 38.8 ± 4.6 51.66 42.6 ± 2.2
PTFE-CNT-4 4 27.3 ± 3.4 47.7 43.1 ± 1.9

3.2. Effect of CNT Interlayer on the Formation of PA Active Layer

The PA active layer was prepared on the PTFE-CNT substrate with different CNT
deposition amounts (0~4 mL) via the IP reaction of MPD and TMC. The PTFE-CNT-PA
composite membranes were named TFC-PA (without CNT layer) and TFC-PA-1~4, referring
to the filtrated volume of CNT dispersion from 1 to 2, 3 and 4 mL. Figure 4 shows the
SEM and AFM images of structure and morphology of the TFC-PA membranes prepared
under different filtration volumes of CNT dispersion. It was obvious that at a low CNT
deposition amount (0 and 1 mL), the surface of the prepared TFC-PA membrane had
leaf-like structures with a high surface roughness. With an increase in the CNT deposition
amount, the leaf-like structure of the PA surface gradually changed into a typical “nodular”
feature, thus to form a more uniform and smoother surface (top line in Figure 4). This was
probably because the hydrophilic PDA-CNT interlayer could store diamine solution and
retard the IP reaction, which restrained the formation of big leaf-like structures on the PA
surface, thereby leading to the formation of a smoother PA surface with small nodular
structures. This is consistent with the changes of surface roughness of TFC PA membranes
from the AFM images (bottom line).
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Owing to the ultrathin CNT layer and rough PTFE surface, it was difficult to observe
and distinguish triple-layered TFC PA from the cross-sectional SEM images of TFC mem-
branes in Figure 4 (middle line). Therefore, the PA layer was further investigated using
XPS. Table 3 showed the elemental compositions and degree of cross-linking of PA layers
from TFC-PA membranes prepared with different CNT deposition amounts. It was found
that the cross-linking degree of the PA layer gradually increased (TFC-PA-1~3) and then
decreased (TFC-PA-4) with an increasing CNT dispersion amount. This was because the
presence of the CNT interlayer decreased the roughness of the membrane surface, causing
a more even distribution of the MPD and TMC monomers during IP, resulting in higher
degrees of cross-linkage (TFC-PA-1~3) [28]. Meanwhile, the packing density of the CNT in-
terlayer gradually increased with the increase of the CNT deposition amount, the produced
heat from the IP reaction between MPD and TMC was difficult to dissipate in the denser
CNT networks with smaller pore size, leading to instantaneously rising temperatures in the
interface, thus further intensifying the IP reaction [29]. However, it can be found that when
the CNT deposition amount increases from 3 to 4 mL, the cross-linking degree of the PA
layer decreased from 54 (TFC PA-3) to 29% (TFC PA-4). This was also probably because the
thicker and denser hydrophilic CNT layer can store more diamine solution, which suppress
the diamine monomer molecule toward the oil phase and retards the IP reaction in a short
time, resulting in the formation of a PA layer with a low cross-linking degree and surface
roughness [30]. The same results were shown in Figure 5. Figure 5 showed the O1s core-
level spectra of the synthesized TFC PA membranes. The O1s core-level spectrum of PA
can be curve-fitted into two peak components of carbonyl oxygen (O=C–N) with binding
energy at 531.0 eV and carboxylic oxygen (O=C–O) with binding energy at 532.5 eV. These
results also showed that the degree of the PA surface cross-linking gradually increased
and then decreased with an increase in the CNT deposition amount. It was concluded that
the TFC PA-3 membrane exhibited the highest cross-linking degree, which is beneficial to
improve the selectivity of the TFC OSN membrane.

Table 3. Elemental compositions of PA layers from TFC-PA membranes (the degree of cross-linking of PA
active layer was calculated from the ratio of network to linear cross-linked portion of the polymer).

Samples CNT Amount
(mL)

C1s
(%)

O1s
(%)

N1s
(%)

O/N Ratio[
O
N = 3X+4Y

3X+2Y

] Degree of
Network

Cross-Linking (%)[
DNC= X

X+Y×100%
]

Fully cross-linked (Y = 0) - 75.00 12.50 12.50 1.00 100%
Fully linear

(X = 0) - 71.40 19.10 9.50 2.00 0%

TFC PA-1 1.0 70.07 16.23 10.38 1.56 34%
TFC PA-2 2.0 71.58 15.22 10.18 1.50 40%
TFC PA-3 3.0 70.99 13.60 9.98 1.36 54%
TFC PA-4 4.0 70.26 16.37 10.09 1.62 29%

3.3. OSN Performance of the Fabricated TFC-PA Membranes

The OSN performance of the TFC PA OSN membranes for methyl orange/methanol
(MO/MeOH) solution was evaluated using a dead-end membrane cell, and the results are
shown in Figure 6. The TFC PA-0 (PTFE-PA) membrane showed a high MeOH flux and a
quite low MO rejection of around 12.0%. This might be because the rough surface and large
pore size of the PTFE substrate with a low surface energy was adverse to fabricate the PA
layer via the IP process, resulting in the defect formation of the PA top layer on its surface,
as mentioned previously. Nevertheless, compared to the TFC PA-0 membrane, TFC PA-1
with a CNT interlayer showed a reduced MeOH flux and a significant rise in MO rejection,
which increased from 12.0 to 77.4%. This indicated that the presence of a CNT interlayer on
PTFE substrates could significantly improve the PA formation via the IP method. Moreover,
MeOH flux was gradually reduced while the MO rejection further increased with increases
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in the CNT deposition amount (TFC PA-1~3). This was because the cross-linking degree
of the PA top layers gradually increased with an increase in the CNT deposition amount
(Table 3 and Figure 5), leading to the formation of a denser PA layer, thereby improving the
MO rejection. Compared to the TFC PA-3 membrane, however, TFC PA-4 with a higher
CNT deposition amount presented a relatively low MO rejection. This was caused by a
reduced cross-linking degree of the PA top layer of the TFC PA-4 membrane. As a result,
the TFC PA-3 membrane exhibited a moderate permeate flux of 7.8 L m−2 h−1 bar−1 and
the highest MO rejection of 91.5%.
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Figure 7 exhibited the correlation between organic solvent properties (including viscos-
ity, molar diameter and solubility parameter) and permeance of the TFC PA-3 membrane.
It presented a linear relationship between the solvent property and permeance (Figure 7b).
Moreover, acetonitrile and methanol exhibited relatively high permeance due to their high
solubility parameter (polar component) and low viscosity and molecular diameter. In
contrast, owing to relatively high viscosity and molar diameter, as well as low solubil-
ity parameters, propanol and ethanol showed relatively low permeance. These results
indicated that the solubility parameter and viscosity of the solvent apparently influence per-
meance of the TFC PA OSN membranes. As a result, for those organic solvents with similar
molecular size, a solvent with low viscosity and high affinity for the polar PA membrane
exhibits a relatively high permeation flux. Moreover, this TFC PA OSN membrane with the
triple-layered structure also showed an excellent stability in various organic solvents.
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To further explore the OSN performance of the TFC PA membrane, a series of
dyes/MeOH solutions with different molecular weights were examined as feed solution
for OSN tests and the results are presented in Figure 8. The TFC PA-3 membrane showed
high dye rejections for Bright blue B (97.7%), Congo red (94.8%), Acid Fuchsin (93.5%),
Methyl violet (92.9%) and Methyl orange (91.5%). Although the dye rejection slightly
decreased with a reduction of the molecular weight of dyes, this TFC PA exhibited a stable
methanol permeate flux of approximately 7.9 L m−2 h−1 bar−1. Moreover, according to the
rejection values of these dyes, the molecular weight cut-off of the TFC PA membrane is
about 320 Da. These results suggested that the presence of this CNT interlayer facilitates the
high-quality fabrication of the dense and thin PA top layer on macroporous PTFE substrates
via IP method.
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Figure 9 shows the long-term time course for OSN performance of the TFC PA-3
membrane for filtrating 20 ppm Methyl orange/MeOH solution. This triple-layered TFC
PA membrane exhibited a high Methyl orange rejection (~92%) and constant methanol flux
of approximately 8.0 L m−2 h−1 bar−1 after 24h continuous OSN test. This result showed
that the triple-layered TFC PA membrane had an excellent long-term stability and OSN
performance compared to the OSN performance of the other OSN membranes reported
previously (Table 4).
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Table 4. Comparison of the performance of our TFC PA OSN membrane with other TFC PA OSN
membranes reported in the literature.

Membrane Substrate Solvent/Dye (MW) Permeance
(LMH/Bar)

Rejection
(%) Ref.

PA

Ceramic
substrate

Methanol/Methyl
orange (327) 26.3 30.6 [31]

Polypropylene Methanol/Brilliant
blue R (826) 1.5 88 [32]

Matrimid®

5218
Methanol/Tetracycline

(444) 5.1 95 [33]

XP84 Methanol/Styrene
oligomers (400) 1.5 98 [34]

Matrimid®

polyimide dual
layer

Methanol/Ramazol
brilliant blue (626.5) 0.9 99.3 [35]

PSF-SPESS Methanol/Bromothymol
blue (624) 2.4 92 [36]

PA/MOFs

Crosslinked
Matrimid®

5218

Methanol/Tetracycline
(444) 20 99 [37]

P84 Methanol/Styrene
oligomers (236) 4.2 96 [38]

PA PTFE Methanol/ Methyl
orange (327) 7.9 92 This

work



Membranes 2022, 12, 817 11 of 12

4. Conclusions

A triple-layered TFC OSN membrane that was comprised of a PA top layer, a PDA-
CNT interlayer and a macroporous PTFE substrate was successfully fabricated via the IP
method. The deposition quality and cross-linking degree of the PA layer can be improved
by adjusting the CNT deposition amount, thus to achieve a good OSN performance. This
new TFC OSN membrane showed a high dye rejection (the rejection of Bright blue B > 97%)
and a moderate and stable methanol permeated flux of approximately 8.0 L m−2 h−1 bar−1.
Moreover, this TFC OSN membrane also exhibited an excellent solvent resistance to various
organic solvents and long-term stability during a continuous OSN process, suggesting the
macroporous PTFE substrate can be an excellent support instead of the traditional chemical-
crosslinking-based polymer supports for the fabrication of TFC PA OSN membranes.
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