Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = polysilazane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3461 KiB  
Article
Fabrication of Thermally Stable Heat-Shielding Coated Glass for Solar Glazing via Direct Calcination in Air
by Guangrui Zhang, Xiaoting Qin, Dinghui Wang, Jinqing Li, Wenlong Pan and Jian Yin
Coatings 2025, 15(2), 239; https://doi.org/10.3390/coatings15020239 - 17 Feb 2025
Viewed by 700
Abstract
The utilization of heat-shielding glazing technologies can efficiently promote carbon emission reductions and energy savings by decreasing solar irradiation into buildings. Although a variety of glazing technologies have been created for solar glazing, either the heat-shielding performance is low, the thermal stability is [...] Read more.
The utilization of heat-shielding glazing technologies can efficiently promote carbon emission reductions and energy savings by decreasing solar irradiation into buildings. Although a variety of glazing technologies have been created for solar glazing, either the heat-shielding performance is low, the thermal stability is poor, or the cost is high. Here, we report a thermally stable heat-shielding coated glass for solar glazing in a simple way via direct calcination of Ce and Sb co-doped SnO2 nanoparticles with polysilazane (PSZ) coatings in air. The resulting coated glass has transmittances of 4.7% at 250–380 nm, 59.3% at 380–780 nm, and 9.7% at 780–2500 nm; excellent environment stability under accelerated aging conditions over 350 h; and also a ca. 50-fold lower fixed cost than commercial low-E glass. Moreover, a coated glass with a high pencil hardness of 9H was also fabricated via further spraying and calcinating of a PSZ coating as the cover layer, which is also the hardest coated solar glaze to our knowledge. The high solar-shielding performance and unprecedented low cost of the Ce and Sb co-doped SnO2-coated glass, as well as the simplicity of its fabrication, exhibit great potential in energy-saving buildings and cars. Full article
Show Figures

Figure 1

21 pages, 14717 KiB  
Article
Structural, Mechanical, and Optical Properties of Laminate-Type Thin Film SWCNT/SiOxNy Composites
by Elizaveta Shmagina, Maksim Antonov, Aarne Kasikov, Olga Volobujeva, Eldar M. Khabushev, Tanja Kallio and Sergei Bereznev
Nanomaterials 2024, 14(22), 1806; https://doi.org/10.3390/nano14221806 - 11 Nov 2024
Viewed by 1592
Abstract
The development of new encapsulating coatings for flexible solar cells (SCs) can help address the complex problem of the short lifespan of these devices, as well as optimize the technological process of their production. In this study, new laminate-type protective composite coatings were [...] Read more.
The development of new encapsulating coatings for flexible solar cells (SCs) can help address the complex problem of the short lifespan of these devices, as well as optimize the technological process of their production. In this study, new laminate-type protective composite coatings were prepared using a silicon oxynitride thin-film matrix obtained by curing the pre-ceramic polymer perhydropolysilazane (PHPS) through two low-temperature methods: (i) thermal annealing at 180 °C and (ii) exposure to UV radiation at wavelengths of 185 and 254 nm. Single-walled carbon nanotubes (SWCNTs) were used as fillers via dry transfer, facilitating their horizontal orientation within the matrix. The optical, adhesive, and structural properties of the matrix films and SiOxNy/SWCNT composite coatings, along with their long-term stability, were studied using Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, HR-SEM, spectral ellipsometry, and a progressive-load scratch test. In this work, the optical constants of PHPS-derived films were systematically studied for the first time. An antireflection effect was observed in the composites revealing their two-component nature associated with (i) the refractive index of the SiOxNy matrix film and (ii) the embedding of a SWCNT filler into the SiOxNy matrix. The curing method of PHPS was shown to significantly affect the resulting properties of the films. In addition to being used as protective multifunctional coatings for SCs, both SiOxNy/SWCNT composites and SiOxNy matrix films also function as broadband optical antireflective coatings. Furthermore, due to the very low friction coefficients observed in the mechanical tests, they show potential as scratch resistant coatings for mechanical applications. Full article
Show Figures

Figure 1

25 pages, 15545 KiB  
Article
Pristine and Coated Carbon Nanotube Sheets—Characterization and Potential Applications
by Prakash Giri, Irwin Gill, Morgan Swensgard, Alexandra Kaiser, Audrey Rust, Brian Stuparyk, Andrew Fisher, Justice Williams, Katie Renoit, Eleanor Kreeb, Corentin Lavenan and Mark J. Schulz
C 2024, 10(1), 17; https://doi.org/10.3390/c10010017 - 9 Feb 2024
Cited by 1 | Viewed by 2882
Abstract
A carbon nanotube (CNT) sheet is a nonwoven fabric that is being evaluated for use in different textile applications. Several properties of pristine CNT sheets and CNT sheets coated with a polysilazane sealant and coating were measured and compared in the paper. The [...] Read more.
A carbon nanotube (CNT) sheet is a nonwoven fabric that is being evaluated for use in different textile applications. Several properties of pristine CNT sheets and CNT sheets coated with a polysilazane sealant and coating were measured and compared in the paper. The polysilazane coating is used to reduce the shedding of CNT fibers from the sheet when the sheet is in contact with surfaces. Most fabrics show some shedding of fibers during the washing or abrasion of the fabric. This study showed that the coating reduces the shedding of fibers from CNT fabric. The coating also increased the flame resistance of the fabric. The pristine and coated sheets both have low strength but high strain to failure. The pristine and coated CNT sheet densities are 0.48 g/cc and 0.65 g/cc, respectively. The pristine CNT sheet is approximately 27 μ thick. The coated sheet is approximately 24 μ thick. The coating may have densified the sheet, making it thinner. The thickness of the compliant sheets was difficult to measure and is a source of error in the properties. Characterization results are given in this paper. The results are for comparison purposes and not to establish material properties data. Possible applications for CNT sheets are briefly discussed. Full article
(This article belongs to the Collection Novel Applications of Carbon Nanotube-Based Materials)
Show Figures

Graphical abstract

16 pages, 2856 KiB  
Article
Structure and Electrical Properties of Carbon-Rich Polymer Derived Silicon Carbonitride (SiCN)
by Oluwole Daniel Adigun, Emmanuel Ricohermoso, Ayodele Abeeb Daniyan, Lasisi Ejibunu Umoru and Emanuel Ionescu
Ceramics 2022, 5(4), 690-705; https://doi.org/10.3390/ceramics5040050 - 3 Oct 2022
Cited by 7 | Viewed by 3529
Abstract
This article reports on the structure and electronic properties of carbon-rich polysilazane polymer-derived silicon carbonitride (C/SiCN) corresponding to pyrolysis temperatures between 1100 and 1600 °C in an argon atmosphere. Raman spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Scanning Electron Microscopy (SEM) [...] Read more.
This article reports on the structure and electronic properties of carbon-rich polysilazane polymer-derived silicon carbonitride (C/SiCN) corresponding to pyrolysis temperatures between 1100 and 1600 °C in an argon atmosphere. Raman spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Scanning Electron Microscopy (SEM) and Hall measurements were used to support the structural and electronic properties characterization of the prepared C/SiCN nanocomposites. A structural analysis using Raman spectroscopy showed the evolution of sp2 hybridized carbon phase that resulted from the growth in the lateral crystallite size (La), average continuous graphene length including tortuosity (Leq) and inter-defects distance (LD) with an increase in pyrolysis temperature. The prepared C/SiCN monoliths showed a record high room temperature (RT) electrical conductivity of 9.6 S/cm for the sample prepared at 1600 °C. The electronic properties of the nanocomposites determined using Hall measurement revealed an anomalous change in the predominant charge carriers from n-type in the samples pyrolyzed at 1100 °C to predominantly p-type in the samples prepared at 1400 and 1600 °C. According to this outcome, tailor-made carbon-rich SiCN polymer-derived ceramics could be developed to produce n-type and p-type semiconductors for development of the next generation of electronic systems for applications in extreme temperature environments. Full article
(This article belongs to the Special Issue Ceramics for Decarbonization of the Global Industry)
Show Figures

Figure 1

9 pages, 3554 KiB  
Article
A SiCN Thin Film Thermistor Based on DVB Modified Polymer-Derived Ceramics
by Chao Wu, Fan Lin, Xiaochuan Pan, Yingjun Zeng, Guochun Chen, Lida Xu, Yingping He, Daoheng Sun and Zhenyin Hai
Micromachines 2022, 13(9), 1463; https://doi.org/10.3390/mi13091463 - 3 Sep 2022
Cited by 3 | Viewed by 2526
Abstract
Carbon-rich SiCN ceramics were prepared by divinylbenzene (DVB)-modified polysilazane (PSN2), and a high-conductivity SiCN thin film sensor suitable for medium-low temperature sensing was fabricated. The modified liquid precursors were patterned by direct ink writing to produce SiCN resistive grids with line widths of [...] Read more.
Carbon-rich SiCN ceramics were prepared by divinylbenzene (DVB)-modified polysilazane (PSN2), and a high-conductivity SiCN thin film sensor suitable for medium-low temperature sensing was fabricated. The modified liquid precursors were patterned by direct ink writing to produce SiCN resistive grids with line widths of several hundreds of micrometers and thicknesses of several micrometers. The introduction of DVB not only increases the critical thickness of SiCN ceramics several times, but also significantly improves the conductivity of SiCN, making it meet the conductivity requirements of sensing applications in the mid-low temperature range. The electrical conductivity and microstructure of DVB-modified SiCN ceramics were studied in detail. In the temperature range of 30~400 °C, the temperature resistance performance of DVB modified SiCN resistance grid was measured. The SiCN ceramics with low DVB content not only have excellent electrical conductivity, but also have good oxidation resistance. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors)
Show Figures

Figure 1

15 pages, 57315 KiB  
Article
Porous Silicon Oxycarbonitride Ceramics with Palladium and Pd2Si Nanoparticles for Dry Reforming of Methane
by Jun Wang, Matthias Grünbacher, Simon Penner, Maged F. Bekheet and Aleksander Gurlo
Polymers 2022, 14(17), 3470; https://doi.org/10.3390/polym14173470 - 25 Aug 2022
Cited by 6 | Viewed by 2377
Abstract
Pd-containing precursor has been synthesized from palladium acetate and poly(vinly)silazane (Durazane 1800) in an ice bath under an argon atmosphere. The results of ATR-FTIR and NMR characterizations reveal the chemical reaction between palladium acetate and vinyl groups in poly(vinyl)silazane and the hydrolyzation reaction [...] Read more.
Pd-containing precursor has been synthesized from palladium acetate and poly(vinly)silazane (Durazane 1800) in an ice bath under an argon atmosphere. The results of ATR-FTIR and NMR characterizations reveal the chemical reaction between palladium acetate and vinyl groups in poly(vinyl)silazane and the hydrolyzation reaction between –Si–H and –Si–CH=CH2 groups in poly(vinyl)silazane. The palladium nanoparticles are in situ formed in the synthesized precursors as confirmed by XRD, XPS, and TEM. Pd- and Pd2Si-containing SiOCN ceramic nanocomposites are obtained by pyrolysis of the synthesized precursors at 700 °C, 900 °C–1100 °C in an argon atmosphere. The pyrolyzed nanocomposites display good catalytic activity towards the dry reforming of methane. The sample pyrolyzed at 700 °C possesses the best catalytic performance, which can be attributed to the in situ formed palladium nanoparticles and high BET surface area of about 233 m2 g−1. Full article
Show Figures

Figure 1

17 pages, 4470 KiB  
Article
Facile Synthesis of Fluorinated Polysilazanes and Their Durable Icephobicity on Rough Al Surfaces
by Tien N. H. Lo, Sung Woo Hong, Ha Soo Hwang and In Park
Polymers 2022, 14(2), 330; https://doi.org/10.3390/polym14020330 - 14 Jan 2022
Cited by 10 | Viewed by 2905
Abstract
Superhydrophobic Al surfaces with excellent durability and anti-icing properties were fabricated by coating dual-scale rough Al substrates with fluorinated polysilazane (FPSZ). Flat Al plates were etched using an acidic solution, followed by immersion in boiling water to generate hierarchical micro-nano structures on their [...] Read more.
Superhydrophobic Al surfaces with excellent durability and anti-icing properties were fabricated by coating dual-scale rough Al substrates with fluorinated polysilazane (FPSZ). Flat Al plates were etched using an acidic solution, followed by immersion in boiling water to generate hierarchical micro-nano structures on their surfaces. The FPSZ coatings were synthesized by grafting 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (FAS-17), a fluoroalkyl silane), onto methylpolysilazane, an organopolysilazane (OPSZ) backbone. The high water contact angle (175°) and low sliding angle (1.6°) of the FPSZ-coated sample with an FAS-17 content of 17.3 wt% promoted the efficient removal of a frozen ice column with a low ice adhesion strength of 78 kPa at −20.0 °C (70% relative humidity), which was 4.3 times smaller than that of an OPSZ-coated surface. The FPSZ-coated Al surface suppressed ice nucleation, leading to a decrease in ice nucleation temperature from −19.5 to −21.9 °C and a delay in freezing time from 334 to 4914 s at −19.0 °C compared with the OPSZ-coated Al surface. Moreover, after 40 icing–melting cycles the freezing temperature of a water droplet on the FPSZ-coated Al surface remained unchanged, whereas that on the FAS-17-coated Al surface increased from −22.3 to −20.7 °C. Therefore, the durability of the polymeric FPSZ coating was superior to that of the FAS-17 monolayer coating. Full article
(This article belongs to the Special Issue Functional Polymer Coatings II)
Show Figures

Figure 1

18 pages, 10513 KiB  
Article
Hydrothermal Corrosion of Double Layer Glass/Ceramic Coatings Obtained from Preceramic Polymers
by Ivana Parchovianská, Milan Parchovianský, Hana Kaňková, Aleksandra Nowicka and Dušan Galusek
Materials 2021, 14(24), 7777; https://doi.org/10.3390/ma14247777 - 16 Dec 2021
Cited by 5 | Viewed by 2646
Abstract
Polysilazane-based double layer composite coatings consisting of a polymer-derived ceramic (PDC) bond-coat and a PDC top-coat that contains ceramic passive and glass fillers were developed. To investigate the environmental protection ability of the prepared coatings, quasi-dynamic corrosion tests under hydrothermal conditions were conducted [...] Read more.
Polysilazane-based double layer composite coatings consisting of a polymer-derived ceramic (PDC) bond-coat and a PDC top-coat that contains ceramic passive and glass fillers were developed. To investigate the environmental protection ability of the prepared coatings, quasi-dynamic corrosion tests under hydrothermal conditions were conducted at 200 °C for 48–192 h. The tested PDC coatings exhibited significant mass loss of up to 2.25 mg/cm2 after 192 h of corrosion tests, which was attributed to the leaching of elements from the PDC coatings to the corrosion medium. Analysis of corrosion solutions by inductively coupled plasma optical emission spectrometry (ICP-OES) confirmed the presence of Ba, Al, Si, Y, Zr, and Cr, the main component of the steel substrate, in the corrosion medium. Scanning electron microscopy (SEM) of the corroded surfaces revealed randomly distributed globular crystallites approximately 3.5 µm in diameter. Energy-dispersive X-ray spectroscopy (EDXS) of the precipitates showed the presence of Ba, Al, Si, and O. The predominant phases detected after corrosion tests by X-ray powder diffraction analysis (XRD) were monoclinic and cubic ZrO2, originating from the used passive fillers. In addition, the crystalline phase of BaAl2Si2O8 was also identified, which is in accordance with the results of EDXS analysis of the precipitates formed on the coating surface. Full article
Show Figures

Figure 1

12 pages, 1749 KiB  
Article
Process Parameter Optimization of a Polymer Derived Ceramic Coatings for Producing Ultra-High Gas Barrier
by Iftikhar Ahmed Channa, Aqeel Ahmed Shah, Muhammad Rizwan, Muhammad Atif Makhdoom, Ali Dad Chandio, Muhammad Ali Shar and Asif Mahmood
Materials 2021, 14(22), 7000; https://doi.org/10.3390/ma14227000 - 18 Nov 2021
Cited by 12 | Viewed by 3898
Abstract
Silica is one of the most efficient gas barrier materials, and hence is widely used as an encapsulating material for electronic devices. In general, the processing of silica is carried out at high temperatures, i.e., around 1000 °C. Recently, processing of silica has [...] Read more.
Silica is one of the most efficient gas barrier materials, and hence is widely used as an encapsulating material for electronic devices. In general, the processing of silica is carried out at high temperatures, i.e., around 1000 °C. Recently, processing of silica has been carried out from a polymer called Perhydropolysilazane (PHPS). The PHPS reacts with environmental moisture or oxygen and yields pure silica. This material has attracted many researchers and has been widely used in many applications such as encapsulation of organic light-emitting diodes (OLED) displays, semiconductor industries, and organic solar cells. In this paper, we have demonstrated the process optimization of the conversion of the PHPS into silica in terms of curing methods as well as curing the environment. Various curing methods including exposure to dry heat, damp heat, deep UV, and their combination under different environments were used to cure PHPS. FTIR analysis suggested that the quickest conversion method is the irradiation of PHPS with deep UV and simultaneous heating at 100 °C. Curing with this method yields a water permeation rate of 10−3 g/(m2⋅day) and oxygen permeation rate of less than 10−1 cm3/(m2·day·bar). Rapid curing at low-temperature processing along with barrier properties makes PHPS an ideal encapsulating material for organic solar cell devices and a variety of similar applications. Full article
Show Figures

Figure 1

20 pages, 5638 KiB  
Article
Crosslinking Behavior of UV-Cured Polyorganosilazane as Polymer-Derived Ceramic Precursor in Ambient and Nitrogen Atmosphere
by Afnan Qazzazie-Hauser, Kirsten Honnef and Thomas Hanemann
Polymers 2021, 13(15), 2424; https://doi.org/10.3390/polym13152424 - 23 Jul 2021
Cited by 18 | Viewed by 7083
Abstract
Polymer-derived ceramics (PDCs) based on silicon precursor represent an outstanding material for ceramic coatings thanks to their extraordinary versatile processibility. A promising example of a silicone precursor, polyorganosilazane (Durazane 1800), was studied concerning its crosslinking behavior by mixing it with three [...] Read more.
Polymer-derived ceramics (PDCs) based on silicon precursor represent an outstanding material for ceramic coatings thanks to their extraordinary versatile processibility. A promising example of a silicone precursor, polyorganosilazane (Durazane 1800), was studied concerning its crosslinking behavior by mixing it with three different photoinitiators, and curing it by two different UV-LED sources under both nitrogen and ambient atmosphere. The chemical conversion during polymerization and pyrolysis was monitored by FTIR spectroscopy. Pyrolysis was performed in a nitrogen atmosphere at 950 °C. The results demonstrate that polyorganosilazane can be cured by the energy-efficient UV-LED source at room temperature in nitrogen and ambient atmosphere. In nitrogen atmosphere, already common reactions for polysilazanes, including polyaddition of the vinyl group, dehydrogenation reactions, hydrosilylation, and transamination reaction, are responsible for crosslinking. Meanwhile, in ambient atmosphere, hydrolysis and polycondensation reactions occur next to the aforementioned reactions. In addition, the type of photoinitiator has an influence on the conversion of the reactive bonds and the chemical composition of the resulting ceramic. Furthermore, thermogravimetric analysis (TGA) was conducted in order to measure the ceramic yield of the cured samples as well as to study their decomposition. The ceramic yield was observed in the range of 72 to 78% depending on the composition and the curing atmosphere. The curing atmosphere significantly impacts the chemical composition of the resulting ceramics. Depending on the chosen atmosphere, either silicon carbonitride (SiCN) or a partially oxidized SiCN(O) can be produced. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

13 pages, 4596 KiB  
Article
High-Temperature Resistant Polyborosilazanes with Tailored Structures
by Bijie Wang, Ke Chen, Tianhao Li, Xun Sun, Ming Liu, Lingwei Yang, Xiao (Matthew) Hu, Jian Xu, Liu He, Qing Huang, Linbin Jiang and Yujie Song
Polymers 2021, 13(3), 467; https://doi.org/10.3390/polym13030467 - 1 Feb 2021
Cited by 8 | Viewed by 3878
Abstract
Boron-containing organosilicon polymers are widely used under harsh environments as preceramic polymers for advanced ceramics fabrication. However, harmful chemicals released during synthesis and the complex synthesis routes have limited their applications. To solve the problems, a two-component route was adopted to synthesize cross-linked [...] Read more.
Boron-containing organosilicon polymers are widely used under harsh environments as preceramic polymers for advanced ceramics fabrication. However, harmful chemicals released during synthesis and the complex synthesis routes have limited their applications. To solve the problems, a two-component route was adopted to synthesize cross-linked boron-containing silicone polymer (CPBCS) via a solventless process. The boron content and CPBCSs’ polymeric structures could be readily tuned through controlling the ratio of multifunctional boron hybrid silazane monomers (BSZ12) and poly[imino(methylsilylene)]. The CPBCSs showed high thermal stability and good mechanical properties. The CPBCS with Si-H/C=C ratio of 10:1 showed 75 wt% char yields at 1000 °C in argon, and the heat release capacity (HRC) and total heat release (THR) are determined to be 37.9 J/g K and 6.2 KJ/g, demonstrating high thermal stability and flame retardancy. The reduced modulus and hardness of CPBCS are 0.30 GPa and 2.32 GPa, respectively. The novel polysilazanes can be potentially used under harsh environments, such as high temperatures or fire hazards. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

11 pages, 3136 KiB  
Article
Incorporating MXene into Boron Nitride/Poly(Vinyl Alcohol) Composite Films to Enhance Thermal and Mechanical Properties
by Seonmin Lee and Jooheon Kim
Polymers 2021, 13(3), 379; https://doi.org/10.3390/polym13030379 - 26 Jan 2021
Cited by 25 | Viewed by 4478
Abstract
Aggregated boron nitride (ABN) is advantageous for increasing the packing and thermal conductivity of the matrix in composite materials, but can deteriorate the mechanical properties by breaking during processing. In addition, there are few studies on the use of Ti3C2 [...] Read more.
Aggregated boron nitride (ABN) is advantageous for increasing the packing and thermal conductivity of the matrix in composite materials, but can deteriorate the mechanical properties by breaking during processing. In addition, there are few studies on the use of Ti3C2 MXene as thermally conductive fillers. Herein, the development of a novel composite film is described. It incorporates MXene and ABN into poly(vinyl alcohol) (PVA) to achieve a high thermal conductivity. Polysilazane (PSZ)-coated ABN formed a heat conduction path in the composite film, and MXene supported it to further improve the thermal conductivity. The prepared polymer composite film is shown to provide through-plane and in-plane thermal conductivities of 1.51 and 4.28 W/mK at total filler contents of 44 wt.%. The composite film is also shown to exhibit a tensile strength of 11.96 MPa, which is much greater than that without MXene. Thus, it demonstrates that incorporating MXene as a thermally conductive filler can enhance the thermal and mechanical properties of composite films. Full article
(This article belongs to the Special Issue Conducting Polymer-Based Hybrid Nanomaterials)
Show Figures

Graphical abstract

9 pages, 2125 KiB  
Article
Thermal Properties of Binary Filler Hybrid Composite with Graphene Oxide and Pyrolyzed Silicon-Coated Boron Nitride
by Jaehyun Wie and Jooheon Kim
Polymers 2020, 12(11), 2553; https://doi.org/10.3390/polym12112553 - 30 Oct 2020
Cited by 13 | Viewed by 2888
Abstract
To improve the thermal conductivity of a composite material, the filler dispersion and the interfacial adhesion between the filler and the matrix are important factors. A number of methods for satisfying these criteria are presented herein. Thus, graphene oxide (GO) is incorporated to [...] Read more.
To improve the thermal conductivity of a composite material, the filler dispersion and the interfacial adhesion between the filler and the matrix are important factors. A number of methods for satisfying these criteria are presented herein. Thus, graphene oxide (GO) is incorporated to enhance the dispersion state of surface-modified boron nitride (BN) by increasing the viscosity of the epoxy matrix and by providing steric hindrance. Meanwhile, polysilazane (PSZ) coating and thermolysis were used to enhance the wettability by providing structural similarity between the coating material and the epoxy matrix. Due to these strategies, the thermal conductivity was improved by 253% compared to that of the neat epoxy at a filler fraction of 40 wt %. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

11 pages, 5429 KiB  
Article
A Sinter Visualization Device for Observing the Relationship Between Fillers and Porosity of Precursor-Derived Ceramic Coatings
by Guangxin Wang, Jinqing Wang, Jie Wang, Zuohe Chi, Guangxue Zhang, Zhiyi Zhou, Zhi Feng and Yunhao Xiong
Coatings 2020, 10(6), 552; https://doi.org/10.3390/coatings10060552 - 9 Jun 2020
Cited by 5 | Viewed by 3050
Abstract
Adding fillers to polysilazane (PSZ)-derived ceramic coating is one of the main methods used to reduce PSZ porosity. In this study, we designed a sinter visualization device for understanding the effect of fillers on coating porosity and observed pore evolution within the coating [...] Read more.
Adding fillers to polysilazane (PSZ)-derived ceramic coating is one of the main methods used to reduce PSZ porosity. In this study, we designed a sinter visualization device for understanding the effect of fillers on coating porosity and observed pore evolution within the coating sintering process using different filler ratios. When there was no filler in the coating, gas evolution occurred at the initial sintering stage due to a PSZ pyrolysis reaction. In the final stage, numerous cracks appeared because of volume shrinkage. It was determined that such coatings cannot provide good protection. Although the cracks disappeared after adding glass powder, many bubbles appeared. After adding ZrO2, the bubbles in the coating significantly reduced. When the volume ratio of PSZ/glass powder/ZrO2 was 1:2:1, the coating porosity after sintering was the lowest. Based on our visualization experimental results, we concluded that the glass powder’s healing effect and the ZrO2 skeleton effect were the main reasons for the reduced coating porosity. In addition, the sinter visualization device can be used to observe the surface morphology of other similar coatings during the sintering processes. Full article
(This article belongs to the Special Issue Innovative Surface Modification Techniques for Biodegradable Implants)
Show Figures

Figure 1

9 pages, 3247 KiB  
Article
Microstructures and Properties of Ceramic Fibers of h-BN Containing Amorphous Si3N4
by Jing Tan, Min Ge, Shouquan Yu, Zhenxi Lu and Weigang Zhang
Materials 2019, 12(23), 3812; https://doi.org/10.3390/ma12233812 - 20 Nov 2019
Cited by 2 | Viewed by 2908
Abstract
Composite ceramic fibers comprising about 80 wt% boron nitride (h-BN) and 20 wt% Si3N4 were fabricated through melt-spinning, electron-beam curing, and pyrolysis up to 1600 °C in atmospheres of NH3 and N2, using a mixture of poly[tri(methylamino)borazine] [...] Read more.
Composite ceramic fibers comprising about 80 wt% boron nitride (h-BN) and 20 wt% Si3N4 were fabricated through melt-spinning, electron-beam curing, and pyrolysis up to 1600 °C in atmospheres of NH3 and N2, using a mixture of poly[tri(methylamino)borazine] (PBN) and polysilazane (PSZ). By analyzing the microstructure and composition of the pyrolyzed ceramic fibers, we found the formation of binary phases including crystalline h-BN and amorphous Si3N4. Further investigations confirmed that this heterogeneous microstructure can only be formed when the introduced ratio of Si3N4 is below 30% in mass. The mean modulus and tensile strength of the fabricated composite fibers were about 90 GPa and 1040 MPa, twice the average of the pure h-BN fiber. The dielectric constant and dielectric loss tangent of the composite fibers is 3.06 and 2.94 × 10−3. Full article
Show Figures

Figure 1

Back to TopTop