Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = polystyrene-based nanocomposites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10080 KiB  
Article
SCC Susceptibility of Polystyrene/TiO2 Nanocomposite-Coated Thin-Sheet Aluminum Alloy 2024—T3 in 3.5% NaCl
by Cheng-fu Chen, Brian Baart, John Halford and Junqing Zhang
Eng 2025, 6(4), 83; https://doi.org/10.3390/eng6040083 - 21 Apr 2025
Viewed by 482
Abstract
The effectiveness of polystyrene (PS)/TiO2 nanocomposite coatings in reducing stress–corrosion cracking (SCC) susceptibility of aluminum alloy 2024-T3 (AA2024-T3) was evaluated using an accelerated stress–corrosion test. Polystyrene (PS)-based coatings incorporating TiO2 nanoparticles with three different aspect ratios (ARs) were compared to a [...] Read more.
The effectiveness of polystyrene (PS)/TiO2 nanocomposite coatings in reducing stress–corrosion cracking (SCC) susceptibility of aluminum alloy 2024-T3 (AA2024-T3) was evaluated using an accelerated stress–corrosion test. Polystyrene (PS)-based coatings incorporating TiO2 nanoparticles with three different aspect ratios (ARs) were compared to a bare polystyrene coating. A compact tension (CT) specimen (5 mm thick) was coated for testing in a synergistic stress–corrosion environment. A slow constant displacement rate of 1.25 nm/s was applied in the load-line direction of the specimen to gradually open the crack mouth, while the crack tip was periodically dosed with a 3.5 wt.% NaCl solution. Load-displacement data were recorded and analyzed to calculate the J-integral, according to Standard ASTM E1820, for each coated specimen tested under laboratory-controlled SCC conditions. The fracture toughness, stress intensity, and six other SCC susceptibility indices were further developed to compare the performance of each coating in enhancing SCC resistance. The results revealed a strong dependence of SCC resistance on the nanoparticle aspect ratio, with the nanocomposite coating featuring an AR of 1 performing the best. The SCC behavior was reflected in the fractography of the fractured halves of a specimen, where cleavage was observed during the very slow, stable cracking stage, and dimples formed as a result of fast, unstable cracking toward the end of testing. These findings highlight the potential of tailored nanocomposite coatings to enhance the durability of aerospace-grade aluminum alloys. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

19 pages, 6048 KiB  
Review
Research Progress on Helmet Liner Materials and Structural Applications
by Xingyu Zhang, Bin Yang, Jinguo Wu, Xin Li and Ronghua Zhou
Materials 2024, 17(11), 2649; https://doi.org/10.3390/ma17112649 - 30 May 2024
Cited by 7 | Viewed by 3100
Abstract
As an important part of head protection equipment, research on the material and structural application of helmet liners has always been one of the hotspots in the field of helmets. This paper first discusses common helmet liner materials, including traditional polystyrene, polyethylene, polypropylene, [...] Read more.
As an important part of head protection equipment, research on the material and structural application of helmet liners has always been one of the hotspots in the field of helmets. This paper first discusses common helmet liner materials, including traditional polystyrene, polyethylene, polypropylene, etc., as well as newly emerging anisotropic materials, polymer nanocomposites, etc. Secondly, the design concept of the helmet liner structure is discussed, including the use of a multi-layer structure, the addition of geometric irregular bubbles to enhance the energy absorption effect, and the introduction of new manufacturing processes, such as additive manufacturing technology, to realize the preparation of complex structures. Then, the application of biomimetic structures to helmet liner design is analyzed, such as the design of helmet liner structures with more energy absorption properties based on biological tissue structures. On this basis, we propose extending the concept of bionic structural design to the fusion of plant stalks and animal skeletal structures, and combining additive manufacturing technology to significantly reduce energy loss during elastic yield energy absorption, thus developing a reusable helmet that provides a research direction for future helmet liner materials and structural applications. Full article
(This article belongs to the Special Issue Advances in Materials Science for Engineering Applications)
Show Figures

Figure 1

14 pages, 3837 KiB  
Article
Investigating the Electrical and Mechanical Properties of Polystyrene (PS)/Untreated SWCNT Nanocomposite Films
by Pooyan Parnian and Alberto D’Amore
J. Compos. Sci. 2024, 8(2), 49; https://doi.org/10.3390/jcs8020049 - 29 Jan 2024
Cited by 3 | Viewed by 2230
Abstract
This paper presents a study of the electrical and mechanical properties of polystyrene (PS)/carbon nanotube (CNT) composites prepared using the doctor blade technique. The nanocomposite films of PS/CNT were prepared by casting a composite solution of PS/CNT in tetrahydrofuran (THF) on a glass [...] Read more.
This paper presents a study of the electrical and mechanical properties of polystyrene (PS)/carbon nanotube (CNT) composites prepared using the doctor blade technique. The nanocomposite films of PS/CNT were prepared by casting a composite solution of PS/CNT in tetrahydrofuran (THF) on a glass substrate using a doctor blade and drying in an oven. The nanocomposite films were then characterized using a tensile test and the four-point probe method to evaluate their mechanical properties and electrical conductivity. The experimental results were used to analyze the unpredicted behavior of the nanocomposite films. The experimental results showed that the electrical conductivity of the nanocomposite films became almost insensitive or unmeasurable with increasing CNT content for very dilute PS–THF solutions. In contrast, at higher PS concentrations, film conductivity increased to a given CNT threshold and then decreased. Based on PS–THF viscosity–concentration data, a discussion is elaborated that partially justifies the experimental results. Full article
(This article belongs to the Special Issue Characterization of Polymer Nanocomposites)
Show Figures

Figure 1

14 pages, 4005 KiB  
Article
Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensor for Human Motion Monitoring
by Jie Cao, Zhilin Zhang, Kaiyun Li, Cha Ma, Weiqiang Zhou, Tao Lin, Jingkun Xu and Ximei Liu
Nanomaterials 2023, 13(17), 2465; https://doi.org/10.3390/nano13172465 - 31 Aug 2023
Cited by 19 | Viewed by 4089
Abstract
Strain sensors based on conducting polymer hydrogels are considered highly promising candidates for wearable electronic devices. However, existing conducting polymer hydrogels are susceptible to aging, damage, and failure, which can greatly deteriorate the sensing performance of strain sensors based on these substances and [...] Read more.
Strain sensors based on conducting polymer hydrogels are considered highly promising candidates for wearable electronic devices. However, existing conducting polymer hydrogels are susceptible to aging, damage, and failure, which can greatly deteriorate the sensing performance of strain sensors based on these substances and the accuracy of data collection under large deformation. Developing conductive polymer hydrogels with concurrent high sensing performance and self-healing capability is a critical yet challenging task to improve the stability and lifetime of strain sensors. Herein, we design a self-healable conducting polymer hydrogel by compositing poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanofibers and poly(vinyl alcohol) (PVA) via both physical and chemical crosslinking. This PEDOT:PSS-PVA nanocomposite hydrogel strain sensor displays an excellent strain monitoring range (>200%), low hysteresis (<1.6%), a high gauge factor (GF = 3.18), and outstanding self-healing efficiency (>83.5%). Electronic skins based on such hydrogel strain sensors can perform the accurate monitoring of various physiological signals, including swallowing, finger bending, and knee bending. This work presents a novel conducting polymer hydrogel strain sensor demonstrating both high sensing performance and self-healability, which can satisfy broad application scenarios, such as wearable electronics, health monitoring, etc. Full article
(This article belongs to the Special Issue Advances in Nanostructured Polymers (2nd Edition))
Show Figures

Figure 1

14 pages, 5194 KiB  
Article
Preparation of Polymer-Based Nano-Assembled Particles with Fe3O4 in the Core
by Jian Wang, Wenjie Zhang, Yating Zhang and Haolin Li
Polymers 2023, 15(11), 2498; https://doi.org/10.3390/polym15112498 - 29 May 2023
Cited by 2 | Viewed by 2397
Abstract
Organic–inorganic nanocomposite particles, possessing defined morphologies, represent the next frontier in advanced materials due to their superior collective performance. In this pursuit of efficient preparation of composite nanoparticles, a series of diblock polymers polystyrene-block-poly(tert-butyl acrylate) (PS-b-Pt [...] Read more.
Organic–inorganic nanocomposite particles, possessing defined morphologies, represent the next frontier in advanced materials due to their superior collective performance. In this pursuit of efficient preparation of composite nanoparticles, a series of diblock polymers polystyrene-block-poly(tert-butyl acrylate) (PS-b-PtBA) were initially synthesized using the Living Anionic Polymerization-Induced Self-Assembly (LAP PISA) technique. Subsequently, the tert-butyl group on the tert-butyl acrylate (tBA) monomer unit in the diblock copolymer, yielded from the LAP PISA process, was subjected to hydrolysis using trifluoroacetic acid (CF3COOH), transforming it into carboxyl groups. This resulted in the formation of polystyrene-block-poly(acrylic acid) (PS-b-PAA) nano-self-assembled particles of various morphologies. The pre-hydrolysis diblock copolymer PS-b-PtBA produced nano-self-assembled particles of irregular shapes, whereas post-hydrolysis regular spherical and worm-like nano-self-assembled particles were generated. Utilizing PS-b-PAA nano-self-assembled particles that containing carboxyl groups as polymer templates, Fe3O4 was integrated into the core region of the nano-self-assembled particles. This was achieved based on the complexation between the carboxyl groups on the PAA segments and the metal precursors, facilitating the successful synthesis of organic–inorganic composite nanoparticles with Fe3O4 as the core and PS as the shell. These magnetic nanoparticles hold potential applications as functional fillers in the plastic and rubber sectors. Full article
Show Figures

Figure 1

11 pages, 3490 KiB  
Article
Poly(styrene sulfonic acid)-Grafted Carbon Black Synthesized by Surface-Initiated Atom Transfer Radical Polymerization
by Artavazd Kirakosyan, Donghyun Lee, Yoonseong Choi, Namgee Jung and Jihoon Choi
Molecules 2023, 28(10), 4168; https://doi.org/10.3390/molecules28104168 - 18 May 2023
Cited by 13 | Viewed by 3146
Abstract
Owing to their excellent electrical conductivity and robust mechanical properties, carbon-based nanocomposites are being used in a wide range of applications and devices, such as electromagnetic wave interference shielding, electronic devices, and fuel cells. While several approaches have been developed for synthesizing carbon [...] Read more.
Owing to their excellent electrical conductivity and robust mechanical properties, carbon-based nanocomposites are being used in a wide range of applications and devices, such as electromagnetic wave interference shielding, electronic devices, and fuel cells. While several approaches have been developed for synthesizing carbon nanotubes and carbon-black-based polymer nanocomposites, most studies have focused on the simple blending of the carbon material with a polymer matrix. However, this results in uncontrolled interactions between the carbon filler and the polymer chains, leading to the agglomeration of the carbon filler. Herein, we report a new strategy for synthesizing sulfonated polystyrene (PSS)-grafted carbon black nanoparticles (NPs) via surface-initiated atom-transfer radical polymerization. Treatments with O2 plasma and H2O2 result in the effective attachment of the appropriate initiator to the carbon black NPs, thus allowing for the controlled formation of the PSS brushes. The high polymeric processability and desirable mechanical properties of the PSS-grafted carbon black NPs enable them suitable for use in nonfluorinated-hydrocarbon-based polymer electrolyte membranes for fuel cells, which must exhibit high proton conductivity without interrupting the network of channels consisting of ionic clusters (i.e., sulfonic acid moieties). Full article
(This article belongs to the Special Issue Advanced Functional Polymer Nanocomposites)
Show Figures

Figure 1

13 pages, 3394 KiB  
Article
A Direct Immunoassay Based on Surface-Enhanced Spectroscopy Using AuNP/PS-b-P2VP Nanocomposites
by Moyra F. Vieira, Ana Lívia de Carvalho Bovolato, Bruno G. da Fonseca, Celly M. S. Izumi and Alexandre G. Brolo
Sensors 2023, 23(10), 4810; https://doi.org/10.3390/s23104810 - 16 May 2023
Cited by 7 | Viewed by 2181
Abstract
A biosensor was developed for directly detecting human immunoglobulin G (IgG) and adenosine triphosphate (ATP) based on stable and reproducible gold nanoparticles/polystyrene-b-poly(2-vinylpyridine) (AuNP/PS-b-P2VP) nanocomposites. The substrates were functionalized with carboxylic acid groups for the covalent binding of anti-IgG and anti-ATP and the detection [...] Read more.
A biosensor was developed for directly detecting human immunoglobulin G (IgG) and adenosine triphosphate (ATP) based on stable and reproducible gold nanoparticles/polystyrene-b-poly(2-vinylpyridine) (AuNP/PS-b-P2VP) nanocomposites. The substrates were functionalized with carboxylic acid groups for the covalent binding of anti-IgG and anti-ATP and the detection of IgG and ATP (1 to 150 μg/mL). SEM images of the nanocomposite show 17 ± 2 nm AuNP clusters adsorbed over a continuous porous PS-b-P2VP thin film. UV–VIS and SERS were used to characterize each step of the substrate functionalization and the specific interaction between anti-IgG and the targeted IgG analyte. The UV–VIS results show a redshift of the LSPR band as the AuNP surface was functionalized and SERS measurements showed consistent changes in the spectral features. Principal component analysis (PCA) was used to discriminate between samples before and after the affinity tests. Moreover, the designed biosensor proved to be sensitive to different concentrations of IgG with a limit-of-detection (LOD) down to 1 μg/mL. Moreover, the selectivity to IgG was confirmed using standard solutions of IgM as a control. Finally, ATP direct immunoassay (LOD = 1 μg/mL) has demonstrated that this nanocomposite platform can be used to detect different types of biomolecules after proper functionalization. Full article
(This article belongs to the Special Issue Plasmonic Biosensors)
Show Figures

Figure 1

22 pages, 6587 KiB  
Article
Comparative Study of Protection Efficiency of C-Steel Using Polystyrene Clay Nanocomposite Coating Prepared from Commercial Indian Clay and Local Khulays Clay
by Nashwa A. Howyan, Layla A. Al Juhaiman, Waffa K. Mekhamer and Hissah H. Altilasi
Metals 2023, 13(5), 879; https://doi.org/10.3390/met13050879 - 2 May 2023
Cited by 4 | Viewed by 2261
Abstract
This work aimed to compare the coating protection efficiency of C-steel using two kinds of clay: a local Khulays clay (RCKh) from Saudi Arabia and a commercial clay (CCIn) from India. Clay-based polymer nanocomposites have a unique layered structure, [...] Read more.
This work aimed to compare the coating protection efficiency of C-steel using two kinds of clay: a local Khulays clay (RCKh) from Saudi Arabia and a commercial clay (CCIn) from India. Clay-based polymer nanocomposites have a unique layered structure, rich intercalation chemistry, and availability at low cost. They are promising reinforcements for polymers. The raw clay for both clay types was washed before being treated with NaCl to produce sodium clay (NaC). The cationic surfactant cetylpyridinium chloride (CPC) was then used to convert the NaC into the organoclay (OC) form. Polystyrene/organoclay nanocomposites (PCNs) were prepared by combining different concentrations of organoclay (1%, 3%, and 5% OC) in toluene solvent and polystyrene (PS) as the matrix. To ensure the success of the PCN modification process, the organoclay and PCN films were characterized using a variety of techniques, including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The shifts in the FT-IR spectra after the CPC treatment of NaC confirmed the presence of CPC in the organoclay samples and the presence of OC in the PCNs. The exfoliated structure was obtained from the XRD spectrum for low clay loading (1–3% PCN), while the intercalated structure was the dominant form for the 5% PCN. The XRD results were confirmed by TEM images. To calculate the coating efficiency of the PCNs, various electrochemical methods were used. The electrochemical measurements included electrochemical impedance spectroscopy (EIS), the electrochemical frequency modulation (EFM) method, and Tafel plots. The PCN with a concentration of 1 wt.% OC has a fully exfoliated structure and higher coating efficiency than the PCNs with partially exfoliated structures (3 wt.% and 5 wt.%). It was found from the Tafel plots that commercial Indian clay has better corrosion protection (81.4%) than local Khulays clay (60.2%). A comparison with other studies using current density values shows that our results are superior to those of many studies. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials)
Show Figures

Figure 1

16 pages, 4341 KiB  
Article
Pedot:PSS/Graphene Oxide (GO) Ternary Nanocomposites for Electrochemical Applications
by Giuseppe Greco, Antonella Giuri, Sonia Bagheri, Miriam Seiti, Olivier Degryse, Aurora Rizzo, Claudio Mele, Eleonora Ferraris and Carola Esposito Corcione
Molecules 2023, 28(7), 2963; https://doi.org/10.3390/molecules28072963 - 26 Mar 2023
Cited by 15 | Viewed by 4593
Abstract
Among conductive polymers, poly(3,4 ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has been widely used as an electrode material for supercapacitors, solar cells, sensors, etc. Although PEDOT:PSS-based thin films have acceptable properties such as good capacitive and electrical behaviour and biocompatibility, there are still several challenges [...] Read more.
Among conductive polymers, poly(3,4 ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has been widely used as an electrode material for supercapacitors, solar cells, sensors, etc. Although PEDOT:PSS-based thin films have acceptable properties such as good capacitive and electrical behaviour and biocompatibility, there are still several challenges to be overcome in their use as an electrode material for supercapacitors. For this reason, the aim of this work is to fabricate and characterise ternary nanocomposites based on PEDOT:PSS and graphene oxide (GO), blended with green additives (glucose (G) or ascorbic acid (AA)), which have the benefits of being environmentally friendly, economical, and easy to use. The GO reduction process was first accurately investigated and demonstrated by UV-Vis and XRD measurements. Three-component inks have been developed, and their morphological, rheological, and surface tension properties were evaluated, showing their printability by means of Aerosol Jet® Printing (AJ®P), an innovative direct writing technique belonging to the Additive Manufacturing (AM) for printed electronics applications. Thin films of the ternary nanocomposites were produced by drop casting and spin coating techniques, and their capacitive behaviour and chemical structures were evaluated through Cyclic Voltammetry (CV) tests and FT-IR analyses. CV tests show an increment in the specific capacitance of AAGO-PEDOT up to 31.4 F/g and excellent overtime stability compared with pristine PEDOT:PSS, suggesting that this ink can be used to fabricate supercapacitors in printed (bio)-electronics. The inks were finally printed by AJ®P as thin films (10 layers, 8 × 8 mm) and chemically analysed by FT-IR, demonstrating that all components of the formulation were successfully aerosolised and deposited on the substrate. Full article
(This article belongs to the Special Issue Graphene-Based Nanocomposites for Advanced Applications)
Show Figures

Graphical abstract

13 pages, 23083 KiB  
Article
Mechanical Performance of Polystyrene-Based Nanocomposites Filled with Carbon Allotropes
by Olga A. Moskalyuk, Andrey V. Belashov, Anna A. Zhikhoreva, Yaroslav M. Beltukov and Irina V. Semenova
Appl. Sci. 2023, 13(6), 4022; https://doi.org/10.3390/app13064022 - 22 Mar 2023
Cited by 7 | Viewed by 2053
Abstract
Numerous studies have been performed on different aspects of the mechanical behavior of polymer nanocomposites; however, the results obtained still lack a comprehensive comparative analysis of the mechanical properties of composites containing nanofillers of different shapes and concentrations and subjected to different static [...] Read more.
Numerous studies have been performed on different aspects of the mechanical behavior of polymer nanocomposites; however, the results obtained still lack a comprehensive comparative analysis of the mechanical properties of composites containing nanofillers of different shapes and concentrations and subjected to different static and dynamic loads. Carbon nanofillers were shown to provide the most significant improvement in the elastic properties of polymer composites. In this paper, we present a comparative analysis of the mechanical properties of polystyrene-based nanocomposites filled with carbon allotropes of different shapes: spherical fullerene particles, filamentary multi-walled nanotubes, and graphene platelets, fabricated by the same technology. The influence of shape and concentration of dispersed carbon fillers on mechanical and viscoelastic properties of composites in different stress–strain states was evaluated based on the results of tensile and three-point bending tests, and ultrasonic and dynamic mechanical analysis. Comparison of the static and dynamic elastic properties of nanocomposites allowed us to analyze their variations with frequency. At low concentrations of 0.1 wt% and 0.5 wt% all nanofillers did not provide significant improvement of elastic characteristics of composites. More efficient reinforcement was observed at the concentration of 5 wt%. Among the filler types, some increase in composite rigidity was observed with the addition of filamentary particles. The introduction of the layered filler provided the most pronounced rise in the composite rigidity. The weak frequency dependence of the mechanical loss tangent, which is characteristic of amorphous thermoplastics, was demonstrated for all the samples. Full article
Show Figures

Figure 1

16 pages, 5098 KiB  
Article
Efficient Removal of Ciprofloxacin from Contaminated Water via Polystyrene Anion Exchange Resin with Nanoconfined Zero-Valent Iron
by Yaqin Song, Ying Zeng, Ting Jiang, Jianqiu Chen and Qiong Du
Nanomaterials 2023, 13(1), 116; https://doi.org/10.3390/nano13010116 - 26 Dec 2022
Cited by 8 | Viewed by 2580
Abstract
Ciprofloxacin (CIP), an important emerging contaminant, has been frequently detected in water, and its efficient removal has become an issue of great concern. In this study, a nanocomposite material nZVI/PA was synthesized by impregnating nanoscale zero-valent iron (nZVI) inside a millimeter-sized porous host [...] Read more.
Ciprofloxacin (CIP), an important emerging contaminant, has been frequently detected in water, and its efficient removal has become an issue of great concern. In this study, a nanocomposite material nZVI/PA was synthesized by impregnating nanoscale zero-valent iron (nZVI) inside a millimeter-sized porous host (polystyrene-based anion exchange resin (PA)) for CIP removal. The nZVI/PA composite was characterized by field emission scanning electron microscopy coupled with energy-dispersive X-ray, transmission electron microscopy, X-ray diffraction, as well as X-ray photoelectron spectroscopy, and it was confirmed that nZVI was uniformly dispersed in PA with a small particle size. Furthermore, several key factors were investigated including initial solution pH, initial CIP concentration, co-existing ions, organic ligands, and dissolved oxygen. The experimental results indicated that the nZVI/PA composites exhibited a high removal efficiency for CIP under the conditions of initial pH 5.0, and initial CIP concentration 50 mg L−1 at 25 °C, with the maximum removal rate of CIP reaching 98.5%. Moreover, the nZVI/PA composites exhibited high efficiency even after five cycles. Furthermore, quenching tests and electron spin resonance (ESR) confirmed that CIP degradation was attributed to hydroxyl (·OH) and superoxide radicals (O2). Finally, the main degradation products of CIP were analyzed, and degradation pathways including the hydroxylation of the quinolone ring, the cleavage of the piperazine ring, and defluorination were proposed. These results are valuable for evaluating the practical application of nZVI/PA composites for the removal of CIP and other fluoroquinolone antibiotics. Full article
(This article belongs to the Special Issue Environmental Restoration Materials and Technologies)
Show Figures

Figure 1

22 pages, 5300 KiB  
Review
State-of-the-Art of Polymer/Fullerene C60 Nanocomposite Membranes for Water Treatment: Conceptions, Structural Diversity and Topographies
by Ayesha Kausar, Ishaq Ahmad, Malik Maaza and M. H. Eisa
Membranes 2023, 13(1), 27; https://doi.org/10.3390/membranes13010027 - 25 Dec 2022
Cited by 16 | Viewed by 6376
Abstract
To secure existing water resources is one of the imposing challenges to attain sustainability and ecofriendly world. Subsequently, several advanced technologies have been developed for water treatment. The most successful methodology considered so far is the development of water filtration membranes for desalination, [...] Read more.
To secure existing water resources is one of the imposing challenges to attain sustainability and ecofriendly world. Subsequently, several advanced technologies have been developed for water treatment. The most successful methodology considered so far is the development of water filtration membranes for desalination, ion permeation, and microbes handling. Various types of membranes have been industrialized including nanofiltration, microfiltration, reverse osmosis, and ultrafiltration membranes. Among polymeric nanocomposites, nanocarbon (fullerene, graphene, and carbon nanotubes)-reinforced nanomaterials have gained research attention owing to notable properties/applications. Here, fullerene has gained important stance amid carbonaceous nanofillers due to zero dimensionality, high surface areas, and exceptional physical properties such as optical, electrical, thermal, mechanical, and other characteristics. Accordingly, a very important application of polymer/fullerene C60 nanocomposites has been observed in the membrane sector. This review is basically focused on talented applications of polymer/fullerene nanocomposite membranes in water treatment. The polymer/fullerene nanostructures bring about numerous revolutions in the field of high-performance membranes because of better permeation, water flux, selectivity, and separation performance. The purpose of this pioneering review is to highlight and summarize current advances in the field of water purification/treatment using polymer and fullerene-based nanocomposite membranes. Particular emphasis is placed on the development of fullerene embedded into a variety of polymer membranes (Nafion, polysulfone, polyamide, polystyrene, etc.) and effects on the enhanced properties and performance of the resulting water treatment membranes. Polymer/fullerene nanocomposite membranes have been developed using solution casting, phase inversion, electrospinning, solid phase synthesis, and other facile methods. The structural diversity of polymer/fullerene nanocomposites facilitates membrane separation processes, especially for valuable or toxic metal ions, salts, and microorganisms. Current challenges and opportunities for future research have also been discussed. Future research on these innovative membrane materials may overwhelm design and performance-related challenging factors. Full article
(This article belongs to the Special Issue Mixed-Matrix Membranes and Polymeric Membranes 2.0)
Show Figures

Graphical abstract

18 pages, 9106 KiB  
Article
Cationic Polystyrene Resin Bound Silver Nanocomposites Assisted Fourier Transform Infrared Spectroscopy for Enhanced Catalytic Reduction of 4-Nitrophenol in Aqueous Medium
by Anushree Saha, Ramsingh Kurrey, Santosh Kumar Verma and Manas Kanti Deb
Chemistry 2022, 4(4), 1757-1774; https://doi.org/10.3390/chemistry4040114 - 16 Dec 2022
Cited by 3 | Viewed by 2810
Abstract
The present work reported a novel strategy to construct supported cationic-polystyrene-resin-bound silver nanocomposites for enhanced catalytic reduction of 4-nitrophenol in an aqueous medium. The Fourier transform infrared spectroscopy (FTIR) was used as a model instrument for the study of catalytic reduction of 4-nitrophenol [...] Read more.
The present work reported a novel strategy to construct supported cationic-polystyrene-resin-bound silver nanocomposites for enhanced catalytic reduction of 4-nitrophenol in an aqueous medium. The Fourier transform infrared spectroscopy (FTIR) was used as a model instrument for the study of catalytic reduction of 4-nitrophenol using cationic-polystyrene-resin-bound silver nanocomposite materials. The mechanism is based on the reduction of 4-nitrophenol to 4-aminophenol due to the electron transfer process that occurred between donor borohydride (BH4) and acceptor 4-nitrophenol. The polystyrene resin provides support and surface area to increase the catalytic activity of silver nanoparticles. The diffused reflectance-Fourier transform infrared spectroscopy revealed the binding of silver particles onto the surface of cationic polystyrene resin beads. Furthermore, the catalyst was easily separated by the filtration and drying process and was able to reuse. A quantitative analysis of this work has also been performed. The linearity range, the limit of detection, and the limit of quantification obtained for the present method were 0.1 × 10−4 to 1.0 M, 0.6 M, and 2.1 M, respectively. Moreover, a good catalytic efficiency was found to be 96.8%. The advantages of the current method are its simplicity, sensitivity, rapidity, low cost, ease of preparation, and excellent catalytic efficiency to reduce 4-nitrophenol from an aqueous solution. Full article
(This article belongs to the Special Issue Sustainable Catalysis: Synthesis and Advanced Applications)
Show Figures

Figure 1

17 pages, 3542 KiB  
Article
Graphene Oxide-Magnetic Nanoparticles Loaded Polystyrene-Polydopamine Electrospun Nanofibers Based Nanocomposites for Immunosensing Application of C-Reactive Protein
by Simge Ketmen, Simge Er Zeybekler, Sultan Sacide Gelen and Dilek Odaci
Biosensors 2022, 12(12), 1175; https://doi.org/10.3390/bios12121175 - 16 Dec 2022
Cited by 18 | Viewed by 3694
Abstract
The large surface area/volume ratio and controllable surface conformation of electrospun nanofibers (ENFs) make them highly attractive in applications where a large surface area is desired, such as sensors and affinity membranes. In this study, nanocomposite-based ENFs were produced and immobilization of Anti-CRP [...] Read more.
The large surface area/volume ratio and controllable surface conformation of electrospun nanofibers (ENFs) make them highly attractive in applications where a large surface area is desired, such as sensors and affinity membranes. In this study, nanocomposite-based ENFs were produced and immobilization of Anti-CRP was carried out for the non-invasive detection of C-reactive protein (CRP). Initially, the synthesis of graphene oxide (GO) was carried out and it was modified with magnetic nanoparticles (MNP, Fe3O4) and polydopamine (PDA). Catechol-containing and quinone-containing functional groups were created on the nanocomposite surface for the immobilization of Anti-CRP. Polystyrene (PS) solution was mixed with rGO-MNP-PDA nanocomposite and PS/rGO-MNP-PDA ENFs were produced with bead-free, smooth, and uniform. The surface of the screen-printed carbon electrode (SPCE) was covered with PS/rGO-MNP-PDA ENFs by using the electrospinning technique under the determined optimum conditions. Next, Anti-CRP immobilization was carried out and the biofunctional surface was created on the PS/rGO-MNP-PDA ENFs coated SPCE. Moreover, PS/rGO-PDA/Anti-CRP and PS/MNP-PDA/Anti-CRP immunosensors were also prepared and the effect of each component in the nanocomposite-based electrospun nanofiber (MNP, rGO) on the sensor response was investigated. The analytic performance of the developed PS/rGO-MNP-PDA/Anti-CRP, PS/rGO-PDA/Anti-CRP, and PS/MNP-PDA/Anti-CRP immunosensors were examined by performing electrochemical measurements in the presence of CRP. The linear detection range of PS/rGO-MNP-PDA/Anti-CRP immunosensor was found to be from 0.5 to 60 ng/mL and the limit of detection (LOD) was calculated as 0.33 ng/mL for CRP. The PS/rGO-MNP-PDA/Anti-CRP immunosensor also exhibited good repeatability with a low coefficient of variation. Full article
Show Figures

Figure 1

11 pages, 6816 KiB  
Article
Linear and Nonlinear Elastic Properties of Polystyrene-Based Nanocomposites with Allotropic Carbon Fillers and Binary Mixtures
by Andrey V. Belashov, Anna A. Zhikhoreva, Olga A. Moskalyuk, Yaroslav M. Beltukov and Irina V. Semenova
Polymers 2022, 14(24), 5462; https://doi.org/10.3390/polym14245462 - 13 Dec 2022
Cited by 3 | Viewed by 1910
Abstract
We report measurements of linear and nonlinear elastic properties of polystyrene-based nanocomposites with six types of nanofillers, including single and binary mixtures of allotropic carbon nanoparticles. Composite samples were fabricated by the same technology and contained the same filler concentration (5% wt.), which [...] Read more.
We report measurements of linear and nonlinear elastic properties of polystyrene-based nanocomposites with six types of nanofillers, including single and binary mixtures of allotropic carbon nanoparticles. Composite samples were fabricated by the same technology and contained the same filler concentration (5% wt.), which allowed for a direct comparison of their properties. It was shown that the most significant variations of linear and nonlinear elastic properties occur in different nanocomposites. In particular, the most pronounced enhancements of linear elastic moduli (in about 50%) obtained in tensile and flexural tests and in dynamic mechanical analysis were recorded in the sample filled with spherical fullerene nanoparticles. While the most profound rise of absolute values of nonlinear elastic moduli (tens of times) was obtained in the sample filled with the mixture of carbon nanotubes and graphene. The observed tendencies demonstrated the synergistic effect of fillers of different dimensionality on the elastic properties of nanocomposites. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop