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Abstract: To secure existing water resources is one of the imposing challenges to attain sustainability
and ecofriendly world. Subsequently, several advanced technologies have been developed for
water treatment. The most successful methodology considered so far is the development of water
filtration membranes for desalination, ion permeation, and microbes handling. Various types of
membranes have been industrialized including nanofiltration, microfiltration, reverse osmosis, and
ultrafiltration membranes. Among polymeric nanocomposites, nanocarbon (fullerene, graphene,
and carbon nanotubes)-reinforced nanomaterials have gained research attention owing to notable
properties/applications. Here, fullerene has gained important stance amid carbonaceous nanofillers
due to zero dimensionality, high surface areas, and exceptional physical properties such as optical,
electrical, thermal, mechanical, and other characteristics. Accordingly, a very important application
of polymer/fullerene C60 nanocomposites has been observed in the membrane sector. This review
is basically focused on talented applications of polymer/fullerene nanocomposite membranes in
water treatment. The polymer/fullerene nanostructures bring about numerous revolutions in the
field of high-performance membranes because of better permeation, water flux, selectivity, and
separation performance. The purpose of this pioneering review is to highlight and summarize
current advances in the field of water purification/treatment using polymer and fullerene-based
nanocomposite membranes. Particular emphasis is placed on the development of fullerene embedded
into a variety of polymer membranes (Nafion, polysulfone, polyamide, polystyrene, etc.) and
effects on the enhanced properties and performance of the resulting water treatment membranes.
Polymer/fullerene nanocomposite membranes have been developed using solution casting, phase
inversion, electrospinning, solid phase synthesis, and other facile methods. The structural diversity of
polymer/fullerene nanocomposites facilitates membrane separation processes, especially for valuable
or toxic metal ions, salts, and microorganisms. Current challenges and opportunities for future
research have also been discussed. Future research on these innovative membrane materials may
overwhelm design and performance-related challenging factors.

Keywords: polymer; fullerene C60; nanocomposite; membrane; nanofiltration; permeability; selectivity;
salt rejection; water treatment

1. Introduction

Clean water is vivacious for human beings and the ecological world environment [1,2].
To achieve unsoiled water, implementation of water treatment or purification technologies
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have been focused on. As the most successful method, the concentrated fabrication and ex-
amination of high-performance membrane technologies has been foreseen. Miscellaneous
membrane-dependent technologies, therefore, have been applied for water decontamina-
tion [3,4]. Usually, membrane technologies have been claimed for having low cost, fine
workability, efficiency, low energy ingesting, and scale-up viabilities [5]. Pressure-driven
membranes processes have been applied in conventional membrane filtration [6]. Poly-
meric membranes have been identified for the high permeability, the stability, the selectivity,
the salt rejection, and the low working pressure. Polymeric membranes have been devel-
oped using various polymers as polystyrene, polyethylene, polyamide, polyacrylonitrile,
poly(vinylidene fluoride), poly(vinyl alcohol), and polyaniline [7–9]. Common processes
used for the formation of filtration membranes include phase inversion, interfacial polymer-
ization, solution casting, sol-gel processes, and electrospinning [10]. Polymeric membranes
have been characterized for the morphology, crystallinity, hydrophilicity, surface rough-
ness, permeation, flux, salt rejection, and antifouling performances. However, the foremost
downsides of neat polymeric membranes include the irregularly porous structure, hy-
drophobicity, membranes fouling, and pore clogging due to effluents [11]. Therefore, the
membrane technology has shifted towards the use of nanocomposite membranes instead
of neat polymeric membranes [12,13]. For the formation of polymeric nanocomposite
membranes, inorganic and organic nanoparticles have been considered [14]. Inorganic
nanoparticles such as metal or metal oxides such as Au, Ag, Fe, SiO2, Al2O3, zeolite,
and polyhedral oligomeric silsesquioxanes have been filled to form innovative polymeric
nanocomposite membranes [15]. Nanocarbon nanomaterials such as fullerene, carbon
nanotubes, graphene, nanodiamonds, and carbon nanofiber have also been used to form
nanocomposite membranes [16–18]. Among various types of nanofiller, carbonaceous
nanofillers have revealed low noxiousness, facile preparation, and eco-friendliness to be
employed in polymeric membranes [19,20]. Consequently, polymer nanocomposite mem-
branes have the potential for waste water purification towards chemicals, heavy metals,
salts, microorganisms, oils, etc. In this regard, polymer/fullerene based microfiltration,
nanofiltration, ultrafiltration, desalination, and reverse osmosis membranes have been de-
veloped [21,22]. The implication of polymer/fullerene nanocomposites in water treatment
membranes has led to genuine innovations in the field of water purification technologies.

This review is revolutionary to portray the scientific development and advancement
in the field of polymer/fullerene C60 nanocomposite-based water treatment membranes.
Fullerene-based polymer nanocomposite membranes have recently attracted significant
attention for waste water treatment and purification, mostly for the removal of toxic metals,
microorganisms, chemical compounds, salts, etc. Various literature reports have been found
on the design and performance of polymer/fullerene-derived ultrafiltration, nanofiltration,
pervaporation, desalination, and reverse osmosis membranes. However, to the best of
knowledge, such a specific review on polymer and fullerene has not seen in the literature
before. The actual motive behind this review is to develop a pioneering article to portray
the developments in the field of polymer/fullerene-based nanocomposite membranes.
Significant literature reports on polymer/fullerene nanocomposite membranes were found
between 2010 and 2022. Fewer reports developed before 2010 were mentioned in this
review, so the main progress in this field during the last two decades was depicted. Thus,
this state-of-the-art review highlights some auspicious zones of polymer/fullerene C60
membranes for water treatment. The resourcefulness of polymer/fullerene nanocomposites
has accelerated membrane processes for water purification or effluents remediation. More-
over, polymer/fullerene nanocomposites have brought about numerous novelties in the
field of high-performance water treatment membranes. Polymer/fullerene nanocomposite
membranes have been identified as low-cost, efficient, and easily scalable materials. These
membranes have been found highly permeable to water and have stable structures, selectiv-
ity, solute rejection, and low fouling. For the formation of polymer/fullerene membranes,
polymers such as Nafion, polysulfone, polyamide, and polystyrene have been preferred.
Some preparation methods for forming polymeric membranes include solution casting,
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phase inversion, electrospinning, and solid phase synthesis routes. The ensuing novel
membrane materials may have capabilities to overwhelm the challenging aqueous envi-
ronment for the filtration of undesirable contaminants. In other words, this article offers a
groundbreaking and original review on polymer and fullerene-based membrane materials.
Despite remarkable properties and the vast potential, devoted future research efforts are
desirable to form high-performance nanocomposite membranes for water purification
applications and to overcome the associated challenges. Future developments in the field
of novel functional polymer/fullerene C60 nanocomposite membranes are not possible for
researchers before getting prior knowledge of the reported literature in this field.

2. Fullerene

Fullerene is a symmetrical zero-dimensional nano-allotrope of carbon [23]. It is a
hollow ball-like nanostructure having sp2 hybridized carbon atoms in its architecture [24].
The carbon atoms in fullerene form a π conjugation system [25,26]. It is made up of unique
polygons, i.e., pentagons and hexagons. The cage-like fullerene nanostructure is ~1 nm [27].
Fullerene was primarily discovered in 1985 [28]. Depending upon the number of carbon
atoms in the structure, the fullerene molecules can be of several types such as C24, C28, C60,
C70, and C120 (Figure 1) [29]. Fullerene C60 is a commonly known fullerene molecule also
referred to as buckminsterfullerene. Then, the next widely researched form of fullerene
is C70. Fullerene molecules have revealed sole optical, electrical, magnetic, thermal, me-
chanical, and biomedical possessions [30–32]. Fullerene molecules have been primed using
numerous procedures such as the microwave synthesis, arc discharge, plasma techniques,
chemical vapor deposition, and numerous chemical approaches [31–33]. Nanocarbons
such as graphene, carbon nanotube, and nanodiamond have been applied in essential
technical applications including nanocomposite formation [34–37]. Nanocomposites have
been formed using the in situ method, solution mixing, melt processing, spinning, print-
ing, and other practices [38–40]. Fullerene molecules own exceptional physical features
for nanocomposite applications [41–44]. With polymers, fullerene molecules may form
an electron donor-acceptor relationship [45]. The solubility properties of fullerene in
number of solvents have been explored for the nanocomposite formation [46–48]. The
polymers such as poly(vinylpyrrolidone) have also been employed to solubilize fullerene
molecules [49–51]. Applications areas of fullerene, functional fullerene, and nanocom-
posites have been observed in optoelectronics [52–54], solar cells [55], sensors [56], drug
delivery [57], and other practical fields. In the membrane application, fullerene has been
reinforced in polymeric matrices to influence final properties [58]. As compared to other
nanocarbons, fullerene has a higher surface area to interact with polymers and own a lower
aggregation tendency and better dispersion properties [59]. For water treatment purposes,
fullerene addition may enhance homogeneity in polymeric membranes; however, appro-
priate surfactants and stabilizing agents need to be included to form high-performance
materials [60,61]. Mostly, fullerene C60 molecules are reinforced in polymeric matrices
to form water filtration membranes. Other fullerene forms have been rarely studied in
polymeric membranes.
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3. Polymeric Nanocomposite Membranes

Membrane technologies has expanded research interest in methodological applications
and technical industries [62–64]. Membrane technologies has been used for the remediation of
environmental pollutants including noxious gases and water contaminants [65–67]. Relative
to neat polymeric membranes, nanocomposite membranes have been beneficially applied
for water treatment [68]. Membrane technologies have especially targeted domestic water
management, industrial waste water treatment, and seawater desalination [69–71]. In the
membrane filtration process, the trade-off association between the membrane permeability
and the membrane selectivity is considered important [72–74]. Compared with neat polymeric
membranes, nanocomposite membranes exhibit the advantages of superior physicochemical
characteristics due to the combination of polymers and nanoparticles [75–79]. Moreover, the
enhanced fouling resistance, optimum porosity, hydrophilicity, mechanical robustness, and
heat stability have been observed [80–84]. Figure 2 portrays the construction of nanocomposite
membranes using a widely applied phase inversion technique [85–89]. This scheme usually
encompasses nanoparticle dispersion in a solvent and then amalgamation with a polymer
solution [90–92]. The phase inversion technique has been used to develop microfiltration,
nanofiltration, or ultrafiltration membranes [93–95]. Using this approach, nanocarbons such
as graphene, graphene oxide, and carbon nanotubes have been reinforced in nylon [96–100],
polysulfone [101–105], poly(vinyl alcohol) [106–110], poly(vinyl acetate) [111–115], etc. to
develop high-performance membranes. Ammar et. al. [116] fabricated polysulfone and
graphene-based membranes with the phase inversion method. The membranes were explored
for the morphology and structural crystallinity [117–121]. Owing to electrostatic or van der
Waals interactions between the matrix and the nanofiller, the water flux of the nanocomposite
membranes was enhanced [122,123]. Ganesh and co-workers [124] reported polysulfone and
graphene oxide-derived mixed matrix membranes. The phase inversion method was adopted
as a successful method to form membranes [125–129].
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4. Polymer/Fullerene Nanocomposite

Polymer/fullerene nanocomposites have been considered for superior optical, electri-
cal, thermal, mechanical, and processability features [131–133]. However, during the poly-
mer/fullerene nanocomposite formation, agglomeration can cause major hinderance to the
production of high-performance nanomaterials. The aggregation of fullerene molecules
may cause poor solubility in organic solvents [134]. Consequently, the large-scale process-
ing of polymer/fullerene nanocomposites has been studied [135]. To resolve this issue,
functional fullerene molecules have been reinforced in polymeric matrices [136,137]. A
range of thermoplastics, thermosets, and conjugated polymers have been used to form
nanocomposites with fullerene [138,139]. Polymer/fullerene nanocomposites have been
applied in wide-ranging methodological fields such as electronics [140], supercapaci-
tors [141], and solar cells [142]. Fullerene C60 has been physically or covalently linked
with host polymers to enhance final nanomaterial characteristics [143,144]. The system-
atic studies on the polymer/fullerene nanocomposites have escorted towards polymeric
membranes [145]. In this regard, numerous filtration membranes have been developed
using varying polymers (polyamide, polystyrene, polysulfone, etc.) and the fullerene
C60 nanofiller [146–148]. Nanocomposite membranes have been focused on due to its
chemical stability, mechanical resilience, rigidity, porosity, and inexpensiveness [149–151].
The inclusion of fullerene contents have significantly improved technological membrane
parameters towards the remediation of environmental effluents [152]. Kitjanon et al. [153]
developed and studied the cis-1,4-polyisoprene and C60-based nanocomposite membranes
via coarse-grained molecular dynamics simulation. Nanoparticles with 0–32 phr fullerene
were loaded, and then, simulations were performed over 200 microseconds. The pho-
tographs of the cis-1,4-polyisoprene and C60-based nanocomposite are given in Figure 3.
In addition, the experimental results for the glass transition temperature, mechanical, and
thermodynamical properties were investigated for the high-performance nanocomposites.
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5. Implication of Polymer/Fullerene Nanocomposite Membranes in Water Treatment

Polymer/fullerene nanocomposite membranes have been investigated for effective salt
removal from water, toxic ion separation, ion pair separation, recovery of expensive metals,
and pathogenic microorganisms separation or deterioration [154]. In the sorption method, a
huge range of metal ions can be recovered such as nickel, zinc, copper, cobalt, mercury, lead,
arsenic, and cadmium [155–157]. The design of polymer/fullerene nanocomposite mem-
branes and surface defects may influence their sorption capacities towards metals [158].
Moreover, nanocomposite membranes show better retention time [159]. Perera et al. [160]
formed thin-film reverse osmosis membranes having functional hydroxy fullerene C60.
The membranes revealed a high water flux of 26.1 L/(m2·h) and the optimum salt rejec-
tion. Moreover, the hydroxy functional fullerene C60-derived membranes presented a
high separation efficiency towards Mg2+/Li+ (separation factor: 13.1). The nanocomposite
membranes were found effective for the recovery of Li+ ions from seawater [161]. Liu
et al. [162] reported epoxy-based membranes with fullerene C60-grafted graphene oxide.
Water desalination and ion permeation were studied through the membranes. Figure 4
displays the fabrication procedure, water desalination system, and representation of an-
ions/cations blockage on the membrane surface. The membranes had a high water flux
of up to 10.85 L/(m2·h·bar) and 0.1883 mol/(m2·h·bar) for water desalination and ion
permeation, respectively. The inclusion of fullerene C60 revealed fine water adsorption
for large water quantities. Table 1 displays the filtration performances of a few systems
showing polymeric membranes with fullerene nanoparticles.
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Figure 4. Fabrication process and water desalination setup using C60-grafted graphene oxide mem-
branes. (a) Graphene oxide membrane without C60; (b) C60-grafted graphene oxide membrane; (c) op-
tical micrograph of a cross-sectional area with a scale bar of 100 µm. The micrograph shows 148 µm
thick graphene oxide laminates embedded in 81 µm thick epoxy; (d) graphene oxide-C60 membrane
encapsulated with epoxy in a plastic disk of 47 mm; (e) graphene oxide-C60 membrane inside a water
desalination setup; (f,g) schematic setup of a flat membrane made of graphene oxide and a C60 hybrid
for water desalination [162]. Reproduced with permission from American Chemical Society.

Table 1. Specifications of a few polymeric membranes with fullerene C60 nanofillers for water purification.

Nanofiller Size of Nanofillers
(nm)

Pore Size of the
Membrane

Filtration
(L/m2·h·bar)/(LMH·bar) Ref.

C60
0.375

(radius) - - [163]

C60 - C60 addition caused a
bigger pore size. - [164]

C60 - 17 nm - [150]

C60
0.375

(radius) - - [165]

C60 4.4–122 - - [154]

C60 9–15 Small pores
5 wt % fullerenol 0.084–0.214 kg/(m2·h) [166]

Polyhydroxylated C60 - 0.639 nm 6.7 LMH·bar [161]

Functional C60 ~1 0.86 to 0.59 nm 26.1 LMH [160]

C60 14–59 33–34 nm to 53–55 nm - [167]

The biocompatibility of fullerene is an ultimate requirement to ensure the safety of
drinking water [168]. Fullerene nanofillers embedded into various polymeric membranes
influence the resulting membranes performance. The size, shape, and surface properties of
fullerenes have been found important to enhance the solute selectivity, water permeability,
and stability of nanocomposite membranes. Fullerene nanofillers have been used to achieve
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desirable pore sizes, larger surface areas, and unique surface functionalities, improving the
overall membrane performance. For the fabrication of polymer/fullerene nanocomposite
membranes, the surface chemistry of fullerene has been considered important to accomplish
better membrane stability [169]. The presence of physical or covalent bonding of fullerene
with polymers in nanocomposite membranes have been found to improve hydrophilic-
ity and anti-bacterial, anti-fouling, and water flux performance. Moreover, interactions
between fullerene and polymers also aid in the improved membrane thermomechanical
stability and long-term durability during filtration and hydraulic cleaning processes. In
addition, polymer/fullerene membranes possess low toxicity, long-term organic solvent
stability, and enhanced membrane operating times even at higher temperatures. Molecular
dynamics (MD) simulations were used to gain insights on the interactions of polymer with
fullerene in membranes [170]. The interactions between a single fullerene C60 molecule
and a membrane were evaluated by computing the free energy as a function of the distance
between the C60 molecule and the polymer layer. The fullerene molecule was found to
be absorbed into the polymer hydrophobic part with a marked increase in the stability of
the membrane (~30 kcal/mol) and cause no disruption of the hydrophobic environment.
According to MD studies, initial fullerene clusters need to be disaggregated to release from
the membranes. Furthermore, to make the fullerene molecule soluble from the polymeric
membranes, both the energetic and kinetic barriers need to be overcome. Thus, the studies
revealed the kinetic stability of polymer/fullerene nanocomposite membranes, and these
membranes were not found easily degradable in aqueous environments.

5.1. Nafion/Fullerene Nanocomposite Membranes for Water Treatment

Nafion is a sulfonated tetrafluoroethylene-based fluoropolymer-copolymer [171,172].
It is a widely used synthetic polymer. It has ionic properties such as ionomers. Nafion
has been commonly used to form commercial membranes for energy, electronics, and
environmental applications [173,174]. Nafion and fullerene-based nanocomposite mem-
branes have been devised [175]. The use of hydroxy-modified fullerene in Nafion results
in fine photoconductivity and antimicrobial characteristics. Tasaki et al. [176] fabricated a
Nafion/fullerene C60 nanocomposite with the solution casting technique. The neat fullerene
C60 and the polyhydroxy fullerene were used as nanofillers. Figure 5 demonstrates the
optical micrographs of the solution-cast nanocomposite membranes. Two types of mem-
branes were prepared, i.e., through the doping process and by solution casting. In the
doping process, toluene was used as a solvent. On the other hand, dimethyl acetamide
was used as a solvent in the solution route. In the doping route, functional fullerene
nanoparticles formed large aggregates. In the case of the solution route, finely dispersed
fullerene and functional fullerene nanoparticles can be observed. Thus, the solution route
was found ideal due to better miscibility properties between the Nafion matrix and the
nanofiller. Figure 6 expresses the molecular dynamic simulations of the Nafion/fullerene
nanocomposite membranes. The fullerene molecule can be seen totally wrapped by the
Nafion oligomer, screening better mutual interactions. The water uptake of the mem-
branes was measured through soaking in water (wet condition) and under a 25% RH
(dry condition). The 1 wt % Nafion/C60 and 3 wt % Nafion/C60 membranes were tested.
Both the Nafion/C60 nanocomposite membranes were found to hold more water than
the neat Nafion, under a 25% RH. Consequently, the higher wet and dry water uptakes
of nanocomposite membranes were observed, compared with those of the neat Nafion
membrane. The water molecules were suggested to be trapped in the interfaces between
the C60 aggregates and Nafion domains, depending upon the morphological form of the
nafion/C60 nanocomposite. In the Nafion/fullerene nanofiltration membranes, the internal
porosity and permeability were found to be affected by the packing of the polymer chains
and dispersion of the fullerene nanoparticles [175]. The presence of fullerene was supposed
to interrupt the packing manner of the polymer chains and interfacial morphology to
generate nanopores in the Nafion/fullerene nanofiltration membranes for ion separation
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purposes. Nevertheless, few Nafion/fullerene systems have been studied up till now for
water treatment, so further research efforts are found desirable in this category.
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Figure 6. (a) Initial structure of C60 and Nafion oligomers; (b) snapshots of Nafion oligomers;
(c) C60 and Nafion oligomers; and (d) polyhydroxy and Nafion oligomers (taken after 1 ns molecular
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5.2. Polysulfone/Fullerene Nanocomposite Membranes in Water Treatment

Polysulfone is a commercial thermoplastic polymer [177]. Polysulfone own fine
properties of chemical, thermal, and mechanical stability. Owing to unique processability
and physical features, polysulfone has found wide-ranging applications in membranes,
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coating, nanocomposites, and other technical fields [178]. Penkova et al. [179] fabricated
mixed-matrix membranes of polysulfone and fullerene C60 (contents up to 5 wt %). The
nanocomposite membrane with a 5 wt % fullerene content revealed fine transport properties
towards the pervaporation of an ethyl acetate-water mixture. The sorption and contact
angle measurement data for the membranes are given in Table 2. The inclusion of nanofillers
enhanced the sorption characteristics. Moreover, the hydrophilic features of the membrane
surface were improved with the fullerene addition. The pervaporation mechanism can
be explained through the solution-diffusion process [180]. Especially, the permeability is
directly related to the solubility and diffusivity of the solute molecules. In this way, the
mass transfer of analyte and water through the membranes can be analyzed. However,
limited polysulfone/fullerene systems have been studied so far, and thorough research
efforts needed to form high-performance membranes in this category.

Table 2. Sorption characteristics and contact angles of polysulfone and polysulfone/fullerene C60

dense membranes [179]. Reproduced with permission from Springer.

Membrane

Sorption (%)

Contact Angle (◦)Ethyl Acetate:Water Ratio
(2%:98%)

Ethyl Acetate:Water Ratio
(4%:96%)

Polysulfone 0.8 8.4 62

Polysulfone with 3 wt % C60 1.3 9.7 66

Polysulfone with 5 wt % C60 3.2 11.7 79

5.3. Polyamide/Fullerene Nanocomposite Membranes towards Water Treatment

Polyamide is a thermoplastic polymer having repeating amide bonds in the backbone.
Polyamides occur naturally and can be synthesized using diamine and dicarboxylic acid
monomers [181]. Polyamide has been effectively used in membrane applications [182].
Plisko et al. [167] designed a polyamide and hydroxy functional fullerene C60-based thin-film
nanocomposite membrane for water treatment. It has been observed that the inclusion of a
5 wt % nanofiller promoted antifouling features and organic matter elimination properties of
the membranes. Dmitrenko et al. [166] adopted a polyamide, i.e., polyphenylene isophthala-
mide filled with 5 wt % fullerene derivatives (carboxyfullerene, polyhydroxylated fullerene
and fullerene derivative with L-arginine). In this regard, various pervaporation membranes
have been designed as polyphenylene isophthalamide/fullerene (PA/F), polyphenylene isoph-
thalamide/carboxyfullerene (PA/CF), polyphenylene isophthalamide/fullerene derivative
with L-arginine (PA/AF), and polyphenylene isophthalamide/polyhydroxylated fullerene
(PA/HF). The solid phase synthesis route was used to fabricate mixed matrix pervaporation
membranes (Figure 7). The transport properties were studied for the azeotropic methanol-
toluene (72/28 wt %) mixture. Figure 8 depicts the permeation flux for the mixed matrix
pervaporation, which was increased with the increasing methanol content in feed. Moreover,
the inclusion of fullerene derivative to the polymeric membranes enhanced the permeation
flux in order of PA < PA/F < PA/CF < PA/AF < PA/HF. Relative to the neat pervaporation
membrane, the permeation flux of the nanocomposite membrane was increased by 1.6 times,
due to the effect of the inclusion of fullerene nanoparticles. Furthermore, the nanocomposite
membranes have enhanced the surface roughness and the surface hydrophilicity proper-
ties, relative to the neat polyphenylene isophthalamide membrane. The polyhydroxylated
fullerene-based membrane revealed superior performance compared with the other nanocom-
posite membranes. Consequently, the PA/HF membrane with a 5 wt % nanofiller content
increased the permeation flux to 0.084–0.214 kg/(m2·h) and resulted in the selectivity of
95.9 wt % for methanol. The results were attributed to the affinity of the polyhydroxy func-
tionality of the fullerene molecules permeating methanol. The results were also suggestive of
the nanocomposite membrane pore size modification with the addition of altered fullerene
derivatives [183]. Comprehensive efforts are still desirable to explore the interaction of the
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modified fullerene nanoparticles with the polyamide chains actually operating to promote the
membrane permeation and selectivity.
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Figure 8. Dependence of the permeation flux on the methanol content in feed for membranes
based on neat PA and nanocomposites with fullerene and fullerene derivatives during pervapo-
ration of methanol-toluene mixtures with 10–72 wt % methanol (22 ◦C) [166]. PA, polyphenylene
isophthalamide; PA/F, polyphenylene isophthalamide/fullerene; PA/CF, polyphenylene isophthala-
mide/carboxyfullerene; PA/AF, polyphenylene isophthalamide/fullerene derivative with L-arginine;
PA/HF, polyphenylene isophthalamide/polyhydroxylated fullerene. Reproduced with permission
from Elsevier.

5.4. Polystyrene/Fullerene Nanocomposite Membranes for Water Treatment

Polystyrene is a widely used commercial thermoplastic polymer [184,185]. Polystyrene
is usually made from styrene monomer. It is an inexpensive, light-weight, clear, hard, and
brittle polymer. Polystyrene has been frequently used to form nanocomposites. Alekseeva
et al. [163] formed fullerene C60-filled polystyrene nanocomposite. The ultrafiltration mem-
branes were designed using the phase inversion technique. The static protein sorption tests
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were carried out for the polystyrene/C60 nanocomposite membranes. With the fullerene
nanoparticle loading, protein sorption was reduced along with the flux reduced recovery
rates. The result was observed due to better fullerene dispersion and barrier effects in the
membranes. Moreover, the Langmuir model was used to study the Cu2+ ions removal
efficiency. It was found that the fullerene addition enhanced the membrane affinity to-
wards Cu2+ ions due to better interactions. The fullerene C60 has also been incorporated in
polystyrene blend matrices to form water treatment membranes [186,187]. von Reitzenstein
et al. [188] performed a comparative study on neat polystyrene, polystyrene/fullerene C60,
polystyrene/graphene oxide, and polystyrene/multi-walled carbon nanotubes. The elec-
trospinning technique was used to form nanocomposite nanofibers. Electrospun nanofibers
were then used to form nanofiltration membranes. The inclusion of nanofillers in the elec-
trospun polystyrene nanofibers slightly enhanced the diameter, reduced the bead formation
and caused the homogeneous surface pore size distribution. Figure 9 displays the surface
pore volume distribution of the nanofiber. The mean pore diameters of the neat polymer
and polystyrene/graphene oxide was found similar, which were 70–90 nm.
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Figure 9. Distribution of the pore volume measured from scanning electron microscopy of
nanofibers [188]. PS, polystyrene; C60-PS, fullerene-polystyrene; MWCNT-PS, multi-walled carbon
nanotube-polystyrene; GO-PS, graphene oxide-polystyrene. Reproduced with permission from Elsevier.

On the other hand, the polystyrene/fullerene C60 and the polystyrene/multi-walled
carbon nanotube had a reduced mean pore diameter of 50–70 nm. The effect was observed
probably due to more stability and less pore formation tendency of fullerene and nanotube-
filled nanocomposites. The transmission electron microscopy (TEM) was used to inspect the
morphologies of the neat polystyrene nanofiber and the nanocarbon-dispersed nanocom-
posite nanofiber (Figure 10). The polystyrene/graphene oxide-based nanofiber showed
a flaky appearance due to the presence of nanosheets. The nanotube can be observed
as tangled threads in the polystyrene/multi-walled carbon nanotube nanocomposites.
The polystyrene/fullerene nanofibers were opaque and dense, although few fullerene
aggregates can be identified as flaky edges on the fiber surface. The polymer/nanocarbon
nanofibers for the filtration membranes must be further investigated for the mechanism of
pore creation, pore formation frequency control, and precise nanofiber dimensions [189].
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6. Challenges, Future, and Summary

There is a mammoth necessity of better-quality approaches to the use of fullerenes and
derived nanomaterials in high tech industries [190]. Most prominently, fullerene-derived
nanomaterials have been absorbed for membranes or coatings [191], electronics [192],
energy devices [193], biomedical areas [194], and other fields. The future implication
of fullerene-based nanomaterials has been suggested for the aerospace or automotive,
civil engineering, and other high-performance applications. In membrane applications,
polymer/fullerene nanocomposites have been applied due to remarkable morphological,
mechanical, barrier, electrical, and other physical properties [195]. In polymer/fullerene
nanocomposite membranes, nanofiller dispersal and matrix-nanofiller interactions have
been found desirable to develop high-performance nanostructures. Accordingly, the
fullerene dispersion has been identified as an important challenge of these membranes.
In this regard, modified fullerene derivatives need to be employed. Moreover, precise
controls over the pore size, pore structure, microstructure, membrane surface roughness,
membrane wettability, etc. (defining the membrane performance parameters) remain as
major encounters [196,197]. Furthermore, comprehensive studies are still desired to explore
the mechanism of membrane separation processes. Solution-diffusion processes leading
to water filtration need to be explored experimentally and theoretically, to profoundly
identify the separation mechanism. Another important challenge is the discovery of addi-
tional all-inclusive categories of polymer/fullerene membranes beyond Nafion/fullerene,
polyamide/fullerene, polysulfone/fullerene, and polystyrene/fullerene nanocomposite
membranes known so far towards water treatment. The above-mentioned challenges can
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be overcome by using modified fullerene nanoparticles to attain promising forthcoming
membrane nanomaterials. For future membrane utility, the self-assembly of fullerene
molecules and network formation with polymeric matrices must be considered [198–200].

Consequently, polymer/fullerene nanocomposites capture a special position as sep-
aration membranes in the water treatment industry. These membranes have attained
increasing research attention due to performance advantages, low operating expenses, high
selectivity, and easy scale-up. In fact, the primary function of fullerene has been found as
physical/chemical binders within the polymeric chains of nanocomposite membranes for
optimizing essential mechanical properties, structural stability, thermal stability, and mem-
brane properties. Certainly, inclusion of fullerene in the matrix creates van der Waals forces
and/or covalent interactions with the polymer chains, leading to reinforcement and supe-
rior physical features. Moreover, the variations in fullerene loading levels cause dominant
effects on the reinforcement and membrane properties. Subsequently, polymer/fullerene
nanocomposites have been found as fast emerging separation membranes for clean wa-
ter resources. Among all available polymer/nanocarbon membranes, polymer/fullerene
nanocomposites have been considered as the energy-efficient and green technology for
separation of impurities from aqueous solutions due to optimum nanoporous membrane
features. Recently, polymer/fullerene nanocomposite membranes have been considered
significant for resolving technical and commercial challenges towards separation and pu-
rification technologies. The development of distinct polymer/fullerene nanostructured
membranes with exclusive properties not only solves the trade-off issue related to wa-
ter treatment technologies, but also opens new pathways towards real-time applications.
The newly fabricated polymer/fullerene membranes have been found superior in terms
of selectivity, permeability, and long-term stability. Thus, the research on these novel
nanocomposite membranes may continue to develop better cost-effective water treatment
systems to decrease the overall capital investment.

In short, this cutting-edge overview grants an analysis on the use of polymer/fullerene
C60 nanocomposite membranes for water remediation. Fullerene and modified fullerene
nanofillers have been incorporated in polymers to develop nanocomposite membranes.
The enhanced polymer/fullerene nanocomposite properties lead to several prospects to
revolutionize the related potential for waste water purification. Plentiful research efforts
have been fixated on refining the polymer/fullerene nanocomposite membrane properties
such as water permeability, salt rejection, ion separation, overall separation efficiency,
antifouling performance, and other membrane topographies. Moreover, fullerene-based
nanofillers improve the membrane surface properties, have low cost, and enhance the
long-term stability of the membranes. To widen the use of polymer/fullerene in mem-
branes, devotion must be taken to augment polymer-nanocarbon interactions, nanofiller
dispersibility, membrane stability, membrane permeability, separation competence, and
practicable membrane parameters to solve current glitches in this field.
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